Fish Oil Supplementation Mitigates High-Fat Diet-Induced Obesity: Exploring Epigenetic Modulation and Genes Associated with Adipose Tissue Dysfunction in Mice
Abstract
:1. Introduction
2. Results
2.1. Obesity Model Characterization
2.2. WAT depots Extracted from Mice Treated with CO, HFD, and HFD + FO Diets: Depot Mass and Gene Expression by PCR Array
2.3. Expression of H3K27 Modifiers, H3k27ac, H3k27met3, and Acly/ACL in the Visceral Epi WAT from Mice
2.4. Gene Expression of Acly and Leptin Receptors in ASCs from Mice
3. Discussion
4. Materials and Methods
4.1. Animals, Fish Oil Supplementation, and Experimental Procedure
4.2. Glucose Tolerance Test
4.3. WAT and SVF Isolation
4.4. Isolation of ASCs and Leptin treatment
4.5. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
4.6. PCR Array Gene Expression Analysis
4.7. Western Blot
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Wu, H.; Liu, Y.; Yang, L. High fat diet induced obesity model using four strains of mice: Kunming, C57BL/6, BALB/c and ICR. Exp. Anim. 2020, 69, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Rajagopal, P.; Devarajan, N.; Veeraraghavan, V.P.; Palanisam, C.P.; Cui, B.; Patil, S.; Jayaraman, S. A comprehensive review on high-fat diet-induced diabetes mellitus: An epigenetic view. J. Nutr. Biochem. 2022, 107, 109037. [Google Scholar] [CrossRef]
- Li, X.; Ren, Y.; Chang, K.; Wu, W.; Griffiths, H.R.; Lu, S.; Gao, D. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front. Immunol. 2023, 14, 1153915. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Yang, Z.H.; Chen, F.Z.; Zhang, Y.X.; Ou, M.Y.; Tan, P.C.; Xu, X.W.; Li, Q.; Zhou, S.B. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: Mechanisms and opportunities. MedComm 2024, 5, e560. [Google Scholar] [CrossRef] [PubMed]
- Gilani, A.; Stoll, L.; Homan, E.A.; Lo, J.C. Adipose Signals Regulating Distal Organ Health and Disease. Diabetes 2024, 73, 169–177. [Google Scholar] [CrossRef]
- Schleh, M.W.; Caslin, H.L.; Garcia, J.N.; Mashayekhi, M.; Srivastava, G.; Bradley, A.B.; Hasty, A.H. Metaflammation in obesity and its therapeutic targeting. Sci. Transl. Med. 2023, 15, eadf9382. [Google Scholar] [CrossRef] [PubMed]
- Hawash, M.; Al-Smadi, D.; Kumar, A.; Olech, B.; Dominiak, P.M.; Jaradat, N.; Antari, S.; Mohammed, S.; Nasasrh, A.; Abualhasan, M.; et al. Characterization and Investigation of Novel Benzodioxol Derivatives as Antidiabetic Agents: An In Vitro and In Vivo Study in an Animal Model. Biomolecules 2023, 13, 1486. [Google Scholar] [CrossRef]
- Hawash, M.; Jaradat, N.; Salhi, N.A.; Shatreet, B.; Asbah, A.A.; Hawash, Y.H. Assessing the therapeutic potential and safety of traditional anti-obesity herbal blends in Palestine. Sci. Rep. 2024, 14, 1919. [Google Scholar] [CrossRef]
- Su, Y.; Choi, H.S.; Choi, J.H.; Kim, H.S.; Lee, G.Y.; Cho, H.W.; Choi, H.; Jang, Y.S.; Seo, J.W. Effects of Fish Oil, Lipid Mediators, Derived from Docosahexaenoic Acid, and Their Co-Treatment against Lipid Metabolism Dysfunction and Inflammation in HFD Mice and HepG2 Cells. Nutrients 2023, 15, 427. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Yu, S.; Xie, Q.; Tan, W.; Hu, M.; Xu, G.; Zhang, X.; Xie, G.; Mao, L. Different ratios of DHA/EPA reverses insulin resistance by improving adipocyte dysfunction and lipid disorders in HFD-induced IR mice. Food Funct. 2023, 14, 1179–1197. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- de Sá, R.D.C.d.C.; Crisma, A.R.; Cruz, M.M.; Martins, A.R.; Masi, L.N.; do Amaral, C.L.; Curi, R.; Alonso-Vale, M.I. Fish oil prevents changes induced by a high-fat diet on metabolism and adipokine secretion in mice subcutaneous and visceral adipocytes. J. Physiol. 2016, 594, 6301–6317. [Google Scholar] [CrossRef] [PubMed]
- de Sá, R.D.C.C.; Cruz, M.M.; de Farias, T.M.; da Silva, V.S.; de Jesus Simão, J.; Telles, M.M.; Alonso-Vale, M.I.C. Fish oil reverses metabolic syndrome, adipocyte dysfunction, and altered adipokines secretion triggered by high-fat diet-induced obesity. Physiol. Rep. 2020, 8, e14380. [Google Scholar] [CrossRef]
- Antraco, V.J.; Hirata, B.K.S.; de Jesus Simão, J.; Cruz, M.M.; da Silva, V.S.; da Cunha de Sá, R.D.C.; Abdala, F.M.; Armelin-Correa, L.; Alonso-Vale, M.I.C. Omega-3 Polyunsaturated Fatty Acids Prevent Nonalcoholic Steatohepatitis (NASH) and Stimulate Adipogenesis. Nutrients 2021, 13, 622. [Google Scholar] [CrossRef]
- da Cunha de Sá, R.D.C.; Simão, J.d.J.; Silva, V.S.d.; Farias, T.M.d.; Cruz, M.M.; Antraco, V.J.; Armelin-Correa, L.; Alonso-Vale, M.I. Fish Oil Enriched in EPA, but Not in DHA, Reverses the Metabolic Syndrome and Adipocyte Dysfunction Induced by a High-Fat Diet. Nutrients 2021, 13, 754. [Google Scholar] [CrossRef] [PubMed]
- Iacobini, C.; Vitale, M.; Haxhi, J.; Menini, S.; Pugliese, G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024, 13, 763. [Google Scholar] [CrossRef] [PubMed]
- Johnston, E.K.; Abbott, R.D. Adipose Tissue Development Relies on Coordinated Extracellular Matrix Remodeling, Angiogenesis, and Adipogenesis. Biomedicines 2022, 10, 2227. [Google Scholar] [CrossRef]
- Mikkelsen, T.S.; Xu, Z.; Zhang, X.; Wang, L.; Gimble, J.M.; Lander, E.S.; Rosen, E.D. Comparative Epigenomic Analysis of Murine and Human Adipogenesis. Cell 2010, 143, 156–169. [Google Scholar] [CrossRef]
- Zhao, Y.; Skovgaard, Z.; Wang, Q. Regulation of adipogenesis by histone methyltransferases. Differentiation 2024, 136, 100746. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Hwang, J.; Jeong, H.-S. The Role of Histone Acetylation in Mesenchymal Stem Cell Differentiation. Chonnam Med. J. 2022, 58, 6. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.H.; Li, L.Y.; Lang, J.; Yeh, S.P.; Shi, B.; Yang, C.C.; Yang, J.Y.; Lin, C.Y.; Lai, C.C.; et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat. Cell Biol. 2011, 13, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Hemming, S.; Cakouros, D.; Isenmann, S.; Cooper, L.; Menicanin, D.; Zannettino, A.; Gronthos, S. EZH2 and KDM6A Act as an Epigenetic Switch to Regulate Mesenchymal Stem Cell Lineage Specification. Stem Cells 2014, 32, 802–815. [Google Scholar] [CrossRef]
- Ogryzko, V.V.; Schiltz, R.L.; Russanova, V.; Howard, B.H.; Nakatani, Y. The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases. Cell 1996, 87, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.F.; LaBarge, S.A.; Stanley, A.; Svensson, K.; Hung, C.W.; Keinan, O.; Ciaraldi, T.P.; Banoian, D.; Park, J.E.; Ha, C.; et al. p300 or CBP is required for insulin-stimulated glucose uptake in skeletal muscle and adipocytes. JCI Insight 2022, 7, e141344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akhter, N.; Kochumon, S.; Hasan, A.; Wilson, A.; Nizam, R.; Al Madhoun, A.; Al-Rashed, F.; Arefanian, H.; Alzaid, F.; Sindhu, S.; et al. IFN-γ and LPS Induce Synergistic Expression of CCL2 in Monocytic Cells via H3K27 Acetylation. J. Inflamm. Res. 2022, 15, 4291–4302. [Google Scholar] [CrossRef] [PubMed]
- Schuldt, L.; Reimann, M.; von Brandenstein, K.; Steinmetz, J.; Döding, A.; Schulze-Späte, U.; Jacobs, C.; Symmank, J. Palmitate-Triggered COX2/PGE2-Related Hyperinflammation in Dual-Stressed PdL Fibroblasts Is Mediated by Repressive H3K27 Trimethylation. Cells 2022, 11, 955. [Google Scholar] [CrossRef]
- Takahashi, H.; McCaffery, J.M.; Irizarry, R.A.; Boeke, J.D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 2006, 23, 207–217. [Google Scholar] [CrossRef]
- Cluntun, A.A.; Huang, H.; Dai, L.; Liu, X.; Zhao, Y.; Locasale, J.W. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab. 2015, 3, 10. [Google Scholar] [CrossRef]
- Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; Thompson, C.B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324, 1076–1080. [Google Scholar] [CrossRef]
- Evertts, A.G.; Zee, B.M.; Dimaggio, P.A.; Gonzales-Cope, M.; Coller, H.A.; Garcia, B.A. Quantitative dynamics of the link between cellular metabolism and histone acetylation. J. Biol. Chem. 2013, 288, 12142–12151. [Google Scholar] [CrossRef] [PubMed]
- Galdieri, L.; Zhang, T.; Rogerson, D.; Lleshi, R.; Vancura, A. Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot. Cell 2014, 13, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Carrer, A.; Parris, J.L.D.; Trefely, S.; Henry, R.A.; Montgomery, D.C.; Torres, A.; Viola, J.M.; Kuo, Y.M.; Blair, I.A.; Meier, J.L.; et al. Impact of a High-fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels. J. Biol. Chem. 2017, 292, 3312–3322. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, Q.; Yu, Y.; Zhao, F.; Huang, P.; Zeng, R.; Qi, R.Z.; Li, W.; Liu, Y. Leptin contributes to the adaptive responses of mice to high-fat diet intake through suppressing the lipogenic pathway. PLoS ONE 2009, 4, e6884. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, H.; Katsurada, A.; Iritani, N. Effects of nutrients and hormones on gene expression of ATP citrate-lyase in rat liver. Eur. J. Biochem. 1992, 209, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Kim, T.J.; Choi, J.H.; Kim, M.J.; Cho, Y.N.; Nam, K.I.; Kee, S.J.; Moon, J.B.; Choi, S.Y.; Park, D.J.; et al. MicroRNA-155 as a proinflammatory regulator via SHIP-1 down-regulation in acute gouty arthritis. Arthritis Res. Ther. 2014, 16, R88. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Yin, N.; Chhangawala, S.; Xu, K.; Leslie, C.S.; Li, M.O. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 2016, 354, 481–484. [Google Scholar] [CrossRef]
- Margueron, R.; Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 2011, 469, 343–349. [Google Scholar] [CrossRef]
- Lee, J.V.; Carrer, A.; Shah, S.; Snyder, N.W.; Wei, S.; Venneti, S.; Worth, A.J.; Yuan, Z.F.; Lim, H.W.; Liu, S.; et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 2014, 20, 306–319. [Google Scholar] [CrossRef]
- Amatruda, M.; Ippolito, G.; Vizzuso, S.; Vizzari, G.; Banderali, G.; Verduci, E. Epigenetic Effects of n-3 LCPUFAs: A Role in Pediatric Metabolic Syndrome. Int. J. Mol. Sci. 2019, 20, 2118. [Google Scholar] [CrossRef]
- Georgel, P.T.; Georgel, P. Where Epigenetics Meets Food Intake: Their Interaction in the Development/Severity of Gout and Therapeutic Perspectives. Front. Immunol. 2021, 12, 752359. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Witte, T.; Patterson, W.L., 3rd; Fahrmann, J.F.; Guo, K.; Hur, J.; Hardman, W.E.; Georgel, P.T. Epigenetic Reprogramming Mediated by Maternal Diet Rich in Omega-3 Fatty Acids Protects From Breast Cancer Development in F1 Offspring. Front. Cell Dev. Biol. 2021, 9, 682593. [Google Scholar] [CrossRef] [PubMed]
- Galdieri, L.; Vancura, A. Acetyl-CoA Carboxylase Regulates Global Histone Acetylation. J. Biol. Chem. 2012, 287, 23865–23876. [Google Scholar] [CrossRef]
- Yu, G.; Floyd, Z.E.; Wu, X.; Hebert, T.; Halvorsen, Y.D.; Buehrer, B.M.; Gimble, J.M. Adipogenic Differentiation of Adipose-Derived Stem Cells. In Adipose-Derived Stem Cells. Methods in Molecular Biology; Gimble, J., Bunnell, B., Eds.; Humana Press: Totowa, NJ, USA, 2011; Volume 702, pp. 193–200. [Google Scholar] [CrossRef]
- Patel, P.; Abate, N. Role of Subcutaneous Adipose Tissue in the Pathogenesis of Insulin Resistance. J. Obes. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Cawthorn, W.P.; Scheller, E.L.; MacDougald, O.A. Adipose tissue stem cells meet preadipocyte commitment: Going back to the future. J. Lipid Res. 2012, 53, 227–246. [Google Scholar] [CrossRef] [PubMed]
- Ejarque, M.; Ceperuelo-Mallafré, V.; Serena, C.; Maymo-Masip, E.; Duran, X.; Díaz-Ramos, A.; Millan-Scheiding, M.; Núñez-Álvarez, Y.; Núñez-Roa, C.; Gama, P.; et al. Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation signature in adipose-derived stem cells. Int. J. Obes. 2019, 43, 1256–1268. [Google Scholar] [CrossRef]
- Pérez, L.M.; Bernal, A.; de Lucas, B.; San Martin, N.; Mastrangelo, A.; García, A.; Barbas, C.; Gálvez, B.G. Altered Metabolic and Stemness Capacity of Adipose Tissue-Derived Stem Cells from Obese Mouse and Human. PLoS ONE 2015, 10, e0123397. [Google Scholar] [CrossRef]
- Serena, C.; Keiran, N.; Ceperuelo-Mallafre, V.; Ejarque, M.; Fradera, R.; Roche, K.; Nuñez-Roa, C.; Vendrell, J.; Fernández-Veledo, S. Obesity and Type 2 Diabetes Alters the Immune Properties of Human Adipose Derived Stem Cells. Stem Cells 2016, 34, 2559–2573. [Google Scholar] [CrossRef]
- Pachón-Peña, G.; Serena, C.; Ejarque, M.; Petriz, J.; Duran, X.; Oliva-Olivera, W.; Simó, R.; Tinahones, F.J.; Fernández-Veledo, S.; Vendrell, J. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue. Stem Cells Transl. Med. 2016, 5, 464–475. [Google Scholar] [CrossRef]
- Crujeiras, A.B.; Diaz-Lagares, A.; Moreno-Navarrete, J.M.; Sandoval, J.; Hervas, D.; Gomez, A.; Ricart, W.; Casanueva, F.F.; Esteller, M.; Fernandez-Real, J.M. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Transl. Res. 2016, 178, 13–24.e5. [Google Scholar] [CrossRef] [PubMed]
- Roldan, M.; Macias-Gonzalez, M.; Garcia, R.; Tinahones, F.J.; Martin, M. Obesity short-circuits stemness gene network in human adipose multipotent stem cells. FASEB J. 2011, 25, 4111–4126. [Google Scholar] [CrossRef] [PubMed]
- Palhinha, L.; Liechocki, S.; Hottz, E.D.; Pereira, J.A.D.S.; de Almeida, C.J.; Moraes-Vieira, P.M.M.; Bozza, P.T.; Maya-Monteiro, C.M. Leptin Induces Proadipogenic and Proinflammatory Signaling in Adipocytes. Front. Endocrinol. 2019, 10, 487057. [Google Scholar] [CrossRef] [PubMed]
- Crop, M.J.; Baan, C.C.; Korevaar, S.S.; Ijzermans, J.N.M.; Weimar, W.; Hoogduijn, M.J. Human Adipose Tissue-Derived Mesenchymal Stem Cells Induce Explosive T-Cell Proliferation. Stem Cells Dev. 2010, 19, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.S.; Simão, J.J.; Plata, V.; de Sousa, A.F.; da Cunha de Sá, R.D.C.; Machado, C.F.; Stumpp, T.; Alonso-Vale, M.I.C.; Armelin-Correa, L. High-fat diet decreases H3K27ac in mice adipose-derived stromal cells. Obesity 2022, 30, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Rodbell, M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 1964, 239, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Rossow, K.L.; Lindlauf, J. Development and Testing of the AIN-93 Purified Diets for Rodents: Results on Growth, Kidney Calcification and Bone Mineralization in Rats and Mice. J. Nutr. 1993, 123, 1923–1931. [Google Scholar] [CrossRef]
- Thomaz, F.M.; de Jesus Simão, J.; da Silva, V.S.; Machado, M.M.F.; Oyama, L.M.; Ribeiro, E.B.; Alonso Vale, M.I.C.; Telles, M.M. Ginkgo biloba Extract Stimulates Adipogenesis in 3T3-L1 Preadipocytes. Pharmaceuticals 2022, 15, 1294. [Google Scholar] [CrossRef]
Gene | RefSeq Number | Fold Regulation | p-Value | Pathway Related |
---|---|---|---|---|
Up-regulated | ||||
Lep | NM_008493 | 25.48 | 0.046332 | Adipokines |
Ncor2 | NM_001253904 | 3.08 | ns | Anti-Browning |
Dio2 | NM_010050 | 3.98 | 0.000554 | Pro-Browning, fatty acid thermogenesis, and oxidation |
Elovl3 | NM_007703 | 2.63 | ns | Pro-Browning, fatty acid thermogenesis, and oxidation |
Ccl2 | NM_011333 | 5.07 | 0.009529 | Cytokines, growth factors, and signal transduction |
Il10 | NM_010548 | 2.08 | ns | Cytokines, growth factors, and signal transduction |
Tgfb1 | NM_011577 | 3.06 | ns | Cytokines, growth factors, and signal transduction |
Tnf | NM_013693 | 10.65 | 0.009005 | Cytokines, growth factors, and signal transduction |
Nfkb1 | NM_008689 | 2.52 | ns | Cytokines, growth factors, and signal transduction |
Cd68 | NM_009853 | 9.16 | 0.000279 | Cytokines, growth factors, and signal transduction |
Down-regulated | ||||
Adipoq | NM_009605 | −2.82 | 0.010125 | Adipokines |
Cfd | NM_013459 | −2.54 | 0.004805 | Adipokines |
Retn | NM_001204959 | −3.30 | 0.016985 | Adipokines |
Acaca | NM_133360 | −2.55 | ns | Lipases and lipogenic enzymes |
Scd1 | NM_009127 | −2.90 | 0.042774 | Lipases and lipogenic enzymes |
Lpin1 | NM_001130412 | −8.55 | 0.001238 | Lipases and lipogenic enzymes |
Pck1 | NM_011044 | −5.98 | ns | Lipases and lipogenic enzymes |
Fasn | NM_007988 | −3.87 | ns | Lipases and lipogenic enzymes |
Cebpa | NM_007678 | −2.45 | 0.002073 | Pro-adipogenesis |
Cebpd | NM_007679 | −3.64 | 0.041382 | Pro-adipogenesis |
Fabp4 | NM_024406 | −2.01 | ns | Pro-adipogenesis |
Fgf2 | NM_008006 | −2.37 | ns | Pro-adipogenesis |
Fgf10 | NM_008002 | −2.71 | ns | Pro-adipogenesis |
Jun | NM_010591 | −2.05 | ns | Pro-adipogenesis |
Sfrp1 | NM_013834 | −2.98 | ns | Pro-adipogenesis |
Klf15 | NM_023184 | −4.62 | ns | Pro-adipogenesis |
Adrb2 | NM_007420 | −6.37 | 0.001464 | Anti-adipogenesis |
Dlk1 | NM_001190703 | −2.36 | ns | Anti-adipogenesis |
Foxo1 | NM_019739 | −2.26 | ns | Anti-adipogenesis |
Shh | NM_009170 | −18.41 | 0.000001 | Anti-adipogenesis |
Wnt1 | NM_021279 | −4.60 | 0.001147 | Anti-adipogenesis |
Wnt3a | NM_009522 | −11.21 | 0.000001 | Anti-adipogenesis |
Gata2 | NM_008090 | −2.32 | ns | Anti-adipogenesis |
Bmp7 | NM_007557 | −2.06 | ns | Pro-Browning, fatty acid thermogenesis, and oxidation |
Ppargc1a | NR_027710 | −2.40 | ns | Pro-Browning, fatty acid thermogenesis, and oxidation |
Ppargc1b | NM_133249 | −2.29 | ns | Pro-Browning, fatty acid thermogenesis, and oxidation |
Sirt3 | NM_001127351 | −2.34 | ns | Pro-Browning, fatty acid thermogenesis, and oxidation |
Tbx1 | NM_011532 | −11.21 | 0.000001 | Pro-Browning, fatty acid thermogenesis, and oxidation |
Ucp1 | NM_009463 | −5.67 | ns | Pro-Browning, fatty acid thermogenesis, and oxidation |
Nr1h3 | NM_001177730 | −2.28 | 0.007073 | Anti-Browning |
Wnt10b | NM_011718 | −2.50 | ns | Anti-Browning |
Lepr | NM_001122899 | −2.30 | ns | Adipokines receptors |
Adipor2 | NM_197985 | −3.03 | ns | Adipokines receptors |
Adrb1 | NM_007419 | −2.73 | ns | Adipokines receptors |
Ifng | NM_008337 | −11.06 | 0.000001 | Cytokines, growth factors, and signal transduction |
Il4 | NM_021283 | −2.20 | ns | Cytokines, growth factors, and signal transduction |
Il6 | NM_031168 | −10.93 | 0.000001 | Cytokines, growth factors, and signal transduction |
Il13 | NM_008355 | −11.21 | 0.000001 | Cytokines, growth factors, and signal transduction |
Insr | NM_010568 | −3.52 | ns | Cytokines, growth factors, and signal transduction |
Irs1 | NM_010570 | −4.26 | 0.043055 | Cytokines, growth factors, and signal transduction |
Irs2 | NM_001081212 | −4.61 | 0.017955 | Cytokines, growth factors, and signal transduction |
Pik3r1 | NM_001024955 | −2.33 | ns | Cytokines, growth factors, and signal transduction |
Irf4 | NM_013674 | −11.92 | 0.000978 | Cytokines, growth factors, and signal transduction |
Gene | 5′ Primer (5′-3′)-Sense | 3′ Primer (5′-3′)-Antisense |
---|---|---|
Gapdh | AAATGGTGAAGGTCGGTGTG | TGAAGGGGTCGTTGATGG |
Ep300 (p300) | GTTGCTATGGGAAACAGTTATGC | TGTAGTTTGAGGTTGGGAAGG |
Ezh2 | CAGGATGAAGCAGACAGAAGAGG | TCGGGTTGCATCCACCACAAA |
Kdm6a | GCTGGAACAGCTGGAAAGTC | GAGTCAACTGTTGGCCCATT |
Kdm6b | CCTATTATGCTCCTGGGACA | TACGGCTTCCTCACTGTCGT |
Crebbp (Cbp) | GACCGCTTTGTTTATACCTGC | TCTTATGGGTGTGGCTCTTTG |
Acly | TCCGTCAAACAGCACTTCC | ATTTGGCTTCTTGGAGGTG |
36b4 (Rplp0) | TAAAGACTGGAGACAAGGTG | GTGTACTCAGTCTCCAC AGA |
Lepr1 | CAGAATGACGCAGGGCTGTA | GCTCAAATGTTTCAGGCTTTTGG |
Lepr2 | ATTAATGGTTTCACCAAAGATGCT | AAGATCTGTAAGTACTGTGGCAT |
Pathways | Genes |
---|---|
Adipokines | Adipoq (Acrp30), Cfd (Adipisin), Lep (leptin), Retn (Resistin) |
Lipases and lipogenic enzymes | Acaca (Acc1), Gpd1 (glycerol-3-phosphate dehydrogenase 1 (soluble), Lipe (HSL), Scd1 (stearoyl CoA desaturase), Lpl, Pnpla2 (Atgl), Lipin 1, Pck1 (phosphoenolpyruvate carboxykinase 1), Fasn |
Pro-adipogenesis | Cebpa, Cebpb, Cebpd, Pparg (PPAR gamma 2), Srebf1, Fabp4 (aP2), Pilin1, Fgf2 (bFGF), Fgf10, Jun (c-jun ou AP1), Lmna (Lamini A), Sfrp1 (secreted frizzled-related protein1), Slc2a4 (Glut4), Klf15, Klf4 |
Anti-adipogenesis | Adrb2, Cdkn1a (p21Cip1, Waf1), Cdkn1b (p27Kip1), Ddit3 (Gadd153, Chop), Dlk1 (Pref1), Foxo1, Ncor2, Shh, Sirt1, Wnt1, Wnt3a, Gata2, Klf |
Pro-Browning, fatty acid thermogenesis, and oxidation | Bmp7, Cidea, Cpt1b, Creb1, Dio2, Elovl3, Foxc2, Mapk14 (p38alpha), Nrf1, Ppara, Ppard, Ppargc1a (Pgc1alpha), Ppargc1b (Perc, Pgc1beta), Prdm16, Sirt3, Src, Tbx1, Tfam, Ucp1, Wnt5a |
Anti-Browning | Ncoa2, Nr1h3, Rb1, Wnt10b |
Adipokines receptors | Lepr, Adipor2, Adrb1 |
Cytokines, growth factors, and signal transduction | Ccl2 (MCP1), Cxcl10, Ifng, Il1b, Il4, Il6, Il10, Il12b, Il13, Tgfb1, Tnf, Insr, Irs1, Irs2, Akt2, Ptpn1 (PTP1B), Ikbkb (IKKbeta), Mapk8 (JNK1), Nfkb1, Pik3r1 (p85alpha), Irf4, Retnla (Resistin-like alpha, Fizz1), Cd68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesus Simão, J.; de Sousa Bispo, A.F.; Plata, V.T.G.; Armelin-Correa, L.M.; Alonso-Vale, M.I.C. Fish Oil Supplementation Mitigates High-Fat Diet-Induced Obesity: Exploring Epigenetic Modulation and Genes Associated with Adipose Tissue Dysfunction in Mice. Pharmaceuticals 2024, 17, 861. https://doi.org/10.3390/ph17070861
de Jesus Simão J, de Sousa Bispo AF, Plata VTG, Armelin-Correa LM, Alonso-Vale MIC. Fish Oil Supplementation Mitigates High-Fat Diet-Induced Obesity: Exploring Epigenetic Modulation and Genes Associated with Adipose Tissue Dysfunction in Mice. Pharmaceuticals. 2024; 17(7):861. https://doi.org/10.3390/ph17070861
Chicago/Turabian Stylede Jesus Simão, Jussara, Andressa França de Sousa Bispo, Victor Tadeu Gonçalves Plata, Lucia Maria Armelin-Correa, and Maria Isabel Cardoso Alonso-Vale. 2024. "Fish Oil Supplementation Mitigates High-Fat Diet-Induced Obesity: Exploring Epigenetic Modulation and Genes Associated with Adipose Tissue Dysfunction in Mice" Pharmaceuticals 17, no. 7: 861. https://doi.org/10.3390/ph17070861
APA Stylede Jesus Simão, J., de Sousa Bispo, A. F., Plata, V. T. G., Armelin-Correa, L. M., & Alonso-Vale, M. I. C. (2024). Fish Oil Supplementation Mitigates High-Fat Diet-Induced Obesity: Exploring Epigenetic Modulation and Genes Associated with Adipose Tissue Dysfunction in Mice. Pharmaceuticals, 17(7), 861. https://doi.org/10.3390/ph17070861