Examining the Impact of Ertugliflozin on Cardiovascular Outcomes in Patients with Diabetes and Metabolic Syndrome: A Systematic Review of Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Collection Process
2.6. Data Items
2.7. Risk of Bias and Quality Assessment
3. Results
3.1. Study Selection and Study Characteristics
3.2. Results of Individual Studies
3.3. Results of Synthesis
4. Discussion
4.1. Summary of Evidence
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendis, S.; Graham, I.; Narula, J. Addressing the Global Burden of Cardiovascular Diseases; Need for Scalable and Sustainable Frameworks. Glob. Heart 2022, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front. Endocrinol. 2018, 9, 2. [Google Scholar] [CrossRef]
- Ma, C.X.; Ma, X.N.; Guan, C.H.; Li, Y.D.; Mauricio, D.; Fu, S.B. Cardiovascular Disease in Type 2 Diabetes Mellitus: Progress Toward Personalized Management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Standl, E.; Khunti, K.; Hansen, T.B.; Schnell, O. The Global Epidemics of Diabetes in the 21st Century: Current Situation and Perspectives. Eur. J. Prev. Cardiol. 2019, 26, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Chakraborty, S.; Verma, A.; Garg, R.; Singh, J.; Verma, H. Cardiometabolic Risk Factors Associated With Type 2 Diabetes Mellitus: A Mechanistic Insight. Clin. Med. Insights Endocrinol. Diabetes 2023, 16, 11795514231220780. [Google Scholar] [CrossRef] [PubMed]
- Høilund-Carlsen, P.F.; Piri, R.; Madsen, P.L.; Revheim, M.E.; Werner, T.J.; Alavi, A.; Gerke, O.; Sturek, M. Atherosclerosis Burdens in Diabetes Mellitus: Assessment by PET Imaging. Int. J. Mol. Sci. 2022, 23, 10268. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycaemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef] [PubMed]
- Aftab, S.; Vetrivel Suresh, R.; Sherali, N.; Daniyal, M.; Tsouklidis, N. Sodium-Glucose Cotransporter-2 (SGLT-2) Inhibitors: Benefits in Diabetics With Cardiovascular Disease. Cureus 2020, 12, e10783. [Google Scholar] [CrossRef] [PubMed]
- Fatima, A.; Rasool, S.; Devi, S.; Talha, M.; Waqar, F.; Nasir, M.; Khan, M.R.; Ibne Ali Jaffari, S.M.; Haider, A.; Shah, S.U.; et al. Exploring the Cardiovascular Benefits of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: Expanding Horizons Beyond Diabetes Management. Cureus 2023, 15, e46243. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Wilding, J.P.H.; Alam, U.; Barber, T.M.; Karalliedde, J.; Cuthbertson, D.J. The Expanding Role of SGLT2 Inhibitors Beyond Glucose-Lowering to Cardiorenal Protection. Ann. Med. 2021, 53, 2072–2089. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.A.; Garcia, K.; Singson, A.; Smith, W.R. Use of SGLT2 Inhibitors Reduces Heart Failure and Hospitalization: A Multicenter, Real-World Evidence Study. Perm. J. 2023, 27, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Keller, D.M.; Ahmed, N.; Tariq, H.; Walgamage, M.; Walgamage, T.; Mohammed, A.; Chou, J.T.; Kałużna-Oleksy, M.; Lesiak, M.; Straburzyńska-Migaj, E. SGLT2 Inhibitors in Type 2 Diabetes Mellitus and Heart Failure-A Concise Review. J. Clin. Med. 2022, 11, 1470. [Google Scholar] [CrossRef] [PubMed]
- Palmiero, G.; Cesaro, A.; Vetrano, E.; Pafundi, P.C.; Galiero, R.; Caturano, A.; Moscarella, E.; Gragnano, F.; Salvatore, T.; Rinaldi, L.; et al. Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int. J. Mol. Sci. 2021, 22, 5863. [Google Scholar] [CrossRef] [PubMed]
- Nevola, R.; Alfano, M.; Pafundi, P.C.; Brin, C.; Gragnano, F.; Calabrò, P.; Adinolfi, L.E.; Rinaldi, L.; Sasso, F.C.; Caturano, A. Cardiorenal Impact of SGLT-2 Inhibitors: A Conceptual Revolution in The Management of Type 2 Diabetes, Heart Failure and Chronic Kidney Disease. Rev. Cardiovasc. Med. 2022, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Marrs, J.C.; Anderson, S.L. Ertugliflozin in the Treatment of Type 2 Diabetes Mellitus. Drugs Context 2020, 9, 2020-7-4. [Google Scholar] [CrossRef] [PubMed]
- Moellmann, J.; Mann, P.A.; Kappel, B.A.; Kahles, F.; Klinkhammer, B.M.; Boor, P.; Kramann, R.; Ghesquiere, B.; Lebherz, C.; Marx, N.; et al. The Sodium-Glucose Co-Transporter-2 Inhibitor Ertugliflozin Modifies the Signature of Cardiac Substrate Metabolism and Reduces Cardiac mTOR Signalling, Endoplasmic Reticulum Stress and Apoptosis. Diabetes Obes. Metab. 2022, 24, 2263–2272. [Google Scholar] [CrossRef]
- Fediuk, D.J.; Nucci, G.; Dawra, V.K.; Cutler, D.L.; Amin, N.B.; Terra, S.G.; Boyd, R.A.; Krishna, R.; Sahasrabudhe, V. Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor. Clin. Pharmacokinet. 2020, 59, 949–965. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, S.; Cannon, C.P.; Cherney, D.Z.I.; Cosentino, F.; Liu, J.; Pong, A.; Gantz, I.; Frederich, R.; Mancuso, J.P.; Pratley, R.E. Cardiorenal Outcomes with Ertugliflozin Assessed According to Baseline Glucose-Lowering Agent: An Analysis from VERTIS CV. Diabetes Obes. Metab. 2022, 24, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.I.; Cosentino, F.; McGuire, D.K.; Kolkailah, A.A.; Dagogo-Jack, S.; Pratley, R.E.; Frederich, R.; Maldonado, M.; Liu, C.C.; Cannon, C.P.; et al. Effects of Ertugliflozin on Kidney Outcomes in Patients With Heart Failure at Baseline in the Evaluation of Ertugliflozin Efficacy and Safety Cardiovascular Outcomes (VERTIS CV) Trial. Kidney Int. Rep. 2023, 8, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Segar, M.W.; Kolkailah, A.A.; Frederich, R.; Pong, A.; Cannon, C.P.; Cosentino, F.; Dagogo-Jack, S.; McGuire, D.K.; Pratley, R.E.; Liu, C.C.; et al. Mediators of Ertugliflozin Effects on Heart Failure and Kidney Outcomes Among Patients with Type 2 Diabetes Mellitus. Diabetes Obes. Metab. 2022, 24, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Cannon, C.P.; Cherney, D.Z.I.; Masiukiewicz, U.; Pratley, R.; Dagogo-Jack, S.; Frederich, R.; Charbonnel, B.; Mancuso, J.; Shih, W.J.; et al. Efficacy of Ertugliflozin on Heart Failure-Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease: Results of the VERTIS CV Trial. Circulation 2020, 142, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.E.; Cannon, C.P.; Cherney, D.Z.I.; Cosentino, F.; McGuire, D.K.; Essex, M.N.; Lawrence, D.; Jones, P.L.S.; Liu, J.; Adamsons, I.; et al. Cardiorenal Outcomes, Kidney Function, and Other Safety Outcomes with Ertugliflozin in Older Adults with Type 2 Diabetes (VERTIS CV): Secondary Analyses from a Randomised, Double-Blind Trial. Lancet Healthy Longev. 2023, 4, e143–e154. [Google Scholar] [CrossRef]
- von Lewinski, D.; Tripolt, N.J.; Sourij, H.; Pferschy, P.N.; Oulhaj, A.; Alber, H.; Gwechenberger, M.; Martinek, M.; Seidl, S.; Moertl, D.; et al. Ertugliflozin to Reduce Arrhythmic Burden in ICD/CRT Patients (ERASe-Trial)—A Phase III Study. Am. Heart J. 2022, 246, 152–160. [Google Scholar] [CrossRef]
- Croteau, D.; Baka, T.; Young, S.; He, H.; Chambers, J.M.; Qin, F.; Panagia, M.; Pimentel, D.R.; Balschi, J.A.; Colucci, W.S.; et al. SGLT2 Inhibitor Ertugliflozin Decreases Elevated Intracellular Sodium, and Improves Energetics and Contractile Function in Diabetic Cardiomyopathy. Biomed. Pharmacother. 2023, 160, 114310. [Google Scholar] [CrossRef]
- Pandey, A.; Kolkailah, A.A.; Cosentino, F.; Cannon, C.P.; Frederich, R.C.; Cherney, D.Z.I.; Dagogo-Jack, S.; Pratley, R.E.; Cater, N.B.; Gantz, I.; et al. Ertugliflozin and Hospitalization for Heart Failure Across the Spectrum of Pre-Trial Ejection Fraction: Post-Hoc Analyses of the VERTIS CV Trial. Eur. Heart J. 2023, 44, 5163–5166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, W.; Hou, X. Effectiveness and Safety of Ertugliflozin for Type 2 Diabetes: A Meta-Analysis of Data from Randomized Controlled Trials. J. Diabetes Investig. 2022, 13, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Grunberger, G.; Camp, S.; Johnson, J.; Huyck, S.; Terra, S.G.; Mancuso, J.P.; Jiang, Z.W.; Golm, G.; Engel, S.S.; Lauring, B. Ertugliflozin in Patients with Stage 3 Chronic Kidney Disease and Type 2 Diabetes Mellitus: The VERTIS RENAL Randomized Study. Diabetes Ther. 2018, 9, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.I.; Charbonnel, B.; Cosentino, F.; Dagogo-Jack, S.; McGuire, D.K.; Pratley, R.; Shih, W.J.; Frederich, R.; Maldonado, M.; Pong, A.; et al. Effects of Ertugliflozin on Kidney Composite Outcomes, Renal Function and Albuminuria in Patients with Type 2 Diabetes Mellitus: An Analysis from the Randomised VERTIS CV Trial. Diabetologia 2021, 64, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.B.; Wang, X.; Mitchell, J.R.; Lee, D.S.; Nucci, G.; Rusnak, J.M. Blood Pressure-Lowering Effect of the Sodium Glucose Co-Transporter-2 Inhibitor Ertugliflozin, Assessed Via Ambulatory Blood Pressure Monitoring in Patients with Type 2 Diabetes and Hypertension. Diabetes Obes. Metab. 2015, 17, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Zou, S.; Feng, C.; Xu, C.; Zhao, Y.; Shi, X.; Sun, M. Effect of Ertugliflozin on Renal Function and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Medicine 2023, 102, e33198. [Google Scholar] [CrossRef]
Number | First Author | Reference | Country | Study Year | Study Design | Study Quality |
---|---|---|---|---|---|---|
1 | Cannon et al. | [23] | International | 2020 | Randomized clinical trial | High |
2 | Dagogo et al. | [24] | International | 2022 | Randomized clinical trial | High |
3 | Cherney et al. | [25] | International | 2023 | Randomized clinical trial | High |
4 | Segar et al. | [26] | International | 2022 | Randomized clinical trial | High |
5 | Cosentino et al. | [27] | International | 2020 | Randomized clinical trial | High |
6 | Pratley et al. | [28] | International | 2023 | Randomized clinical trial | High |
Number | First Author | Reference | Sample Size | Age (Years) | Comparison Group | BMI | Race |
---|---|---|---|---|---|---|---|
1 | Cannon et al. | [23] | Ertugliflozin (n = 5499) | 64.4 | Placebo (n = 2747) | 32.0 ± 5.5 | White 87.8% |
2 | Dagogo et al. | [24] | Ertugliflozin + Metformin (n = 6286) | 64.0 | Without Metformin (n = 1960) | 32.0 ± 5.4 | White 87.6% |
3 | Cherney et al. | [25] | Ertugliflozin HF (n = 1605) | 64.6 | Ertugliflozin no HF (n = 3894), Placebo HF (n = 834), Placebo no HF (n = 1913) | 32.5 ± 5.4 | NR |
4 | Segar et al. | [26] | Ertugliflozin (n = 5499) | 64.4 | Placebo (n = 2747) | NR | NR |
5 | Cosentino et al. | [27] | Ertugliflozin HF, EF ≤ 45% (n = 319), Ertugliflozin HF, EF > 45% (n = 680) | HF, EF ≤ 45%: 64.2 years, HF, EF > 45% 64.7 years | Placebo HF, EF ≤ 45% (n = 159), Placebo HF, EF > 45% (n = 327) | HF, EF ≤ 45%: 32.1, HF, EF > 45% 32.9 | NR |
6 | Pratley et al. | [28] | Ertugliflozin aged ≥ 65 years (n = 2775), Ertugliflozin < 65 years (n = 2722), Ertugliflozin ≥ 75 years (n = 593), Ertugliflozin < 75 years (n = 4900) | NR | Placebo aged ≥ 65 years (n = 1370), Placebo < 65 years (n = 1375), Placebo ≥ 75 years (n = 310), Placebo < 75 years (n = 2435) | Ertugliflozin aged ≥ 65 years (BMI = 31.2), Ertugliflozin < 65 years (BMI = 32.7), Ertugliflozin ≥ 75 years (BMI = 30.4), Ertugliflozin < 75 years (BMI = 32.2) | 85.2–92.4% |
Number | First Author | Reference | Duration of Diabetes | HbA1c (Mean/Median) | Lipids * | eGFR |
---|---|---|---|---|---|---|
1 | Cannon et al. | [23] | 13.0 years | 8.2% | Total cholesterol: 168.9 ± 46.9 mg/dL, LDL: 89.3 ± 38.5 mg/dL, HDL: 43.7 ± 12.0 mg/dL, Triglycerides: 181.4 ± 119.2 mg/dL | 76.1 ± 20.9 mL/min/1.73 m2 |
2 | Dagogo et al. | [24] | 12.5 years | 8.2% | Dyslipidemia: 75.8% | 78.1 ± 20.1 mL/min/1.73 m2 |
3 | Cherney et al. | [25] | 12.5–13.4 years | 8.2% | NR | 73.5–76.8 mL/min/1.73 m2 |
4 | Segar et al. | [26] | 13.0 years | 8.2% | LDL: 2.3(1.0) mmol/L, HDL: 1.1 (0.3) mmol/L, Triglycerides: 181.4 ± 119.2 mg/dL | 76.1 ± 20.9 mL/min/1.73 m2 |
5 | Cosentino et al. | [27] | HF, EF ≤ 45%: 13.4 years, HF, EF > 45% 13.0 years | HF, EF ≤ 45%: 8.2%, HF, EF > 45% 8.3% | NR | HF, EF ≤ 45%: 32.1% (30–60) years, HF, EF > 45% 26.6% (30–60) |
6 | Pratley et al. | [28] | 9.4–13.8 years | 8.0–8.4 | NR | 46.0–57.1% between 60 and 90 mL/min/1.73 m2 |
Number | First Author | Reference | CAD (%) | Heart Failure (%) | Other Comorbidities * (%) | Outcomes (Mortality, Major Cardiovascular Events, Hospitalization) |
---|---|---|---|---|---|---|
1 | Cannon et al. | [23] | 75.9% | 23.7% | Peripheral arterial disease: 18.7%, Cerebrovascular disease: 22.9% | MACE: HR 0.97 (95.6% CI, 0.85–1.11), p < 0.001 for noninferiority. Death from cardiovascular causes or hospitalization for heart failure: HR 0.88 (95.8% CI, 0.75–1.03), p = 0.11 for superiority. Hospitalization for heart failure: HR 0.70 (95% CI, 0.54–0.90). |
2 | Dagogo et al. | [24] | 75.8% | 22.5% | Diabetic microvascular disease: 36.5%; Hypertension 91.3% | MACE with metformin: HR 0.92 (95% CI 0.790, 1.073); without metformin: HR 1.13 (95% CI 0.867, 1.480); MACE with insulin: HR 0.91 (95% CI 0.765, 1.092); without insulin: HR 1.06 (95% CI 0.867, 1.293); MACE with SUs: HR 1.11 (95% CI 0.890, 1.388); without SUs: HR 0.90 (95% CI 0.761, 1.060); MACE with DPP-4 inhibitors: HR 0.77 (95% CI 0.502, 1.173); without DPP-4 inhibitors: HR 1.00 (95% CI 0.867, 1.147). Hospitalization for heart failure (HHF) with metformin: HR 0.69 (95% CI 0.503, 0.940); without metformin: HR 0.71 (95% CI 0.449, 1.117). |
3 | Cherney et al. | [25] | NR | 29.6% | NR | HF subgroup: HR 0.53 (95% CI 0.33–0.84); No-HF subgroup: HR 0.76 (95% CI 0.53–1.08). |
4 | Segar et al. | [26] | 75.9% | 23.7% | NR | Hemoglobin mediated 63.33% (95% CI 26.08–231.35) of the effect on the risk of hospitalization for heart failure when considering weighted average changes. Hematocrit mediated 40.0% (95% CI 10.61–151.17) of the effect on the risk of hospitalization for heart failure in early time period changes. |
5 | Cosentino et al. | [27] | HF, EF ≤ 45%: 96.9%, HF, EF > 45% 94.4% | HF, EF ≤ 45%: 1.9%, HF, EF > 45% 3.8% | HF, EF ≤ 45%: 67.3% NYHA III, HF, EF > 45% 64.3% NYHA III | Total HHF and CV death events HR = 0.83 (0.72–0.96); ertugliflozin vs. placebo 0.70 (0.54–0.90) ertugliflozin: 0.75, placebo: 1.05; ertugliflozin 5 mg vs. placebo 0.71 (0.52–0.97); ertugliflozin 5 mg: 0.75, placebo: 1.05; ertugliflozin 15 mg vs. placebo 0.68 (0.50–0.93) ertugliflozin 15 mg: 0.72, placebo: 1.05. |
6 | Pratley et al. | [28] | 71.8–84.4% | 20.7–27.1% | 36.2–40.8% | Ertugliflozin versus placebo was associated with reductions in the risk of hospitalization for heart failure (≥65 years: HR 0.72, 95% CI 0.52–0.99; <65 years: 0.66, 0.43–1.02), the prespecified kidney composite outcome of a doubling in serum creatinine (≥65 years: 0.84, 0.60–1.17; <65 years: 0.78, 0.55–1.10), and the prespecified exploratory kidney composite outcome of sustained eGFR reduction of at least 40% from baseline (≥65 years: 0.71, 0.47–1.09; <65 years: 0.62, 0.43–0.91). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pescariu, S.A.; Elagez, A.; Nallapati, B.; Bratosin, F.; Bucur, A.; Negru, A.; Gaita, L.; Citu, I.M.; Popa, Z.L.; Barata, P.I. Examining the Impact of Ertugliflozin on Cardiovascular Outcomes in Patients with Diabetes and Metabolic Syndrome: A Systematic Review of Clinical Trials. Pharmaceuticals 2024, 17, 929. https://doi.org/10.3390/ph17070929
Pescariu SA, Elagez A, Nallapati B, Bratosin F, Bucur A, Negru A, Gaita L, Citu IM, Popa ZL, Barata PI. Examining the Impact of Ertugliflozin on Cardiovascular Outcomes in Patients with Diabetes and Metabolic Syndrome: A Systematic Review of Clinical Trials. Pharmaceuticals. 2024; 17(7):929. https://doi.org/10.3390/ph17070929
Chicago/Turabian StylePescariu, Silvius Alexandru, Ahmed Elagez, Balaji Nallapati, Felix Bratosin, Adina Bucur, Alina Negru, Laura Gaita, Ioana Mihaela Citu, Zoran Laurentiu Popa, and Paula Irina Barata. 2024. "Examining the Impact of Ertugliflozin on Cardiovascular Outcomes in Patients with Diabetes and Metabolic Syndrome: A Systematic Review of Clinical Trials" Pharmaceuticals 17, no. 7: 929. https://doi.org/10.3390/ph17070929
APA StylePescariu, S. A., Elagez, A., Nallapati, B., Bratosin, F., Bucur, A., Negru, A., Gaita, L., Citu, I. M., Popa, Z. L., & Barata, P. I. (2024). Examining the Impact of Ertugliflozin on Cardiovascular Outcomes in Patients with Diabetes and Metabolic Syndrome: A Systematic Review of Clinical Trials. Pharmaceuticals, 17(7), 929. https://doi.org/10.3390/ph17070929