Small Structural Differences in Proline-Rich Decapeptides Have Specific Effects on Oxidative Stress-Induced Neurotoxicity and L-Arginine Generation by Arginosuccinate Synthase
Abstract
:1. Introduction
2. Results
2.1. Toxicological Profile of PROs
2.2. Neuroprotection against Oxidative Stress
2.2.1. Metabolic Activity
2.2.2. Cell Integrity
2.2.3. ROS Generation
2.2.4. Arginase Activity
2.3. PROs Do Not Affect the Mitochondrial Membrane Potential (ΔΨm)
2.4. PROs Regulate L-Arginine Production and Arginase Activity in a Structure-Dependent Manner
3. Discussion
4. Materials and Methods
4.1. Reagents and Synthetic Peptide
4.2. Cell Line, Culture and Maintenance
4.3. Cytotoxicity Studies
4.4. Neuroprotection Assay in PC12 Cells against Oxidative Stress
4.4.1. Metabolic Activity and Cell Integrity
4.4.2. ROS Quantification
4.4.3. Arginase Activity
4.5. Effects of Distinct PROs on Mitochondrial Membrane Potential
4.6. Effects of Similar PROs on Arginase Activity and L-Arginine Production
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- de Souza, J.M.; Goncalves, B.D.C.; Gomez, M.v.; Vieira, L.B.; Ribeiro, F.M. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front. Pharmacol. 2018, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.L.; Viegas, M.F.; da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The Chemistry of Snake Venom and Its Medicinal Potential. Nat. Rev. Chem. 2022, 6, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Perlikowska, R. Whether Short Peptides Are Good Candidates for Future Neuroprotective Therapeutics? Peptides 2021, 140, 170528. [Google Scholar] [CrossRef] [PubMed]
- Alberto-Silva, C.; Portaro, F.C.V. Neuroprotection Mediated by Snake Venom. In Natural Molecules in Neuroprotection and Neurotoxicity; Academic Press: Cambridge, MA, USA, 2024; pp. 437–451. [Google Scholar] [CrossRef]
- Martins, N.; Ferreira, D.; Carvalho Rodrigues, M.; Cintra, A.; Santos, N.; Sampaio, S.; Santos, A. Low-Molecular-Mass Peptides from the Venom of the Amazonian Viper Bothrops atrox Protect against Brain Mitochondrial Swelling in Rat: Potential for Neuroprotection. Toxicon 2010, 56, 86–92. [Google Scholar] [CrossRef]
- Querobino, S.M.; Carrettiero, D.C.; Costa, M.S.; Alberto-Silva, C. Neuroprotective Property of Low Molecular Weight Fraction from B. Jararaca Snake Venom in H2O2-Induced Cytotoxicity in Cultured Hippocampal Cells. Toxicon 2017, 129, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Pantaleão, H.Q.; Araujo da Silva, J.C.; Rufino da Silva, B.; Echeverry, M.B.; Alberto-Silva, C. Peptide Fraction from B. jararaca Snake Venom Protects against Oxidative Stress-Induced Changes in Neuronal PC12 Cell but Not in Astrocyte-like C6 Cell. Toxicon 2023, 231, 107178. [Google Scholar] [CrossRef] [PubMed]
- Dematei, A.; Costa, S.R.; Moreira, D.C.; Barbosa, E.A.; Friaça Albuquerque, L.F.; Vasconcelos, A.G.; Nascimento, T.; Silva, P.C.; Silva-Carvalho, A.; Saldanha-Araújo, F.; et al. Antioxidant and Neuroprotective Effects of the First Tryptophyllin Found in Snake Venom (Bothrops moojeni). J. Nat. Prod. 2022, 85, 2695–2705. [Google Scholar] [CrossRef] [PubMed]
- Querobino, S.M.; Ribeiro, C.A.J.; Alberto-Silva, C. Bradykinin-Potentiating PEPTIDE-10C, an Argininosuccinate Synthetase Activator, Protects against H2O2-Induced Oxidative Stress in SH-SY5Y Neuroblastoma Cells. Peptides 2018, 103, 90–97. [Google Scholar] [CrossRef] [PubMed]
- El-Aziz, T.M.A.; Soares, A.G.; Stockand, J.D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.S.; Mégarbane, B. Snake Venom-Derived Bradykinin-Potentiating Peptides: A Promising Therapy for COVID-19? Drug Dev. Res. 2021, 82, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Diniz-Sousa, R.; Caldeira, C.A.d.S.; Pereira, S.S.; Da Silva, S.L.; Fernandes, P.A.; Teixeira, L.M.C.; Zuliani, J.P.; Soares, A.M. Therapeutic Applications of Snake Venoms: An Invaluable Potential of New Drug Candidates. Int. J. Biol. Macromol. 2023, 238, 124357. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.A.F.; Camargo, A.C.M. The Bradykinin-Potentiating Peptides from Venom Gland and Brain of Bothrops jararaca Contain Highly Site Specific Inhibitors of the Somatic Angiotensin-Converting Enzyme. Toxicon 2005, 45, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Sciani, J.M.; Pimenta, D.C. The Modular Nature of Bradykinin-Potentiating Peptides Isolated from Snake Venoms. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 45. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, D.C.; Prezoto, B.C.; Konno, K.; Melo, R.L.; Furtado, M.F.; Camargo, A.C.M.; Serrano, S.M.T. Mass Spectrometric Analysis of the Individual Variability of Bothrops jararaca Venom Peptide Fraction. Evidence for Sex-Based Variation among the Bradykinin-Potentiating Peptides. Rapid Commun. Mass Spectrom. 2007, 21, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.A.F.; Murbach, A.F.; Ianzer, D.; Portaro, F.C.V.; Prezoto, B.C.; Fernandes, B.L.; Silveira, P.F.; Silva, C.A.; Pires, R.S.; Britto, L.R.G.; et al. The C-Type Natriuretic Peptide Precursor of Snake Brain Contains Highly Specific Inhibitors of the Angiotensin-Converting Enzyme. J. Neurochem. 2003, 85, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Kodama, R.T.; Cajado-Carvalho, D.; Kuniyoshi, A.K.; Kitano, E.S.; Tashima, A.K.; Barna, B.F.; Takakura, A.C.; Serrano, S.M.T.; Dias-Da-Silva, W.; Tambourgi, D.V.; et al. New Proline-Rich Oligopeptides from the Venom of African Adders: Insights into the Hypotensive Effect of the Venoms. Biochim. Biophys. Acta 2015, 1850, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Rioli, V.; Prezoto, B.C.; Konno, K.; Melo, R.L.; Klitzke, C.F.; Ferro, E.S.; Ferreira-Lopes, M.; Camargo, A.C.M.; Portaro, F.C.V. A Novel Bradykinin Potentiating Peptide Isolated from Bothrops jararacussu Venom Using Catallytically Inactive Oligopeptidase EP24.15. FEBS J. 2008, 275, 2442–2454. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.C.M.; Ianzer, D.; Guerreiro, J.R.; Serrano, S.M.T. Bradykinin-Potentiating Peptides: Beyond Captopril. Toxicon 2012, 59, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, J.R.; Lameu, C.; Oliveira, E.F.; Klitzke, C.F.; Melo, R.L.; Linares, E.; Augusto, O.; Fox, J.W.; Lebrun, I.; Serrano, S.M.T.; et al. Argininosuccinate Synthetase Is a Functional Target for a Snake Venom Anti-Hypertensive Peptide: Role in Arginine and Nitric Oxide Production. J. Biol. Chem. 2009, 284, 20022–20033. [Google Scholar] [CrossRef] [PubMed]
- Morais, K.L.P.; Ianzer, D.; Miranda, J.R.R.; Melo, R.L.; Guerreiro, J.R.; Santos, R.A.S.; Ulrich, H.; Lameu, C. Proline Rich-Oligopeptides: Diverse Mechanisms for Antihypertensive Action. Peptides 2013, 48, 124–133. [Google Scholar] [CrossRef]
- De Oliveira, E.F.; Guerreiro, J.R.; Silva, C.A.; Benedetti, G.F.D.S.; Lebrun, I.; Ulrich, H.; Lameu, C.; Camargo, A.C.M. Enhancement of the Citrulline-Nitric Oxide Cycle in Astroglioma Cells by the Proline-Rich Peptide-10c from Bothrops jararaca Venom. Brain Res. 2010, 1363, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Morais, K.L.P.; Hayashi, M.A.F.; Bruni, F.M.; Lopes-Ferreira, M.; Camargo, A.C.M.; Ulrich, H.; Lameu, C. Bj-PRO-5a, a Natural Angiotensin-Converting Enzyme Inhibitor, Promotes Vasodilatation Mediated by Both Bradykinin B2 and M1 Muscarinic Acetylcholine Receptors. Biochem. Pharmacol. 2011, 81, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Negraes, P.D.; Lameu, C.; Hayashi, M.A.F.; Melo, R.L.; Camargo, A.C.M.; Ulrich, H. The Snake Venom Peptide Bj-PRO-7a Is a M1 Muscarinic Acetylcholine Receptor Agonist. Cytom. A 2011, 79, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Alberto-Silva, C.; Pantaleão, H.Q.; Silva, B.R.; Silva, J.C.A.; Echeverry, M.B. Activation of M1 Muscarinic Acetylcholine Receptors by Proline-Rich Oligopeptide 7a (<EDGPIPP) from Bothrops Jararaca Snake Venom Rescues Oxidative Stress-Induced Neurotoxicity in PC12 Cells. J. Venom. Anim. Toxins Incl. Trop. Dis. 2024, 20, e20230043. [Google Scholar]
- Querobino, S.M.; Costa, M.S.; Alberto-Silva, C. Protective Effects of Distinct Proline-Rich Oligopeptides from B. jararaca Snake Venom against Oxidative Stress-Induced Neurotoxicity. Toxicon 2019, 167, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Santos, N.; Sartim, M.; Cintra, A.; Sampaio, S.; Santos, A. A Tripeptide Isolated from Bothrops atrox Venom Has Neuroprotective and Neurotrophic Effects on a Cellular Model of Parkinson’s Disease. Chem. Biol. Interact. 2015, 235, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Haines, R.J.; Pendleton, L.C.; Eichler, D.C. Argininosuccinate Synthase: At the Center of Arginine Metabolism. Int. J. Biochem. Mol. Biol. 2011, 2, 8. [Google Scholar]
- Morris, S.M. Arginine Metabolism Revisited. J. Nutr. 2016, 146, 2579S–2586S. [Google Scholar] [CrossRef] [PubMed]
- Cervelli, M.; Averna, M.; Vergani, L.; Pedrazzi, M.; Amato, S.; Fiorucci, C.; Rossi, M.N.; Maura, G.; Mariottini, P.; Cervetto, C.; et al. The Involvement of Polyamines Catabolism in the Crosstalk between Neurons and Astrocytes in Neurodegeneration. Biomedicines 2022, 10, 1756. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, M.; Datey, A.; Wilson, K.T.; Chakravortty, D. Dual Role of Arginine Metabolism in Establishing Pathogenesis. Curr. Opin. Microbiol. 2016, 29, 43–48. [Google Scholar] [CrossRef]
- Rafi, H.; Rafiq, H.; Farhan, M. Pharmacological Profile of Agmatine: An in-Depth Overview. Neuropeptides 2024, 105, 102429. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.; Hayes, A.W.; Pressman, P.; Kapoor, R.; Dhawan, G.; Calabrese, V.; Agathokleous, E. Polyamines and Hormesis: Making Sense of a Dose Response Dichotomy. Chem. Biol. Interact. 2023, 386, 110748. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.; Abramov, A.Y. Mechanism of Oxidative Stress in Neurodegeneration. Oxid. Med. Cell. Longev. 2012, 2012, 428010. [Google Scholar] [CrossRef] [PubMed]
- Al-Shehri, S.S. Reactive Oxygen and Nitrogen Species and Innate Immune Response. Biochimie 2021, 181, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Alberto-Silva, C.; Portaro, F.; Kodama, R.; Pantaleão, H.; Rangel, M.; Nihei, K.; Konno, K. Novel Neuroprotective Peptides in the Venom of the Solitary Scoliid Wasp Scolia decorata ventralis. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200171. [Google Scholar] [CrossRef] [PubMed]
- Sahin, B.; Ergul, M. Captopril Exhibits Protective Effects through Anti-Inflammatory and Anti-Apoptotic Pathways against Hydrogen Peroxide-Induced Oxidative Stress in C6 Glioma Cells. Metab. Brain Dis. 2022, 37, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Quincozes-Santos, A.; Bobermin, L.D.; Latini, A.; Wajner, M.; Souza, D.O.; Gonçalves, C.A.; Gottfried, C. Resveratrol Protects C6 Astrocyte Cell Line against Hydrogen Peroxide-Induced Oxidative Stress through Heme Oxygenase 1. PLoS ONE 2013, 8, e64372. [Google Scholar] [CrossRef]
- Alberto-Silva, C.; Portaro, F.C.V.; Kodama, R.T.; Pantaleão, H.Q.; Inagaki, H.; Nihei, K.I.; Konno, K. Comprehensive Analysis and Biological Characterization of Venom Components from Solitary Scoliid Wasp Campsomeriella annulata annulata. Toxins 2021, 13, 885. [Google Scholar] [CrossRef] [PubMed]
- Kovalevich, J.; Santerre, M.; Langford, D. Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology. Methods Mol. Biol. 2021, 2311, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Ioghen, O.C.; Ceafalan, L.C.; Popescu, B.O. SH-SY5Y Cell Line In Vitro Models for Parkinson Disease Research-Old Practice for New Trends. J. Integr. Neurosci. 2023, 22, 20. [Google Scholar] [CrossRef]
- Saha, P.; Panda, S.; Holkar, A.; Vashishth, R.; Rana, S.S.; Arumugam, M.; Ashraf, G.M.; Haque, S.; Ahmad, F. Neuroprotection by Agmatine: Possible Involvement of the Gut Microbiome? Ageing Res. Rev. 2023, 91, 102056. [Google Scholar] [CrossRef] [PubMed]
- Kotagale, N.R.; Taksande, B.G.; Inamdar, N.N. Neuroprotective Offerings by Agmatine. Neurotoxicology 2019, 73, 228–245. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.D.; Kitto, K.F.; Verma, H.; Pflepsen, K.; Delpire, E.; Wilcox, G.L.; Fairbanks, C.A. Agmatine Requires GluN2B-Containing NMDA Receptors to Inhibit the Development of Neuropathic Pain. Mol. Pain 2021, 17, 17448069211029171. [Google Scholar] [CrossRef] [PubMed]
- Kritis, A.A.; Stamoula, E.G.; Paniskaki, K.A.; Vavilis, T.D. Researching Glutamate-Induced Cytotoxicity in Different Cell Lines: A Comparative/Collective Analysis/Study. Front. Cell. Neurosci. 2015, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Froissard, P.; Duval, D. Cytotoxic Effects of Glutamic Acid on PC12 Cells. Neurochem. Int. 1994, 24, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Bácskay, I.; Nemes, D.; Fenyvesi, F.; Váradi, J.; Vasvári, G.; Fehér, P.; Vecsernyés, M.; Ujhelyi, Z. Role of Cytotoxicity Experiments in Pharmaceutical Development. Cytotoxicity 2018, 8, 131–146. [Google Scholar]
- Lameu, C.; Hayashi, M.A.F.; Guerreiro, J.R.; Oliveira, E.F.; Lebrun, I.; Pontieri, V.; Morais, K.L.P.; Camargo, A.C.M.; Ulrich, H. The Central Nervous System as Target for Antihypertensive Actions of a Proline-Rich Peptide from Bothrops jararaca Venom. Cytom. A 2010, 77, 220–230. [Google Scholar] [CrossRef]
- Lameu, C.; Pontieri, V.; Guerreiro, J.R.; Oliveira, E.F.; Da Silva, C.A.; Giglio, J.M.; Melo, R.L.; Campos, R.R.; De Camargo, A.C.M.; Ulrich, H. Brain Nitric Oxide Production by a Proline-Rich Decapeptide from Bothrops jararaca Venom Improves Baroreflex Sensitivity of Spontaneously Hypertensive Rats. Hypertens. Res. 2010, 33, 1283–1288. [Google Scholar] [CrossRef]
- Nunes, A.D.C.; Alves, P.H.; Mendes, E.P.; Ianzer, D.; Castro, C.H. BJ-PRO-7A and BJ-PRO-10C Induce Vasodilatation and Inotropic Effects in Normotensive and Hypertensive Rats: Role of Nitric Oxide and Muscarinic Receptors. Peptides 2018, 110, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.A.; Portaro, F.C.V.; Fernandes, B.L.; Ianzer, D.A.; Guerreiro, J.R.; Gomes, C.L.; Konno, K.; Serrano, S.M.T.; Nascimento, N.; Camargo, A.C.M. Tissue Distribution in Mice of BPP 10c, a Potent Proline-Rich Anti-Hypertensive Peptide of Bothrops jararaca. Toxicon 2008, 51, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016, 2016, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Rosseti, I.B.; Rocha, J.B.T.; Costa, M.S. Diphenyl Diselenide (PhSe)2 Inhibits Biofilm Formation by Candida albicans, Increasing Both ROS Production and Membrane Permeability. J. Trace Elem. Med. Biol. 2015, 29, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Barron, L.; Thompson, R.W.; Madala, S.K.; Wilson, M.S.; Cheever, A.W.; Ramalingam, T. Quantitative Assessment of Macrophage Functions in Repair and Fibrosis. Curr. Protoc. Immunol. 2011, 93, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.C.; Bakowska, J.C. Determination of Mitochondrial Membrane Potential and Reactive Oxygen Species in Live Rat Cortical Neurons. J. Vis. Exp. 2011, 51, e2704. [Google Scholar] [CrossRef]
Peptide Identification | Sequence # | Snake Species | MW (Da) | ACE (Ki; nM) | ∆MAP mmHg | Neuroprotection Index | AsS Activation |
---|---|---|---|---|---|---|---|
Bn-PRO-10a | <ENWPRPKIPP | Bitis nasicornis | 1216.7 a | 0.48 a | −18.8 ± 0.3 a | 0.65 | + |
Bn-PRO-10a-MK | <ENWPRPKIPPMK | Bitis nasicornis | 1476.8 a | >100 a | −13.9 ± 0.4 a | 0.90 | ++ |
Bn-PRO-10c | <ENWPRPKVPP | Bitis nasicornis | 1202.6 a | 0.25 a | −18.7 ± 1.2 a | 0.84 | +++ |
Bj-PRO-10c | <ENWPHPQIPP | Bothrops jararaca | 1196.3 b | 0.20 a,b | −18.2 ± 3.1 a | 0.70 | ++++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberto-Silva, C.; da Silva, B.R.; da Silva, J.C.A.; Cunha e Silva, F.A.d.; Kodama, R.T.; da Silva, W.D.; Costa, M.S.; Portaro, F.C.V. Small Structural Differences in Proline-Rich Decapeptides Have Specific Effects on Oxidative Stress-Induced Neurotoxicity and L-Arginine Generation by Arginosuccinate Synthase. Pharmaceuticals 2024, 17, 931. https://doi.org/10.3390/ph17070931
Alberto-Silva C, da Silva BR, da Silva JCA, Cunha e Silva FAd, Kodama RT, da Silva WD, Costa MS, Portaro FCV. Small Structural Differences in Proline-Rich Decapeptides Have Specific Effects on Oxidative Stress-Induced Neurotoxicity and L-Arginine Generation by Arginosuccinate Synthase. Pharmaceuticals. 2024; 17(7):931. https://doi.org/10.3390/ph17070931
Chicago/Turabian StyleAlberto-Silva, Carlos, Brenda Rufino da Silva, Julio Cezar Araujo da Silva, Felipe Assumpção da Cunha e Silva, Roberto Tadashi Kodama, Wilmar Dias da Silva, Maricilia Silva Costa, and Fernanda Calheta Vieira Portaro. 2024. "Small Structural Differences in Proline-Rich Decapeptides Have Specific Effects on Oxidative Stress-Induced Neurotoxicity and L-Arginine Generation by Arginosuccinate Synthase" Pharmaceuticals 17, no. 7: 931. https://doi.org/10.3390/ph17070931
APA StyleAlberto-Silva, C., da Silva, B. R., da Silva, J. C. A., Cunha e Silva, F. A. d., Kodama, R. T., da Silva, W. D., Costa, M. S., & Portaro, F. C. V. (2024). Small Structural Differences in Proline-Rich Decapeptides Have Specific Effects on Oxidative Stress-Induced Neurotoxicity and L-Arginine Generation by Arginosuccinate Synthase. Pharmaceuticals, 17(7), 931. https://doi.org/10.3390/ph17070931