Selective Antineoplastic Potential of Fractionated Caribbean Native Ganoderma Species Extracts on Triple-Negative Breast Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Native Ganoderma spp. Fungi Procedures
2.1.1. Collection and Isolation
2.1.2. Identification
2.1.3. Culture and Harvest
2.1.4. Drying and Pulverization
2.2. Native Ganoderma spp. Experimental Chemistry Procedures
Fractionation
2.3. Experimental Breast Cancer Cellular Procedure
2.3.1. Cell Culture
2.3.2. Cell Viability Assay
2.4. Data Analysis
3. Results
3.1. Caribbean Native Ganoderma spp.
3.2. Antineoplastic Potential of Native Ganoderma spp. on TNBC Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinnel, B.; Singh, S.K.; Oprea-Ilies, G.; Singh, R. Targeted therapy and mechanisms of drug resistance in breast cancer. Cancers 2023, 15, 1320. [Google Scholar] [CrossRef] [PubMed]
- Almansour, N.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front. Mol. Biosci. 2022, 9, 836417. [Google Scholar] [CrossRef]
- Prakash, O.; Hossain, F.; Danos, D.; Lassak, A.; Scribner, R.; Miele, L. Racial disparities in triple negative breast cancer: A review of the role of biologic and non-biologic factors. Front. Public Health 2020, 8, 576964. [Google Scholar] [CrossRef]
- Zhang, W.; Bai, Y.; Sun, C.; Lv, Z.; Wang, S. Racial and regional disparities of triple negative breast cancer incidence rates in the United States: An analysis of 2011-2019 NPCR and SEER incidence data. Front. Public Health 2022, 10, 1058722. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y. Outcomes in breast cancer—Does ethnicity matter? ESMO Open 2023, 8, 101564. [Google Scholar] [CrossRef] [PubMed]
- Rosario-Rosado, R.V.; Nazario, C.M.; Hernández-Santiago, J.; Schelske-Santos, M.; Mansilla-Rivera, I.; Ramírez-Marrero, F.A.; Ramos-Valencia, G.; Climent, C.; Nie, J.; Freudenheim, J.L. Breast cancer in a Caribbean population in transition: Design and implementation of the atabey population-based case-control study of women in the San Juan metropolitan area in Puerto Rico. Int. J. Environ. Res. Public Health 2020, 17, 1333. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S.-C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 1–13. [Google Scholar] [CrossRef]
- Quirindongo-Rivera, C.; Rullán-Varela, V.; Underill, Z.; Rivera, M.; Ortiz-Ortiz, K.J.; Martínez-Montemayor, M.M. Characteriza-tion of inflammatory breast cancer in Hispanic women from Puerto Rico. J. Cancer 2022, 13, 3495–3502. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 2022, 15, 1–30. [Google Scholar] [CrossRef]
- Yao, H.; He, G.; Yan, S.; Chen, C.; Song, L.; Rosol, T.J.; Deng, X. Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget 2017, 8, 1913–1924. [Google Scholar] [CrossRef]
- Lin, Z. Ganoderma (Lingzhi) in Traditional Chinese Medicine and Chinese Culture. In Ganoderma and Health; Lin, Z., Yang, B., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2019; Volume 1181. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.-Q.; Zhang, J.; Li, Z.-M.; Liu, H.-G.; Wang, Y.-Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020, 10, 42084–42097. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Naseri, M.H.; Jahedi, S.; Sarkary, B.; Rooz, S.S.K.; Khosravani, S.M.; Kalantar, E. Antimicrobial potentials of crude fractions of polysaccharides of Ganoderma spp. Afr. J. Microbiol. Res. 2012, 6, 6817–6821. [Google Scholar] [CrossRef]
- Suárez-Arroyo, I.J.; Loperena-Alvarez, Y.; Rosario-Acevedo, R.; Martínez-Montemayor, M.M. Ganoderma spp.: A promising adjuvant treatment for breast cancer. Medicines 2017, 4, 15. [Google Scholar] [CrossRef]
- Barbieri, A.; Quagliariello, V.; Del Vecchio, V.; Falco, M.; Luciano, A.; Amruthraj, N.J.; Nasti, G.; Ottaiano, A.; Berretta, M.; Iaffaioli, R.V.; et al. Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 2017, 9, 210. [Google Scholar] [CrossRef]
- Merdivan, S.; Lindequist, U. Ergosterol peroxide: A mushroom-derived compound with promising biological activities—A review. Int. J. Med. Mushrooms 2017, 19, 93–105. [Google Scholar] [CrossRef]
- Lu, J.; He, R.; Sun, P.; Zhang, F.; Linhardt, R.J.; Zhang, A. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int. J. Biol. Macromol. 2020, 150, 765–774. [Google Scholar] [CrossRef]
- Seweryn, E.; Ziała, A.; Gamian, A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients 2021, 13, 2725. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, H.-P.; Li, X.; Liu, J.-K. Ganoaustralins A and B, unusual aromatic triterpenes from the mushroom Ganoderma australe. Pharmaceuticals 2022, 15, 1520. [Google Scholar] [CrossRef] [PubMed]
- Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.-Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A review of Ganoderma triterpenoids and their bioactivities. Biomolecules 2022, 13, 24. [Google Scholar] [CrossRef]
- Rijia, A.; Krishnamoorthi, R.; Rasmi, M.; Mahalingam, P.U.; Kim, K.-S. Comprehensive analysis of bioactive compounds in wild Ganoderma applanatum mushroom from Kerala, South India: Insights into dietary nutritional, mineral, antimicrobial, and antioxidant activities. Pharmaceuticals 2024, 17, 509. [Google Scholar] [CrossRef]
- Martínez-Montemayor, M.M.; Acevedo, R.R.; Otero-Franqui, E.; Cubano, L.A.; Dharmawardhane, S.F. Ganoderma lucidum (reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer. Nutr. Cancer 2011, 63, 1085–1094. [Google Scholar] [CrossRef]
- Suárez-Arroyo, I.J.; Rosario-Acevedo, R.; Aguilar-Perez, A.; Clemente, P.L.; Cubano, L.A.; Serrano, J.; Schneider, R.J.; Martínez-Montemayor, M.M. Anti-tumor effects of Ganoderma lucidum (Reishi) in inflammatory breast cancer in in vivo and in vitro models. PLoS ONE 2013, 8, e57431. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Arroyo, I.J.; Rios-Fuller, T.J.; Feliz-Mosquea, Y.R.; Lacourt-Ventura, M.; Leal-Alviarez, D.J.; Maldonado-Martinez, G.; Cubano, L.A.; Martínez-Montemayor, M.M. Ganoderma lucidum combined with the EGFR tyrosine kinase inhibitor, erlotinib synergize to reduce inflammatory breast cancer progression. J. Cancer 2016, 7, 500–511. [Google Scholar] [CrossRef]
- Rios-Fuller, T.J.; Ortiz-Soto, G.; Lacourt-Ventura, M.; Maldonado-Martinez, G.; Cubano, L.A.; Schneider, R.J.; Martinez-Montemayor, M.M. Ganoderma lucidum extract (GLE) impairs breast cancer stem cells by targeting the STAT3 pathway. Oncotarget 2018, 9, 35907–35921. [Google Scholar] [CrossRef]
- Acevedo-Díaz, A.; Ortiz-Soto, G.; Suárez-Arroyo, I.J.; Zayas-Santiago, A.; Montemayor, M.M.M. Ganoderma lucidum extract reduces the motility of breast cancer cells mediated by the RAC–lamellipodin axis. Nutrients 2019, 11, 1116. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, S.; Yang, L.; Xie, Q.; Dai, H.; Yu, Z.; Zhao, Y. Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity. Molecules 2022, 27, 6989. [Google Scholar] [CrossRef]
- Min, B.-S.; Gao, J.-J.; Nakamura, N.; Hattori, M. Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells. Chem. Pharm. Bull. 2000, 48, 1026–1033. [Google Scholar] [CrossRef]
- Qin, F.-Y.; Chen, Y.-Y.; Zhang, J.-J.; Cheng, Y.-X. Meroterpenoid dimers from Ganoderma mushrooms and their biological activities against triple negative breast cancer cells. Front. Chem. 2022, 10, 888371. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Hsieh, T.-C. Suppression of proliferation and oxidative stress by extracts of Ganoderma lucidum in the ovarian cancer cell line OVCAR-3. Int. J. Mol. Med. 2011, 28, 1065–1069. [Google Scholar] [CrossRef]
- Rai, R.D.; Singh, S.K.; Yadav, M.C. Biological diversity in the genus Ganoderma. In Mushroom Biology and Biotechnology; Rai, R.D., Singh, S.K., Yadav, M.C., Tewar, R.P., Eds.; Mushroom Society of India: Chambaghat, India, 2007; pp. 79–87. Available online: https://www.researchgate.net/publication/342878128 (accessed on 15 January 2024).
- Campi, M.; Mancuello, C.R.; Ferreira, F.P.; Maubet, Y.; Cristaldo, E.; Robledo, G. Bioactive compounds and antioxidant activity of four native species of the Ganodermataceae Family (Agaricomycetes) from Paraguay. Int. J. Med. Mushrooms 2021, 23, 65–76. [Google Scholar] [CrossRef]
- Loyd, A.L.; Linder, E.R.; Smith, M.E.; Blanchette, R.A.; Smith, J.A. Cultural characterization and chlamydospore function of the Ganodermataceae present in the Eastern United States. Mycologia 2019, 111, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Campi, M.; Mancuello, C.; Ferreira, F.; Maubet, Y.; Cristaldo, E.; Gayoso, E.; Robledo, G. Does the source matter? Phenolic compounds and antioxidant activity from mycelium in liquid medium, wild and cultivated fruiting bodies of the neotropical species Ganoderma tuberculosum. J. Microbiol. Biotechnol. Food Sci. 2023, 13, e6148. [Google Scholar] [CrossRef]
- Tu, Y.; Jeffries, C.; Ruan, H.; Nelson, C.; Smithson, D.; Shelat, A.A.; Brown, K.M.; Li, X.-C.; Hester, J.P.; Smillie, T.; et al. Automated high-throughput system to fractionate plant natural products for drug discovery. J. Nat. Prod. 2010, 73, 751–754. [Google Scholar] [CrossRef] [PubMed]
- Loyd, A.L.; Barnes, C.W.; Held, B.W.; Schink, M.J.; Smith, M.E.; Smith, J.A.; Blanchette, R.A. Elucidating “lucidum”: Distinguishing the diverse laccate Ganoderma species of the United States. PLoS ONE 2018, 13, e0199738. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.; American Type Culture Collection. ATCC Quality Control Methods for Cell Lines; American Type Culture Collection: Rockville, MD, USA, 1992. [Google Scholar]
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Fang, Y. Research on the mechanism of pulsatilla potentially useful for the treatment of triple negative breast cancer based on network pharmacology. Res. Sq. 2021, preprint, 1–13. [Google Scholar] [CrossRef]
- Komatsu, M.; Yoshimaru, T.; Matsuo, T.; Kiyotani, K.; Miyoshi, Y.; Tanahashi, T.; Rokutan, K.; Yamaguchi, R.; Saito, A.; Imoto, S.; et al. Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis. Int. J. Oncol. 2012, 42, 478–506. [Google Scholar] [CrossRef]
- Robles, A.J.; Du, L.; Cichewicz, R.H.; Mooberry, S.L. Maximiscin induces DNA damage, activates DNA damage response pathways, and has selective cytotoxic activity against a subtype of triple-negative breast cancer. J. Nat. Prod. 2016, 79, 1822–1827. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Dutta, S.; Akter, R.; Rahman, H.; Karthika, C.; Nagaswarupa, H.P.; Murthy, H.C.A.; Fratila, O.; Brata, R.; Bungau, S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021, 11, 1176. [Google Scholar] [CrossRef]
- Chiou, Y.; Li, S.; Ho, C.; Pan, M. Prevention of Breast Cancer by Natural Phytochemicals: Focusing on Molecular Targets and Combinational Strategy. Mol. Nutr. Food Res. 2018, 62, e1800392. [Google Scholar] [CrossRef]
- Israel, B.B.; Tilghman, S.L.; Parker-Lemieux, K.; Payton-Stewart, F. Phytochemicals: Current strategies for treating breast cancer (review). Oncol. Lett. 2018, 15, 7471–7478. [Google Scholar] [CrossRef]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer 2019, 11, 4521–4533. [Google Scholar] [CrossRef]
- Vini, R.; Sreeja, S. Punica granatum and its therapeutic implications on breast carcinogenesis: A review. BioFactors 2015, 41, 78–89. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Campion, P.; Bishop, K.S. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics. Nutrients 2016, 8, 547. [Google Scholar] [CrossRef]
- Forcados, G.E.; James, D.B.; Sallau, A.B.; Muhammad, A.; Mabeta, P. Oxidative Stress and Carcinogenesis: Potential of Phytochemicals in Breast Cancer Therapy. Nutr. Cancer 2017, 69, 365–374. [Google Scholar] [CrossRef]
- Jeitler, M.; Michalsen, A.; Frings, D.; Hübner, M.; Fischer, M.; Koppold-Liebscher, D.A.; Murthy, V.; Kessler, C.S. Significance of medicinal mushrooms in integrative oncology: A narrative review. Front. Pharmacol. 2020, 11, 580656. [Google Scholar] [CrossRef]
- Wang, M.; Yu, F. Research progress on the anticancer activities and mechanisms of polysaccharides from Ganoderma. Front. Pharmacol. 2022, 13, 891171. [Google Scholar] [CrossRef] [PubMed]
- Boh, B. Ganoderma lucidum: A potential for biotechnological production of anti-cancer and immunomodulatory drugs. Recent Pat. Anti-Cancer Drug Discov. 2013, 8, 255–287. [Google Scholar] [CrossRef]
- Zhao, S.; Ye, G.; Fu, G.; Cheng, J.-X.; Yang, B.B.; Peng, C. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin. Int. J. Oncol. 2011, 38, 1319–1327. [Google Scholar] [CrossRef]
- Shin, M.-J.; Chae, H.-J.; Lee, J.W.; Koo, M.H.; Kim, H.-J.; Seo, J.B.; Yanillia, S.; Park, S.H.; Lo, H.E.; Kim, S.-H.; et al. Lucidumol A, purified directly from Ganoderma lucidum, exhibits anticancer effect and cellular inflammatory response in colorectal cancer. Evid. Based Complement. Altern. Med. 2022, 2022, 7404493. [Google Scholar] [CrossRef]
- Andrejč, D.C.; Knez, Ž.; Marevci, M.K. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 2022, 13, 934982. [Google Scholar] [CrossRef]
- Bhosle, S.; Ranadive, K.; Bapat, G.; Garad, S.; Deshpande, G.; Vaidya, J. Taxonomy and Diversity of Ganoderma from the Western parts of Maharashtra (India). Mycosphere 2010, 1, 249–262. Available online: https://www.researchgate.net/publication/216521482 (accessed on 20 February 2024).
- Correia de Lima Júnior, N.; Baptista Gibertoni, T.; Malosso, E. Delimitación de algunos Ganoderma (Ganodermataceae) lacados neotropicales: Filogenia molecular y morfología. Rev. Biol. Trop. 2014, 62, 1197–1208. [Google Scholar] [CrossRef]
- Morera, G.; Lupo, S.; Alaniz, S.; Robledo, G. Diversity of the Ganoderma species in Uruguay. Neotrop. Biodivers. 2021, 7, 570–585. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Nguyen, T.T.T.; Nguyen, H.D.; Nguyen, T.K.; Pham, P.T.V.; Tran, L.T.T.; Tran, M.H. Integrating in silico and in vitro studies to screen anti-Staphylococcus aureus activity from Vietnamese Ganoderma multiplicatum and Ganoderma sinense. Nat. Prod. Commun. 2023, 18, 1934578X231167289. [Google Scholar] [CrossRef]
- Zhou, L.-W.; Nakasone, K.K.; Burdsall, H.H.; Ginns, J.; Vlasák, J.; Miettinen, O.; Spirin, V.; Niemelä, T.; Yuan, H.-S.; He, S.-H.; et al. Polypore diversity in North America with an annotated checklist. Mycol. Prog. 2016, 15, 771–790. [Google Scholar] [CrossRef]
Medicinal Mushroom | Fraction No. | IC50 (µM) | Statistically Significant Differences (p-Value) | Therapeutic Index (TI) (MCF-10A/SUM149PT) | |
---|---|---|---|---|---|
SUM149PT | MCF-10A | ||||
Ganoderma multiplicatum | 1 | 8.4 | 497.9 | NDM 1 | 59.3 |
2 | 11.3 | >75 | NDM 1 | >6.6 | |
3 | 40.4 | >75 | 0.0021 | >1.9 | |
4 | 49.2 | >75 | 0.0110 | >1.5 | |
5 | 198.4 | >75 | 0.0009 | >0.4 | |
6 | 110 | 15.4 | 0.0461 | 0.1 | |
7 | 3.9 | 1116 | 0.0007 | 286.2 | |
Ganoderma martinicense | 11 | 68.7 | 4.9 × 109 | 0.0084 | 7.2 × 1011 |
12 | 11.5 | >50 | 0.0007 | >4.3 | |
13 | 105.2 | >50 | 0.0004 | >0.5 | |
15 | 637.1 | >50 | 0.7016 | >0.1 | |
16 | 239.4 | 377.4 | 0.1069 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arroyo-Cruz, L.V.; Sagardía-González, S.; Miller, K.; Ling, T.; Rivas, F.; Martínez-Montemayor, M.M. Selective Antineoplastic Potential of Fractionated Caribbean Native Ganoderma Species Extracts on Triple-Negative Breast Cancer Cells. Pharmaceuticals 2024, 17, 864. https://doi.org/10.3390/ph17070864
Arroyo-Cruz LV, Sagardía-González S, Miller K, Ling T, Rivas F, Martínez-Montemayor MM. Selective Antineoplastic Potential of Fractionated Caribbean Native Ganoderma Species Extracts on Triple-Negative Breast Cancer Cells. Pharmaceuticals. 2024; 17(7):864. https://doi.org/10.3390/ph17070864
Chicago/Turabian StyleArroyo-Cruz, Luz V., Sebastián Sagardía-González, Kurt Miller, Taotao Ling, Fatima Rivas, and Michelle M. Martínez-Montemayor. 2024. "Selective Antineoplastic Potential of Fractionated Caribbean Native Ganoderma Species Extracts on Triple-Negative Breast Cancer Cells" Pharmaceuticals 17, no. 7: 864. https://doi.org/10.3390/ph17070864
APA StyleArroyo-Cruz, L. V., Sagardía-González, S., Miller, K., Ling, T., Rivas, F., & Martínez-Montemayor, M. M. (2024). Selective Antineoplastic Potential of Fractionated Caribbean Native Ganoderma Species Extracts on Triple-Negative Breast Cancer Cells. Pharmaceuticals, 17(7), 864. https://doi.org/10.3390/ph17070864