Solid-State NMR Characterization of Mefloquine Resinate Complexes Designed for Taste-Masking Pediatric Formulations
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Mefloquine Hydrochloride Sample (MQ) by Solid-State 13C NMR
2.1.1. Rotation Speed Optimization
2.1.2. Recycle Time Optimization
2.1.3. Contact Time Optimization
2.2. Characterization of the Ion-Exchange Resin Sample: Polacrilin Potassium (Sample R)
2.3. Characterization of the Mefloquine Resinate Sample (MQ–R Sample)
- A broadening of the signal corresponding to the CO2− groups: in R, it was observed at 186.5 and 185.6 ppm, and in MQ–R, between 187.7 and 181.6 ppm;
- In MQ, the signals of aromatic carbons, non-protonated C4 (unfolded in two, at 148.5 and 148.1 ppm), C2 linked to N and the CF3 group (at 145.2 ppm), and C8a of ring junction and linked to the N of the nitrogen ring (at 143.8 ppm), moved to 155, 150.6 ppm, 148.1, 147.2, and 143.3 ppm, respectively;
- In MQ, the signals from carbons C7, C5, and C6 of the benzene ring at 130.1, 127.1, and 125.2 ppm, respectively, shifted to a lower frequency, at 128 and 122.9 ppm in the MQ–R sample;
- The narrow signal from the protonated aromatic carbon C3, observed at 114.4 ppm in MQ, was observed as a broad signal at 115.2 ppm in the MQ–R sample.
2.4. Evaluation of Molecular Dynamics through TCH and T1ρH Measurements
2.5. In Vitro Taste-Masking Evaluation
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Mefloquine Resinate Preparation
4.3. Solid-State NMR Analyses
4.3.1. Sample Preparation
4.3.2. Acquisition Conditions for 13C Solid NMR Spectra
4.3.3. Measurement of TCH and T1ρH Relaxation Times
4.4. Taste-Masking Evaluation
Impedimetric Electronic Tongue
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prado, V.M.; Queiroz, T.B.; Sá, P.M.; Seiceira, R.C.; Boechat, N.; Ferreira, F.F. Mechanochemistry for the production of a hybrid salt used in the treatment of malaria. Green Chem. 2020, 22, 54–61. [Google Scholar] [CrossRef]
- Schlagenhauf, P.; Adamcova, M.; Regep, L.; Schaerer, M.T.; Bansod, S.; Rhein, H.G. Use of mefloquine in children—A review of dosage, pharmacokinetics and tolerability data. Malar. J. 2011, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Dobhal, K.; Garg, R.; Singh, A.; Semwal, A. Insight into the Natural Biomolecules (BMs): Promising Candidates as Zika Virus Inhibitors. Infect. Disord. Drug Targets 2024, 24, e020224226681. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Mashru, R.C.; Rane, Y.M.; Thakkar, A. Design and Optimization of Mefloquine Hydrochloride Microparticles for Bitter Taste Masking. AAPS PharmSciTech 2008, 9, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Ranmal, S.R.; Lavarde, M.; Wallon, E.; Issa, S.; Taylor, W.R.; Nguyen Ngoc Pouplin, J.L.A.; Tuleu, C.; Pense-Lheritier, A.M. Responsive Sensory Evaluation to Develop Flexible Taste-Masked Paediatric Primaquine Tablets against Malaria for Low-Resource Settings. Pharmaceutics 2023, 15, 1879. [Google Scholar] [CrossRef] [PubMed]
- Salunke, S.; Alessandrini, E.; Amin, D.; Kaneria, N.; Andrews, D.; Liu, J.; Tuleu, C. Can one teach old drugs new tricks? Reformulating to repurpose chloroquine and hydroxychloroquine. J. Pharmacol. Pharm. Res. 2020, 3, 1–8. [Google Scholar]
- Ndesendo, V.M.; Meixner, W.; Korsatko, W.; Korsatko-Wabnegg, B. Microencapsulation of chloroquine diphosphate by Eudragit RS100. J. Microencapsul. 1996, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Patil, A.L. Preparation, characterization, and dissolution enhancement of mefloquine hydrochloride-B-CD inclusion complex. Pharmazie 2011, 66, 416–420. [Google Scholar] [CrossRef]
- Ogbonna, J.D.N.; Cunha, E.; Attama, A.A.; Ofokansi, K.C.; Ferreira, H.; Pinto, S.; Gomes, J.; Marx, I.M.G.; Peres, A.M.; Lobo, J.M.S.; et al. Overcoming Challenges in Pediatric Formulation with a Patient-Centric Design Approach: A Proof-of-Concept Study on the Design of an Oral Solution of a Bitter Drug. Pharmaceuticals 2022, 15, 1331. [Google Scholar] [CrossRef]
- Sohi, H.; Sultana, Y.; Khar, R.K. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Dev. Ind. Pharm. 2004, 30, 429–448. [Google Scholar] [CrossRef]
- Sana, S.; Rajani, A.; Sumedha, N.; Mahesh, B. Formulation and evaluation of taste masked oral suspension of dextromethorphan hydrobromide. Int. J. Drug Dev. Res. 2012, 4, 159–172. [Google Scholar]
- Kela, S.P.; Kesharwani, D. Formulation, characterization and evaluation of taste masked rapid disintegrating tablet of ofloxacin by ion exchange resin technique. Int. J. Pharm. Sci. Rev. Res. 2013, 21, 246–253. [Google Scholar]
- Siddiqui, A.; Shah, R.B.; Khan, M.A. Oseltamivir Phosphate–Amberlite™ IRP 64 Ionic Complex for Taste Masking: Preparation and Chemometric Evaluation. J. Pharm. Sci. 2013, 102, 1800–1812. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, N.; Kaushik, D. Taste Masking of Clarithromycin using Complexation with Ion exchange resin. Int. J. PharmTech Res. 2014, 6, 203–211. [Google Scholar]
- Zhu, C.; Chen, J.; Shi, L.; Liu, Q.; Liu, C.; Zhang, F.; Wu, H. Development of Child-Friendly Lisdexamfetamine Chewable Tablets Using Ion Exchange Resin as a Taste-Masking Carrier Based on the Concept of Quality by Design (QbD). AAPS PharmSciTech 2023, 24, 132. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, T.F.; Vital, I.C.F.; de Sousa, E.G.R.; Boniatti, J.; Bandini, T.B.; Carr, O.; Oliveira, O.N.; Shimizu, F.M.; da Fonseca, L.B.; Viçosa, A.L. Investigation of Chloroquine Resinate Feasibility and In Vitro Taste Masking Evaluation for Pediatric Formulations. AAPS PharmSciTech 2022, 23, 69. [Google Scholar] [CrossRef] [PubMed]
- Strauch, S.; Jantratid, E.; Dressman, J.B.; Junginger, H.E.; Kopp, S.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms: Mefloquine hydrochloride. J. Pharm. Sci. 2011, 100, 11–21. [Google Scholar] [CrossRef] [PubMed]
- DuPontTM AmberLiteTM IRP88 Ion Exchange Resin: Pharmaceutical Grade Cation Exchange Resin (Polacrilin Potassium NF). DuPont Water Solutions; 2023 [Product Data Sheet]. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLite-IRP88-PDS-45-D00771-en.pdf (accessed on 18 June 2024).
- Schmidt, M.; Sun, H.; Rogne, P.; Scriba, G.K.; Griesinger, C.; Kuhn, L.T.; Reinscheid, U.M. Determining the Absolute Configuration of (+)-Mefloquine HCl, the Side-Effect-Reducing Enantiomer of the Antimalaria Drug Lariam. J. Am. Chem. Soc. 2012, 134, 3080–3083. [Google Scholar] [CrossRef] [PubMed]
- Dilebo, J.; Gabriel, T. An Overview of Factors Affecting Superdisintegrants Functionalities. Int. J. Pharm. Sci. Nanotechnol. 2019, 12, 4355–4361. [Google Scholar] [CrossRef]
- Apperley, D.C.; Harris, R.K.; Hodgkinson, P. Solid-State NMR—Basic Principles & Practice; Momentum Press: New York, NY, USA, 2012; 294p. [Google Scholar]
- Lopes, M.H.; Sarychev, A.; Neto, C.P.; Gil, A.M. Spectral editing of 13C cp/MAS NMR spectra of complex systems: Application to the structural characterisation of cork cell walls. Solid. State Nucl. Magn. Reson. 2000, 16, 109–121. [Google Scholar] [CrossRef]
- Newman, R.H.; Davies, L.M.; Harris, P.J. Solid-State 13C Nuclear Magnetic Resonance Characterization of Cellulose in the Cell Walls of Arabidopsis thaliana Leaves. Plant Physiol. 1996, 111, 475–485. [Google Scholar] [CrossRef]
- Katsu, N.; Endo, T.; Teramoto, Y. Evaluation of the average state of carbohydrate/lignin coexistence in wood by analysis of molecular motion. Cellulose 2019, 27, 41–56. [Google Scholar] [CrossRef]
- Durand, A.; Mathiron, D.; Rigaud, S.; Djedaini-Pilard, F.; Marcon, F. Rapid Study on Mefloquine Hydrochloride Complexation with Hydroxypropyl-beta-Cyclodextrin and Randomly Methylated beta-Cyclodextrin: Phase Diagrams, Nuclear Magnetic Resonance Analysis, and Stability Assessment. Pharmaceutics 2023, 15, 2794. [Google Scholar] [CrossRef]
- Shimizu, F.M.; de Barros, A.; Braunger, M.L.; Gaal, G.; Riul Jr, A. Information visualization and machine learning driven methods for impedimetric biosensing. TrAC Trends Anal. Chem. 2023, 165, 117115. [Google Scholar] [CrossRef]
- Shimizu, F.M.; Braunger, M.L.; Riul, A., Jr.; Oliveira, O.N., Jr. Electronic tongues. In Smart Sensors for Environmental and Medical Applications; Hallil, H., Heidari, H., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 61–80. [Google Scholar] [CrossRef]
- Guo, C.; Fritz, M.P.; Struppe, J.; Wegner, S.; Stringer, J.; Sergeyev, I.V.; Quinn, C.M.; Gronenborn, A.M.; Polenova, T. Fast (19)F Magic Angle Spinning NMR Crystallography for Structural Characterization of Fluorine-Containing Pharmaceutical Compounds. Anal. Chem. 2021, 93, 8210–8218. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chang, R.-K.K.; Hussain, M.A. Ion-exchange resins as drug delivery carriers. J. Pharm. Sci. 2009, 98, 3886–3902. [Google Scholar] [CrossRef]
- Machado, J.C.; Shimizu, F.M.; Ortiz, M.; Pinhatti, M.S.; Carr, O.; Guterres, S.S.; Oliveira, O.N.; Volpato, N.M. Efficient Praziquantel Encapsulation into Polymer Microcapsules and Taste Masking Evaluation Using an Electronic Tongue. Bull. Chem. Soc. Jpn. 2018, 91, 865–874. [Google Scholar] [CrossRef]
- Rao, A.B.; Murthy, R.S.R. A rapid spectrophotometric method for the determination of mefloquine hydrochloride. J. Pharm. Biomed. Anal. 2002, 27, 959–965. [Google Scholar] [CrossRef]
- Bennett, A.E.; Rienstra, C.M.; Auger, M.; Lakshmi, K.V.; Griffin, R.G. Heteronuclear decoupling in rotating solids. J. Chem. Phys. 1995, 103, 6951–6958. [Google Scholar] [CrossRef]
- Boniatti, J.; Tappin, M.R.R.; da S Teixeira, R.G.; de AV Gandos, T.; Rios, L.P.S.; Ferreira, I.A.M.; Oliveira, K.C.; Calil-Elias, S.; Santana, A.K.M.; da Fonseca, L.B.; et al. In Vivo and In Vitro Taste Assessment of Artesunate-Mefloquine, Praziquantel, and Benznidazole Drugs for Neglected Tropical Diseases and Pediatric Patients. AAPS PharmSciTech 2021, 23, 22. [Google Scholar] [CrossRef]
- Paulovich, F.V.; Moraes, M.L.; Maki, R.M.; Ferreira, M.; Oliveira, O.N., Jr.; de Oliveira, M.C.F. Information visualization techniques for sensing and biosensing. Analyst 2011, 136, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
Carbon Assignment | Mefloquine Hydrochloride (MQ) | Polacrilin (R) | Mefloquine Resinate (MQ–R) | |||
---|---|---|---|---|---|---|
δ, ppm a | δ, ppm b | δ, ppm c | δ, ppm d | δ, ppm | δ, ppm | |
C4 | 151.71 | 148.5; 148.1 | 147.5 | 140–160 | - | 155.0 d; 151.6 e |
C2 | 147.13 | 145.2 | 144.3 | 140–160 | - | 148.1 d; 147.2 e |
C8a (C9) d | 143.22 | 143.8 | 143.6 | 130 | - | 144.2 d; 143.3 e |
C7 | 130.39 | 130.1 | 129.7 | 130 | - | 128.0 e |
C5 | 129.72 | 127.1; 126.5 | 126.8 | 130 | - | 128.0 e |
C6 | 128.83 | 125.6; 125.2 | 125.2 | 130 | - | 126.6 e |
C8 | 127.57 | 123.1 | 122.2 | 110 | - | 122.9 e |
8-CF3 | 124.12 | 122.7 | 123.0 | 17; 9 | - | 122.9 e |
C4a (C10) d | 126.85 | 121.9 | 120.8 | 140–160 | - | 122.9 e |
2-CF3 | 121.65 | 119.0 | 120.1 | 17; 9 | - | 120.0 e |
C3 | 115.84 | 114.4 | 114.3 | 110 | - | 115.2 |
C11 | 68.01 | 67.8 | 67.7 | 70 | - | 70.2; 68.6; 66.9 |
C12 | 59.19 | 59.5; 59.0 | 59.3 | 60 | - | 58.9; 58.0 |
C14 | 44.69 | 47.7; 47.3 | 47.0 | 45 | - | Overlap R |
C15 | 22.02 | 22.3 | 23.1 | 20 | - | Overlap R |
C16 | 21.27 | 21.0 | 21.0 | 20 | - | Overlap R |
C17 | 21.56 | 21.5 | 21.7 | 20 | - | Overlap R |
C1 (CO2−K+) | - | - | - | - | 186.5; 185.6 | 187.7; 184.8; 181.6 |
C1′arom. | - | - | - | - | 148.4 | Overlap MQ |
C2′arom. | - | - | - | - | 129.6; 127.8 | Overlap MQ |
C2, C3, C4, C5 | - | - | - | - | ~57 | ~57 |
C2, C3, C4, C5 | - | - | - | - | ~47 | ~46 |
C6 | - | - | - | - | ~20 | ~18 |
Mefloquine | δ, ppm | TCH, μs | T1ρH, ms | |||
---|---|---|---|---|---|---|
Carbon | MQ | MQ–R | MQ | MQ–R | MQ | MQ–R |
C4 | 148.5 | 154.9 * | 978 ± 70.7 | 821 ± 417 | 114 ± 17.2 | n.d. |
148.1 | 151.6 * | 1000 ± 63.3 | 705 ± 236 | 110 ± 14.4 | 57.3 ± 23.8 | |
C2 | 145.2 | 148.0 * | 2420 ± 177.3 | 1150 ± 228 | 140 ± 27.6 | 22.2 ± 4.6 |
- | 147.3 * | - | 1220 ± 268 | - | 23.2 ± 5.3 | |
C8a | 143.8 | 144.1 * | 6380 ± 297.1 | 2410 ± 616 | 153 ± 22.5 | 49.1 ± 17.1 |
- | 143.6 * | - | 2620 ± 522 | - | 35.6 ± 8.5 | |
C7 | 130.1 | 128.8 * | 1950 ± 294 | 695 ± 187 | 212 ± 119 | 19.1 ± 3.9 |
C5 | 127.1 | 128.0 * | 689 ± 83.8 | 675 ± 260 | 122 ± 25.8 | 25.1 ± 6.0 |
126.5 | 127.5 | 725 ± 84.1 | 614 ± 179 | 119 ± 24.5 | 21.6 ± 4.4 | |
C6 | 125.6 | 126.6 * | 1620 ± 199.5 | 746 ± 246 | 142 ± 46.7 | 32.3 ± 7.7 |
125.2 | 126.0 | n.d. | 564 ± 258 | n.d. | 27.9 ± 11.0 | |
C8 | 123.1 | 122.9 * | n.d. | n.d. | n.d. | n.d. |
8-CF3 | 122.7 | 122.9 * | n.d. | n.d. | n.d. | n.d. |
C4a | 121.9 | 122.9 * | n.d. | n.d. | n.d. | n.d. |
2-CF3 | 119.0 | 120.0 * | n.d. | n.d. | n.d. | n.d. |
C3 | 114.4 | 115.3 | 737 ± 104 | 532 | 123 ± 35.9 | 22.5 ± 10.7 |
- | 114.7 | - | n.d. | - | n.d. | |
C11 | 67.8 | 70.2 | 440 ± 77.8 | 67.8 ± 39.7 | 115 ± 16.2 | 68.4 ± 28.4 |
- | 68.6 | - | n.d. | - | n.d. | |
C12 | 59.5 | 58.1 | 310 ± 44.3 | 68.1 ± 30.8 | 117 ± 18.9 | 14.8 ± 3.2 |
59.0 | overlap/R | 406 ± 50.2 | n.d. | 111 ± 13.7 | n.d. | |
C14 | 47.7 | overlap/R | 457 ± 68.1 | n.d. | 123 ± 22.8 | n.d. |
47.3 | overlap/R | 461 ± 74.3 | n.d. | 121 ± 17.4 | n.d. | |
C15 | 22.3 | overlap/R | 302 ± 88.6 | n.d. | 124 ± 24.1 | n.d. |
C17 | 21.5 | overlap/R | 433 ± 49.3 | n.d. | 117 ± 15 | n.d. |
C16 | 21.0 | overlap/R | 438 ± 44.7 | n.d. | 118 ± 13.8 | n.d. |
Resin | δ, ppm | TCH, μs | T1ρH, ms | |||
---|---|---|---|---|---|---|
Carbons | R | MQ–R | R | MQ–R | R | MQ–R |
C1 (CO2−K+) | 186.5 | 187.3 | 1930 ± 387 | 1190 ± 200 | 9.7 ± 1.9 | 8.9 ± 1.4 |
C1′arom. | 148.4 | Overlap MQ | n.d. | n.d. | n.d. | n.d. |
C2′arom. | 129.6 | Overlap MQ | n.d. | n.d. | n.d. | n.d. |
127.8 | Overlap MQ | n.d. | n.d. | n.d. | n.d. | |
C2, C3, C4, C5 | ~57 | ~57; overlap MQ | 99 ± 31 | 68 ± 31 | 9.4 ± 1.1 | 14.8 ± 3.2 |
C2, C3, C4, C5 | ~47 | ~46 | 640 ± 103 | 281 ± 85 | 9.0 ± 1.1 | 10.5 ± 1.9 |
C6 | ~20 | ~18 | 355 ± 107 | 280 ± 87 | 11.7 ± 2.5 | 9.3 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borré, L.B.; Sousa, E.G.R.; San Gil, R.A.S.; Baptista, M.M.; Leitão, A.A.; De Almeida, J.M.A.R.; Carr, O.; Oliveira, O.N., Jr.; Shimizu, F.M.; Guimarães, T.F. Solid-State NMR Characterization of Mefloquine Resinate Complexes Designed for Taste-Masking Pediatric Formulations. Pharmaceuticals 2024, 17, 870. https://doi.org/10.3390/ph17070870
Borré LB, Sousa EGR, San Gil RAS, Baptista MM, Leitão AA, De Almeida JMAR, Carr O, Oliveira ON Jr., Shimizu FM, Guimarães TF. Solid-State NMR Characterization of Mefloquine Resinate Complexes Designed for Taste-Masking Pediatric Formulations. Pharmaceuticals. 2024; 17(7):870. https://doi.org/10.3390/ph17070870
Chicago/Turabian StyleBorré, Leandro B., Eduardo G. R. Sousa, Rosane A. S. San Gil, Mateus M. Baptista, Alexandre A. Leitão, João M. A. R. De Almeida, Olívia Carr, Osvaldo N. Oliveira, Jr., Flávio M. Shimizu, and Thiago F. Guimarães. 2024. "Solid-State NMR Characterization of Mefloquine Resinate Complexes Designed for Taste-Masking Pediatric Formulations" Pharmaceuticals 17, no. 7: 870. https://doi.org/10.3390/ph17070870
APA StyleBorré, L. B., Sousa, E. G. R., San Gil, R. A. S., Baptista, M. M., Leitão, A. A., De Almeida, J. M. A. R., Carr, O., Oliveira, O. N., Jr., Shimizu, F. M., & Guimarães, T. F. (2024). Solid-State NMR Characterization of Mefloquine Resinate Complexes Designed for Taste-Masking Pediatric Formulations. Pharmaceuticals, 17(7), 870. https://doi.org/10.3390/ph17070870