Roles of Two-Dimensional Materials in Antibiofilm Applications: Recent Developments and Prospects
Abstract
:1. Introduction
2. MoS2 for Antibiofilm Applications
2.1. Carrier
2.2. PDT
2.3. PTT
2.4. Combined PTT and PDT
2.5. Nanozymes
3. MXenes for Antibiofilm Applications
3.1. Unmodified or Modified MXenes
3.2. PTT
3.3. Combined PTT and PDT
3.4. Nanozymes
4. Black Phosphorus for Antibiofilm Applications
4.1. PTT
4.2. PDT
4.3. Chemo-Photothermal Therapy (CPTT)
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Bassler, B.L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Le, K.Y.; Khan, B.A.; Nguyen, T.H.; Hunt, R.L.; Bae, J.S.; Kabat, J.; Zheng, Y.; Cheung, G.Y.C.; Li, M.; et al. Resistance to leukocytes ties benefits of quorum sensing dysfunctionality to biofilm infection. Nat. Microbiol. 2019, 4, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Dieltjens, L.; Appermans, K.; Lissens, M.; Lories, B.; Kim, W.; Van der Eycken, E.V.; Foster, K.R.; Steenackers, H.P. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat. Commun. 2020, 11, 107. [Google Scholar] [CrossRef]
- Abee, T.; Kovacs, A.T.; Kuipers, O.P.; van der Veen, S. Biofilm formation and dispersal in Gram-positive bacteria. Curr. Opin. Biotechnol. 2011, 22, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Mah, T.F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Rumbaugh, K.P.; Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586. [Google Scholar] [CrossRef]
- Mah, T.F.; Pitts, B.; Pellock, B.; Walker, G.C.; Stewart, P.S.; O’Toole, G.A. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426, 306–310. [Google Scholar] [CrossRef]
- Hall, C.W.; Mah, T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Kim, J.H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int. J. Nanomed. 2016, 11, 1927–1945. [Google Scholar] [CrossRef] [PubMed]
- Karahan, H.E.; Wiraja, C.; Xu, C.J.; Wei, J.; Wang, Y.L.; Wang, L.; Liu, F.; Chen, Y. Graphene materials in antimicrobial nanomedicine: Current status and future perspectives. Adv. Healthc. Mater. 2018, 7, e1701406. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yin, Z.Y.; Wu, S.X.; Qi, X.Y.; He, Q.Y.; Zhang, Q.C.; Yan, Q.Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.Z.; Li, Y.C.; Tjong, S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3564. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Pan, X.T.; Liu, H.Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 5890–5900. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.M.; Niu, X.M.; Zhang, R.; Xu, Z.P. Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv. Drug Deliv. Rev. 2022, 187, 114360. [Google Scholar] [CrossRef]
- Chen, Y.J.; Wu, Y.K.; Sun, B.B.; Liu, S.J.; Liu, H.Y. Two-dimensional nanomaterials for cancer nanotheranostics. Small 2017, 13, 1603446. [Google Scholar] [CrossRef]
- Murugan, C.; Sharma, V.; Murugan, R.K.; Malaimegu, G.; Sundaramurthy, A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release 2019, 299, 1–20. [Google Scholar] [CrossRef]
- Wang, S.G.; Yang, X.Q.; Zhou, L.L.; Li, J.F.; Chen, H.R. 2D nanostructures beyond graphene: Preparation, biocompatibility and biodegradation behaviors. J. Mater. Chem. B 2020, 8, 2974–2989. [Google Scholar] [CrossRef] [PubMed]
- Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Kostarelos, K.; Prato, M.; Bianco, A. Biocompatibility and biodegradability of 2D materials: Graphene and beyond. Chem. Commun. 2019, 55, 5540–5546. [Google Scholar] [CrossRef]
- Mei, L.Q.; Zhu, S.; Yin, W.Y.; Chen, C.Y.; Nie, G.J.; Gu, Z.J.; Zhao, Y.L. Two-dimensional nanomaterials beyond graphene for antibacterial applications: Current progress and future perspectives. Theranostics 2020, 10, 757–781. [Google Scholar] [CrossRef]
- Cai, Y.J.; Wang, L.Y.; Hu, H.L.; Bing, W.; Tian, L.M.; Zhao, J. A synergistic antibacterial platform: Combining mechanical and photothermal effects based on Van-MoS2–Au nanocomposites. Nanotechnology 2021, 32, 085102. [Google Scholar] [CrossRef] [PubMed]
- de la Asunción-Nadal, V.; Bujalance-Fernández, J.; Jurado-Sánchez, B.; Escarpa, A. Photoresponsive MoS2 and WS2 microflakes as mobile biocide agents. Nanoscale 2023, 15, 9675–9683. [Google Scholar] [CrossRef]
- Liu, Y.N.; Lin, A.G.; Liu, J.W.; Chen, X.; Zhu, X.F.; Gong, Y.C.; Yuan, G.L.; Chen, L.M.; Liu, J. Enzyme-Responsive Mesoporous Ruthenium for Combined Chemo-Photothermal Therapy of Drug-Resistant Bacteria. ACS Appl. Mater. Interfaces 2019, 11, 26590–26606. [Google Scholar] [CrossRef]
- Li, H.; Gong, M.H.; Xiao, J.Y.; Hai, L.; Luo, Y.Z.; He, L.D.; Wang, Z.F.; Deng, L.; He, D.G. Photothermally activated multifunctional MoS2 bactericidal nanoplatform for combined chemo/photothermal/photodynamic triple-mode therapy of bacterial and biofilm infections. J. Chem. Eng. 2022, 429, 132600. [Google Scholar] [CrossRef]
- Jin, W.H.; Wu, Y.J.; Li, W.Z.; Wang, J.; Yang, K.; Song, P.; Zhu, L.B.; Zhang, W.W.; Gui, L.; Ge, F. Antibacterial MoS2/CaCO3 Nanoplatform for Combined Photothermal, Photodynamic, and Nitric Oxide Therapy. ACS Appl. Nano Mater. 2023, 6, 18880–18891. [Google Scholar] [CrossRef]
- Du, M.; He, X.; Wang, D.; Jiang, Z.; Zhao, X.; Shen, J. An NIR-II-enhanced nanozyme to promote wound healing in methicillin-resistant Staphylococcus aureus infections. Acta Biomater. 2024, 179, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.T.; Li, M.; Pan, G.Y.; Chen, J.Y.; Guo, B.L. Multiple Stimuli-Responsive Nanozyme-Based Cryogels with Controlled NO Release as Self-Adaptive Wound Dressing for Infected Wound Healing. Adv. Funct. Mater. 2023, 33, 2214089. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Li, S.; Jing, L.; Chen, P.Y.; Xie, J.P. Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Adv. Healthc. Mater. 2020, 9, e2001007. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.Y.; Liu, Z.H.; Yu, J.L.; You, Y.A.; Li, M.Z.; Wang, B.Y.; Tang, J.; Han, P.; Wu, J.R.; Shen, H. Neutrophil Function Conversion Driven by Immune Switchpoint Regulator against Diabetes-Related Biofilm Infections. Adv. Mater. 2024, 36, e2310320. [Google Scholar] [CrossRef]
- Feng, X.Q.; Xian, D.Y.; Fu, J.T.; Luo, R.; Wang, W.H.; Zheng, Y.W.; He, Q.; Ouyang, Z.; Fang, S.B.; Zhang, W.C.; et al. Four-armed host-defense peptidomimetics-augmented vanadium carbide MXene-based microneedle array for efficient photo-excited bacteria-killing. Chem. Eng. J. 2023, 456, 141121. [Google Scholar] [CrossRef]
- Sun, X.S.; He, X.J.; Zhu, Y.; Obeng, E.; Zeng, B.R.; Deng, H.; Shen, J.L.; Hu, R.D. Valence-switchable and biocatalytic vanadium-based MXene nanoplatform with photothermal-enhanced dual enzyme-like activities for anti-infective therapy. Chem. Eng. J. 2023, 451, 138985. [Google Scholar] [CrossRef]
- Chen, Y.; Rong, C.; Gao, W.; Luo, S.; Guo, Y.; Gu, Y.; Yang, G.; Xu, W.; Zhu, C.; Qu, L.L. Ag-MXene as peroxidase-mimicking nanozyme for enhanced bacteriocide and cholesterol sensing. J. Colloid Interface Sci. 2024, 653, 540–550. [Google Scholar] [CrossRef]
- Fang, J.; Wan, Y.; Sun, Y.; Sun, X.L.; Qi, M.L.; Cheng, S.; Li, C.Y.; Zhou, Y.M.; Xu, L.; Dong, B.; et al. Near-infrared-activated nanohybrid coating with black phosphorus/zinc oxide for efficient biofilm eradication against implant-associated infections. Chem. Eng. J. 2022, 435, 134935. [Google Scholar] [CrossRef]
- Xu, H.F.; Xu, H.; Ma, S.L.; Wei, Y.; He, X.H.; Guo, C.Q.; Wang, Y.H.; Liang, Z.W.; Hu, Y.C.; Zhao, L.Q.; et al. Bifunctional electrospun poly (L-lactic acid) membranes incorporating black phosphorus nanosheets and nano-zinc oxide for enhanced biocompatibility and antibacterial properties in catheter materials. J. Mech. Behav. Biomed. Mater. 2023, 142, 105884. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, X.; Li, Y.K.; Zhao, Y.; Xue, M.T.; Guo, Q.F.; Zheng, G.; Chen, X.S.; Lin, H.; Guo, X. Black-Phosphorus-nanosheet-reinforced coating of implants for sequential biofilm ablation and bone fracture healing acceleration. ACS Appl. Mater. Interfaces 2022, 14, 47036–47051. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Li, R.J.; Dai, Y.Y.; Qin, C.; He, J.K.; Yang, S.X.; Wang, T.Q.; Su, Y.J.; Jia, L.Z.; Zhao, W. Rhamnolipid-assisted black phosphorus nanosheets with efficient isolinderalactone loading against drug resistant Helicobacter pylori. Mater. Des. 2022, 216, 110536. [Google Scholar] [CrossRef]
- Aksoy, I.; Küçükkeçeci, H.; Sevgi, F.; Metin, Ö.; Patir, I.H. Photothermal Antibacterial and Antibiofilm Activity of Black Phosphorus/Gold Nanocomposites against Pathogenic Bacteria. ACS Appl. Mater. Interfaces 2020, 12, 26822–26831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, R.; Mao, S.; Zhang, Y.; Yao, L.; Xi, J.; Luo, S.; Liu, R.; Liu, Y.; Wang, R. A novel strategy to enhance photocatalytic killing of foodborne pathogenic bacteria by modification of non-metallic monomeric black phosphorus with Elaeagnus mollis polysaccharides. Int. J. Biol. Macromol. 2023, 242, 125015. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.B.; An, D.G.; Jin, Y.Y.; Feng, D.X.; Wang, Y.Y.; Li, Y.Y.; Miao, W.J. Mannan-functionalized black phosphorus nanosheets mediate the targeted elimination of intracellular bacteria via combined phototherapy. J. Drug Deliv. Sci. Technol. 2023, 88, 1049029. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.J.; Feng, W.J.; Fang, W.H.; Han, X.; Cheng, C. Multifunctional chondroitin sulfate based hydrogels for promoting infected diabetic wounds healing by chemo-photothermal antibacterial and cytokine modulation. Carbohydr. Polym. 2023, 314, 120937. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Huang, K.J.; Wu, X. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review. Biosens. Bioelectron. 2017, 97, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kong, D.S.; Hsu, P.C.; Yuan, H.T.; Lee, H.W.; Liu, Y.Y.; Wang, H.T.; Wang, S.; Yan, K.; Lin, D.C.; et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 2016, 11, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.P.; Li, J.; Wang, Y.; Cheng, J.J.; Zhang, C.Y. Recent advances in MoS2-based photothermal therapy for cancer and infectious disease treatment. J. Mater. Chem. B 2020, 8, 5793–5807. [Google Scholar] [CrossRef]
- Wang, S.G.; Li, K.; Chen, Y.; Chen, H.R.; Ma, M.; Feng, J.W.; Zhao, Q.H.; Shi, J.L. Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 2015, 39, 206–217. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, Y.; Yuan, X.Z.; Zeng, G.M.; Zhou, J.; Wang, X.; Chew, J.W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, e1704561. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.H.; Wang, N.; Legut, D.; Si, C.; Zhang, Q.F.; Du, S.Y.; Germann, T.C.; Francisco, J.S.; Zhang, R.F. Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 2019, 119, 11980–12031. [Google Scholar] [CrossRef]
- Pang, J.B.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.F.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, X.W.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic Applications. Adv. Mater. 2020, 32, e1902333. [Google Scholar] [CrossRef]
- Soleymaniha, M.; Shahbazi, M.A.; Rafieerad, A.R.; Maleki, A.; Amiri, A. Promoting role of MXene nanosheets in biomedical sciences: Therapeutic and biosensing innovations. Adv. Healthc. Mater. 2019, 8, e1801137. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Y.; Shi, J.L. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. 2018, 5, 1800518. [Google Scholar] [CrossRef] [PubMed]
- Szuplewska, A.; Kulpinska, D.; Dybko, A.; Chudy, M.; Jastrzebska, A.M.; Olszyna, A.; Brzózka, Z. Future Applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. 2020, 38, 264–279. [Google Scholar] [CrossRef]
- Huang, K.; Li, Z.J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124. [Google Scholar] [CrossRef]
- Rasool, K.; Mahmoud, K.A.; Johnson, D.J.; Helal, M.; Berdiyorov, G.R.; Gogotsi, Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017, 7, 1598. [Google Scholar] [CrossRef]
- Rasool, K.; Helal, M.; Ali, A.; Ren, C.E.; Gogotsi, Y.; Mahmoud, K.A. Antibacterial activity of Ti3C2Tx MXene. Acs Nano 2016, 10, 3674–3684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Y.; Rui, K.; Hng, H.H.; Hippalgaonkar, K.; Xu, J.W.; Sun, W.P.; Zhu, J.X.; Yan, Q.Y.; Huang, W. 2D black phosphorus for energy storage and thermoelectric applications. Small 2017, 13, 1700661. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.M.; Fan, T.J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306. [Google Scholar] [CrossRef]
- Choi, J.R.; Yong, K.W.; Choi, J.Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X.N. Black phosphorus and its biomedical applications. Theranostics 2018, 8, 1005–1026. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.Z.; Chen, C.F.; Smith, S.C. Phosphorene: Fabrication, properties, and applications. J. Phys. Chem. Lett. 2015, 6, 2794–2805. [Google Scholar] [CrossRef] [PubMed]
- Li, L.K.; Kim, J.; Jin, C.H.; Ye, G.J.; Qiu, D.Y.; da Jornada, F.H.; Shi, Z.W.; Chen, L.; Zhang, Z.C.; Yang, F.Y.; et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.F.; Tománek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.C.; Liu, M.; Guo, Z.N.; Jiang, X.F.; Luo, A.P.; Zhao, C.J.; Yu, X.F.; Xu, W.C.; Zhang, H. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express 2015, 23, 20030–20039. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, X.Z.; Shao, W.; Chen, S.C.; Xie, J.F.; Zhang, X.D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 2015, 137, 11376–11382. [Google Scholar] [CrossRef]
- Abellán, G.; Lloret, V.; Mundloch, U.; Marcia, M.; Neiss, C.; Görling, A.; Varela, M.; Hauke, F.; Hirsch, A. Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 2016, 55, 14557–14562. [Google Scholar] [CrossRef]
- Yang, B.C.; Wan, B.S.; Zhou, Q.H.; Wang, Y.; Hu, W.T.; Lv, W.M.; Chen, Q.; Zeng, Z.M.; Wen, F.S.; Xiang, J.Y.; et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.T.; Wang, H.Y.; Huang, H.; Xiao, Q.L.; Xu, Y.H.; Guo, Z.N.; Xie, H.H.; Shao, J.D.; Sun, Z.B.; Han, W.J.; et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 2016, 55, 5003–5007. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.L.; Ching, P.; Apisarnthanarak, A.; Jaggi, N.; Harrington, G.; Fong, S.M. APSIC guide for prevention of catheter associated urinary tract infections (CAUTIs). Antimicrob. Resist. Infect. Control 2023, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Durant, D.J. Nurse-driven protocols and the prevention of catheter-associated urinary tract infections: A systematic review. Am. J. Infect. Control 2017, 45, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Shuman, E.K.; Chenoweth, C.E. Urinary catheter-associated infections. Infect. Dis. Clin. North Am. 2018, 32, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, T.; Cheng, L.; Song, G.S.; Liu, Z.; Chen, M.W. MoS2-based nanoprobes for detection of silver ions in aqueous solutions and bacteria. ACS Appl. Mater. Interfaces 2015, 7, 7526–7533. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Li, J.; Liu, X.M.; Cui, Z.D.; Chen, D.F.; Li, Z.Y.; Liang, Y.Q.; Zhu, S.L.; Wu, S.L. The rapid photoresponsive bacteria-killing of Cu-doped MoS2. Biomater. Sci. 2020, 8, 4216–4224. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.L.; Zhu, P.; Zhang, J.R.; Liu, Y.H.; Cai, L.; Jiang, H.J.; Ji, M.H.; Chen, J. Electrochemical formation of distinct nanostructured MoS2 with altered antibacterial activity. Mater. Lett. 2020, 271, 127809. [Google Scholar] [CrossRef]
- Sang, Y.J.; Li, W.; Liu, H.; Zhang, L.; Wang, H.; Liu, Z.W.; Ren, J.S.; Qu, X.G. Construction of Nanozyme-Hydrogel for Enhanced Capture and Elimination of Bacteria. Adv. Funct. Mater. 2019, 29, 1900518. [Google Scholar] [CrossRef]
Type of Nanomaterials | Bactericidal Agents | Bacteria | References |
---|---|---|---|
MoS2 | Van-MoS2–Au | E. coli and B. subtilis | [26] |
MoS2 and WS2 microflakes | E. coli and S. aureus | [27] | |
AA@Ru@HA-MoS2 | MDR S. aureus and MDR P. aeruginosa | [28] | |
MoS2/ICG/Ag | E. coli and S. aureus | [29] | |
MSC@CaCO3 | MDR E. coli and MDR S. aureus | [30] | |
MoWS2 | MRSA | [31] | |
C/N/MPA cryogel | E. coli and MRSA | [32] | |
MXene | MXene-AuNCs | E. coli and S. aureus | [33] |
DNase-I@V2C | S. aureus | [34] | |
K10@V2C | MRSA and P. aeruginosa | [35] | |
V2N | S. aureus and S. mutans | [36] | |
Ag-MXene | E. coli and S. aureus | [37] | |
Black phosphorus | Ti-PDA/BP/ZnO | E. coli and S. aureus | [38] |
ZnO-BP/PLA | E. coli and S. aureus | [39] | |
BPs@HA | E. coli and S. aureus | [40] | |
RHL@BP/ISL | H. pylori | [41] | |
BP/Au | E. faecalis | [42] | |
EMP-BP | S. aureus | [43] | |
Ce6@Dex-BPN | MRSA | [44] | |
BP/Bi2O3/ε-PL | E. coli, S. aureus and P. aeruginosa | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, L.; Zhao, H.; Peng, M.; Zhu, Y. Roles of Two-Dimensional Materials in Antibiofilm Applications: Recent Developments and Prospects. Pharmaceuticals 2024, 17, 950. https://doi.org/10.3390/ph17070950
Xin L, Zhao H, Peng M, Zhu Y. Roles of Two-Dimensional Materials in Antibiofilm Applications: Recent Developments and Prospects. Pharmaceuticals. 2024; 17(7):950. https://doi.org/10.3390/ph17070950
Chicago/Turabian StyleXin, Lei, Hongkun Zhao, Min Peng, and Yuanjie Zhu. 2024. "Roles of Two-Dimensional Materials in Antibiofilm Applications: Recent Developments and Prospects" Pharmaceuticals 17, no. 7: 950. https://doi.org/10.3390/ph17070950
APA StyleXin, L., Zhao, H., Peng, M., & Zhu, Y. (2024). Roles of Two-Dimensional Materials in Antibiofilm Applications: Recent Developments and Prospects. Pharmaceuticals, 17(7), 950. https://doi.org/10.3390/ph17070950