Vascular Endothelial Growth Factor (VEGF) and VEGF Receptor Inhibitors in Health and Disease
Conflicts of Interest
List of Contributions
- Cunningham, C.; Bolcaen, J.; Bisio, A.; Genis, A.; Strijdom, H.; Vandevoorde, C. Recombinant Endostatin as a Potential Radiosensitizer in the Treatment of Non-Small Cell Lung Cancer. Pharmaceuticals 2023, 16, 219. https://doi.org/10.3390/ph16020219.
- Hang, A.; Feldman, S.; Amin, A.P.; Ochoa, J.A.R.; Park, S.S. Intravitreal Anti-Vascular Endothelial Growth Factor Therapies for Retinal Disorders. Pharmaceuticals 2023, 16, 1140. https://doi.org/10.3390/ph16081140.
- Korva-Gurung, I.; Kubin, A.M.; Ohtonen, P.; Hautala, N. Visual Outcomes of Anti-VEGF Treatment on Neovascular Age-Related Macular Degeneration: A Real-World Population-Based Cohort Study. Pharmaceuticals 2023, 16, 927. https://doi.org/10.3390/ph16070927.
- Almuiña-Varela, P.; García-Quintanilla, L.; Rodríguez-Cid, M.J.; Gil-Martínez, M.; Abraldes, M.J.; Gómez-Ulla, F.; Estany-Gestal, A.; Alcántara-Espinosa, J.M.; Fernández-Rodríguez, M.; Fernández-Ferreiro, A. Relationships between Patient-Reported Outcome Measures and Clinical Measures in Naïve Neovascular Age-Related Macular Degeneration Patients Treated with Intravitreal Ranibizumab. Pharmaceuticals 2024, 17, 157. https://doi.org/10.3390/ph17020157.
- Di Stasi, R.; De Rosa, L.; D’Andrea, L.D. Structure-Based Design of Peptides Targeting VEGF/VEGFRs. Pharmaceuticals 2023, 16, 851. https://doi.org/10.3390/ph16060851.
- Namjoo, M.; Ghafouri, H.; Assareh, E.; Aref, A.R.; Mostafavi, E.; Hamrahi Mohsen, A.; Balalaie, S.; Broussy, S.; Asghari, S.M. A VEGFB-Based Peptidomimetic Inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK Signaling and Elicits Apoptotic, Antiangiogenic, and Antitumor Activities. Pharmaceuticals 2023, 16, 906. https://doi.org/10.3390/ph16060906.
- Fedorczyk, B.; Redkiewicz, P.; Matalińska, J.; Piast, R.; Kosson, P.; Wieczorek, R. Chirality and Rigidity in Triazole-Modified Peptidomimetics Interacting with Neuropilin-1. Pharmaceuticals 2024, 17, 190. https://doi.org/10.3390/ph17020190.
- Mishra, Y.; Chattaraj, A.; Mishra, V.; Ranjan, A.; Tambuwala, M.M. Aptamers Versus Vascular Endothelial Growth Factor (VEGF): A New Battle against Ovarian Cancer. Pharmaceuticals 2023, 16, 849. https://doi.org/10.3390/ph16060849.
- Alanazi, W.A.; Alanazi, A.S.; El-Nagar, D.M.; Aljuraybah, A.M.; Alsanea, S.; Alharbi, M. Mechanism Underlying Triple VEGFR Inhibitor Tivozanib-Induced Hypertension in Mice Model. Pharmaceuticals 2023, 16, 295. https://doi.org/10.3390/ph16020295.
- Tang, Y.; Zhong, M.; Pan, G.; Tan, J.; Xie, C.; Jiang, Y.; Yao, J.; Shan, W.; Lin, J.; Huang, J.; et al. Preclinical Studies of Chiauranib Show It Inhibits Transformed Follicular Lymphoma through the VEGFR2/ERK/STAT3 Signaling Pathway. Pharmaceuticals 2023, 16, 15. https://doi.org/10.3390/ph16010015.
- Chyła-Danił, G.; Sałaga-Zaleska, K.; Kreft, E.; Krzesińska, A.; Herman, S.; Kuchta, A.; Sakowicz-Burkiewicz, M.; Lenartowicz, M.; Jankowski, M. Suramin Affects the Renal VEGF-A/VEGFR Axis in Short-Term Streptozotocin-Induced Diabetes. Pharmaceuticals 2023, 16, 470. https://doi.org/10.3390/ph16030470.
References
- Cao, Y.; Langer, R.; Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug Discov. 2023, 22, 476–495. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, W.Q.; Broussy, S.; Han, B.; Fang, H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front. Pharmacol. 2023, 14, 1307860. [Google Scholar] [CrossRef] [PubMed]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef] [PubMed]
- Manzo, A.; Montanino, A.; Carillio, G.; Costanzo, R.; Sandomenico, C.; Normanno, N.; Piccirillo, M.C.; Daniele, G.; Perrone, F.; Rocco, G.; et al. Angiogenesis inhibitors in NSCLC. Int. J. Mol. Sci. 2017, 18, 2021. [Google Scholar] [CrossRef] [PubMed]
- Karami, E.; Sabatier, J.M.; Behdani, M.; Irani, S.; Kazemi-Lomedasht, F. A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis. J. Enzym. Inhib. Med. Chem. 2020, 35, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Karami, E.; Naderi, S.; Roshan, R.; Behdani, M.; Kazemi-Lomedasht, F. Targeted therapy of angiogenesis using anti-VEGFR2 and anti-NRP-1 nanobodies. Cancer Chemother. Pharmacol. 2022, 89, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Le Tourneau, C.; Becker, H.; Claus, R.; Elez, E.; Ricci, F.; Fritsch, R.; Silber, Y.; Hennequin, A.; Tabernero, J.; Jayadeva, G.; et al. Two phase I studies of BI 836880, a vascular endothelial growth factor/angiopoietin-2 inhibitor, administered once every 3 weeks or once weekly in patients with advanced solid tumors. ESMO Open 2022, 7, 100576. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, I.; Baum, A.; Hofmann, M.H.; Trapani, F.; Reichel-Voda, C.; Ehrensperger, D.; Aichinger, M.; Ebner, F.; Budano, N.; Schweifer, N.; et al. Pharmacodynamic and antitumor activity of BI 836880, a dual Vascular Endothelial Growth Factor and Angiopoietin 2 inhibitor, alone and combined with Programmed Cell Death Protein-1 inhibition. J. Pharmacol. Exp. Ther. 2023, 384, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Guryanov, I.; Korzhikov-Vlakh, V.; Bhattacharya, M.; Biondi, B.; Masiero, G.; Formaggio, F.; Tennikova, T.; Urtti, A. Conformationally constrained peptides with high affinity to the vascular endothelial growth factor. J. Med. Chem. 2021, 64, 10900–10907. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Gaucher, J.F.; Hu, H.; Wang, L.; Broussy, S. Dimer peptide ligands of Vascular Endothelial Growth Factor: Optimizing linker length for high affinity and antiangiogenic activity. J. Med. Chem. 2023, 66, 9753–9765. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, L.; Capasso, D.; Diana, D.; Stefania, R.; Di Stasi, R.; Fattorusso, R.; D’Andrea, L.D. Metabolic and conformational stabilization of a VEGF-mimetic beta-hairpin peptide by click-chemistry. Eur. J. Med. Chem. 2021, 222, 113575. [Google Scholar] [CrossRef] [PubMed]
- Puszko, A.K.; Sosnowski, P.; Rignault-Bricard, R.; Hermine, O.; Hopfgartner, G.; Pulka-Ziach, K.; Lepelletier, Y.; Misicka, A. Urea-peptide hybrids as VEGF-A(165)/NRP-1 complex inhibitors with improved receptor affinity and biological properties. Int. J. Mol. Sci. 2021, 22, 72. [Google Scholar] [CrossRef]
- Puszko, A.K.; Sosnowski, P.; Hermine, O.; Hopfgartner, G.; Lepelletier, Y.; Misicka, A. Structure-activity relationship studies and biological properties evaluation of peptidic NRP-1 ligands: Investigation of N-terminal cysteine importance. Bioorg. Med. Chem. 2023, 94, 117482. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, C.; Napolitano, E.; Platella, C.; Musumeci, D.; Melone, M.A.B.; Montesarchio, D. Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics. Med. Res. Rev. 2021, 41, 464–506. [Google Scholar] [CrossRef] [PubMed]
- Poor, S.H.; Weissgerber, G.; Adams, C.M.; Bhatt, H.; Browning, D.J.; Chastain, J.; Ciulla, T.A.; Ferriere, M.; Gedif, K.; Glazer, L.C.; et al. A randomized, double-masked, multicenter trial of topical acrizanib (LHA510), a tyrosine kinase VEGF-receptor inhibitor, in treatment-experienced subjects with neovascular age-related macular degeneration. Am. J. Ophthalmol. 2022, 239, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Salgia, N.J.; Zengin, Z.B.; Pal, S.K. Tivozanib in renal cell carcinoma: A new approach to previously treated disease. Ther. Adv. Med. Oncol. 2020, 12, 1758835920923818. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shan, S.; Li, Z.B.; Xin, L.J.; Pan, D.S.; Yang, Q.J.; Liu, Y.P.; Yue, X.P.; Liu, X.R.; Gao, J.Z.; et al. CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency. Cancer Sci. 2017, 108, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Advani, A. VEGF and the diabetic kidney: More than too much of a good thing. J. Diabetes Complicat. 2017, 31, 273–279. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broussy, S. Vascular Endothelial Growth Factor (VEGF) and VEGF Receptor Inhibitors in Health and Disease. Pharmaceuticals 2024, 17, 959. https://doi.org/10.3390/ph17070959
Broussy S. Vascular Endothelial Growth Factor (VEGF) and VEGF Receptor Inhibitors in Health and Disease. Pharmaceuticals. 2024; 17(7):959. https://doi.org/10.3390/ph17070959
Chicago/Turabian StyleBroussy, Sylvain. 2024. "Vascular Endothelial Growth Factor (VEGF) and VEGF Receptor Inhibitors in Health and Disease" Pharmaceuticals 17, no. 7: 959. https://doi.org/10.3390/ph17070959
APA StyleBroussy, S. (2024). Vascular Endothelial Growth Factor (VEGF) and VEGF Receptor Inhibitors in Health and Disease. Pharmaceuticals, 17(7), 959. https://doi.org/10.3390/ph17070959