Navigating Preclinical Models and Medications for Peripheral Neuropathy: A Review
Abstract
:1. Introduction
2. Peripheral Neuropathy: Preclinical Models
2.1. Disease-Induced Model
2.2. Streptozotocin (STZ)-Induced Diabetic Rat Model
2.2.1. Advantages
2.2.2. Disadvantages
2.2.3. Procedures
2.3. Detection of Diabetic Neuropathies in Studies
2.4. Assessment of Mechanical Allodynia: The Electric Von Frey Method
2.5. Assessment of Heat Hyperalgesia: Hargreaves Apparatus (Paw-Flick Test)
2.6. Collective Studies
2.6.1. Gabapentin
2.6.2. Pregabalin
2.6.3. Duloxetine
2.6.4. Behavioural Tests Used in Neuropathy Models
Study | Medication | Dose | Model Used | Tests Used | Main Findings |
---|---|---|---|---|---|
Archana and Annnapurna, 2016 [51] | Pregabalin | 50 mg/kg | STZ-induced type i diabetic mice and type ii diabetic db/db mice | Paw withdrawal test (PWT) | Circadian rhythms play a significant role in the analgesic properties of PGN in diabetic mice regarding small intestinal uptake. The absorption of PGN is facilitated by the organic cation transporter novel type 1 (Octn1) in the small intestine. The analgesic effect of PGN was heightened during the times of day when Octn1 expression peaked, which enhanced PGN absorption. In short, fluctuating levels of Octn1 in the small intestine of diabetic mice at different times of the day underpinned the time-dependent effects of PGN analgesia. |
Kuhad et al., 2008 [52] | Duloxetine | 10 and 20 mg/kg | STZ-induced diabetic mouse model | Tail immersion and hot-plate assays | Duloxetine administration to diabetic mice at varying doses reduced dose-dependent pain sensitivity in tail immersion and hot plate tests. Furthermore, duloxetine administration caused dose-dependent increases in neuromodulator adenosine levels in mice. Higher doses of duloxetine provided increasingly significant pain relief and elevated adenosine levels, implying the involvement of the adenosinergic system in the anti-nociceptive mechanism of duloxetine. |
Tembhurne et al., 2011 [53] | Fluoxetine | 20 mg/kg | Experimental model of diabetes-induced neuropathic pain perception in rat | Blood glucose level test, grip strength test, hot plate test, tail flick test | The administration of fluoxetine significantly reduced blood glucose levels in diabetic animals, demonstrating its hypoglycemic effect. In addition to lowering hyperglycaemia, fluoxetine also seemed to protect against peripheral neuropathy, a common complication of diabetes. Diabetic rats treated with fluoxetine exhibited improved grip strength, suggesting less nerve damage than untreated controls. Fluoxetine also increased paw licking time and withdrawal latency to thermal stimuli, which suggests preserved pain perception and prevention of sensory neuropathy. |
Lopez-Soldado, 2003 [26] | Fluoxetine | 5, 10, and 20 mg/kg | STZ-induced diabetic mouse model | Tail-immersion and hot-plate assays | The results of a study demonstrated that mice with diabetes exhibited pain-relieving effects when treated with fluoxetine at 10 and 20 mg/kg doses. These effects were heightened by pindolol, an antagonist at 5-HT1A/1B receptors, but reduced by ritanserin, an antagonist at 5-HT2A/2C receptors. Interestingly, ondansetron, a selective 5-HT3 receptor antagonist, did not appear to impact the antinociceptive effects of fluoxetine. The data gathered from the study suggest that fluoxetine’s antinociceptive properties in diabetic mice are mediated by 5-HT1A/1B and 5-HT2A/2C receptors but not 5-HT3 receptors. |
Mixcoatl-Zecuatl et al., 2011 [41] | Duloxetine | s.c. 50 mL Systemic administration via i.p. 2 mL/kg Intrathecal (i.t.) 10 mL | STZ-induced diabetic rat model | Tactile allodynia test | Duloxetine displayed effective pain relief by reducing tactile allodynia in diabetic rats. The anti-allodynic impact of duloxetine was diminished by ketanserin or pruvanserin, which suggests that spinal 5-HT2A receptors play a role in the action of duloxetine. In conclusion, the results imply that 5-HT2A receptors in the spinal cord contribute to the anti-allodynic effects of duloxetine in diabetic neuropathic pain. |
Hamidi et al., 2014 [35] | Gabapentin | Systemic use: 75 mg/kg Topical use: 10% gel | STZ-induced diabetic neuropathic pain model | Static and dynamic mechanical allodynia and vulvodynia tests | Gabapentin, through systemic or topical means, led to a notable increase in paw withdrawal thresholds for static stimuli and paw withdrawal latencies for dynamic stimuli, as compared to diabetic controls, demonstrating its anti-allodynic properties. Additionally, gabapentin showed a significant improvement in diabetes-associated vulvodynia. To conclude, gabapentin administration, whether central or peripheral, effectively alleviated various types of neuropathic pain and vulvodynia in a rodent model of STZ-induced diabetic neuropathy. |
Surcheva et al., 2017 [54] | Gabapentin | 60 mg/kg | CCI and STZ-induced diabetes in rats | Evaluation of mechanical, tactile, and heat hypersensitivity | The use of gabapentin has been shown to reduce heightened sensitivity to mechanical, tactile, and heat stimuli in rat models of neuropathic pain. |
Pregabalin | 30 mg/kg | CCI and STZ-induced diabetes in rats | Evaluation of mechanical, tactile, and heat hypersensitivity | Pregabalin reduced sensitivity to mechanical, tactile, and heat stimuli in rat models of neuropathic pain. |
3. Cisplatin-Induced Peripheral Neuropathy
3.1. Cisplatin-Induced Peripheral Neuropathy Preclinical Model
3.1.1. Advantages
3.1.2. Disadvantages
3.2. Procedures
3.3. Collective Studies
3.4. Mechanisms of Action
4. Paclitaxel-Induced Peripheral Neuropathy
4.1. Paclitaxel-Induced Peripheral Neuropathy Preclinical Model
4.1.1. Advantages
4.1.2. Disadvantages
4.2. Procedures
4.3. Collective Studies
4.3.1. Duloxetine
4.3.2. Combination Therapy
5. Surgery-Induced or Trauma-Induced Neuropathy
5.1. Advantages
5.2. Disadvantages
5.3. Procedures
5.4. Other Surgical Models
5.5. Collective Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alhajji, A.M.; Alkhlaif, Z.K.; Bukhamsin, S.A.; Alkhars, F.S.; Al-Hussaini, H. Diabetic Neuropathy: Prevalence and Impact on Quality of Life in Al-Ahsa, Saudi Arabia. Cureus 2022, 14, e33176. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Boulton, A.J.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Quasthoff, S.; Hartung, H.P. Chemotherapy-induced peripheral neuropathy. J. Neurol. 2002, 249, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Cavaletti, G.; Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Nat. Rev. Neurol. 2010, 6, 657–666. [Google Scholar] [CrossRef]
- Peters, J.; Staff, N.P. Update on Toxic Neuropathies. Curr. Treat. Options Neurol. 2022, 24, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Dick, F.D. Solvent neurotoxicity. Occup. Environ. Med. 2006, 63, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; River, Y.; Shifrin, A.; Krivoy, N. Antiepileptic drugs in the treatment of neuropathic pain. Drugs 2007, 67, 1265–1289. [Google Scholar] [CrossRef] [PubMed]
- Obata, H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int. J. Mol. Sci. 2017, 18, 2483. [Google Scholar] [CrossRef] [PubMed]
- Castelli, G.; Desai, K.M.; Cantone, R.E. Peripheral Neuropathy: Evaluation and Differential Diagnosis. Am. Fam. Physician 2020, 102, 732–739. [Google Scholar] [PubMed]
- O’Brien, P.D.; Sakowski, S.A.; Feldman, E.L. Mouse models of diabetic neuropathy. Ilar J. 2014, 54, 259–272. [Google Scholar] [CrossRef] [PubMed]
- King, A.J. The use of animal models in diabetes research. Br. J. Pharmacol. 2012, 166, 877–894. [Google Scholar] [CrossRef] [PubMed]
- Surwit, R.S.; Kuhn, C.M.; Cochrane, C.; McCubbin, J.A.; Feinglos, M.N. Diet-Induced Type II Diabetes in C57BL/6J Mice. Diabetes 1988, 37, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.B.; Gollnick, P.D.; Tanuzzo, C.D. Histochemical properties of skeletal muscle fibers in streptozotocin-diabetic rats. Cell Tissue Res. 1975, 162, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Dzamko, N.; Schertzer, J.D.; Ryall, J.G.; Steel, R.; Macaulay, S.L.; Wee, S.; Chen, Z.P.; Michell, B.J.; Oakhill, J.S.; Watt, M.J.; et al. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. J. Physiol. 2008, 586, 5819–5831. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Alappan, N. Skeletal muscle fiber type composition and capillarization in insulin-resistant individuals. Diabetes Metab. Res. Rev. 2007, 23, 142–150. [Google Scholar]
- Allen, D.L.; Leinwand, L.A. Muscle plasticity and gene expression in diabetes and exercise. J. Appl. Physiol. 2001, 90, 631–640. [Google Scholar]
- Cameron, N.E.; Cotter, M.A. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 1997, 46 (Suppl. S2), S31–S37. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zheng, Z.M. Animal models of diabetic neuropathic pain. Exp. Clin. Endocrinol. Diabetes 2014, 122, 100–106. [Google Scholar] [CrossRef]
- Ghasemi, A.; Jeddi, S. Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. EXCLI J. 2023, 22, 274–294. [Google Scholar] [PubMed]
- Bauer, B.M.; Bhattacharya, S.; Bloom-Saldana, E.; Irimia, J.M.; Fueger, P.T. Dose-dependent progression of multiple low dose streptozotocin-induced diabetes in mice. Physiol. Genom. 2023, 55, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Ong, L.; Smith, M.T.; Ross, F.B.; Schmid, K.; Hoey, A.J.; Burstow, D.; Brown, L. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ. 2003, 12, 44–50. [Google Scholar] [CrossRef]
- Hayashi, K.; Kojima, R.; Ito, M. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol. Pharm. Bull. 2006, 29, 1110–1119. [Google Scholar] [CrossRef]
- Morrow, T.J. Animal models of painful diabetic neuropathy: The STZ rat model. Curr. Protoc. Neurosci. 2004, 29, 9.18.1–9.18.11. [Google Scholar] [CrossRef] [PubMed]
- Jolivalt, C.G.; Frizzi, K.E.; Guernsey, L.; Marquez, A.; Ochoa, J.; Rodriguez, M.; Calcutt, N.A. Peripheral neuropathy in mouse models of diabetes. Curr. Protoc. Mouse Biol. 2016, 6, 223–255. [Google Scholar] [CrossRef] [PubMed]
- López-Soldado, I.; Herrera, E. Different diabetogenic response to moderate doses of streptozotocin in pregnant rats, and its long-term consequences in the offspring. Exp. Diabesity Res. 2003, 4, 107–118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Notartomaso, S.; Scarselli, P.; Di Pietro, P.; Battaglia, G.; Llebaria, A.; Ciruela, F.; Nicoletti, F. Mechanical allodynia assessment in a murine neuropathic pain model. Bio Protoc. 2018, 8, e2671. [Google Scholar] [CrossRef] [PubMed]
- Boehmerle, W.; Huehnchen, P.; Peruzzaro, S.; Balkaya, M.; Endres, M. Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57Bl/6 mice. Sci. Rep. 2014, 4, 6370. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Hidmark, A.S.; Sturm, V.; Fischer, M.; Milford, D.; Hausser, I.; Sahm, F.; Breckwoldt, M.O.; Agarwal, N.; Kuner, R.; et al. Characterization of experimental diabetic neuropathy using multicontrast magnetic resonance neurography at ultra high field strength. Sci. Rep. 2020, 10, 7593. [Google Scholar] [CrossRef] [PubMed]
- Pušnik, L.; Serša, I.; Umek, N.; Cvetko, E.; Snoj, Ž. Correlation between diffusion tensor indices and fascicular morphometric parameters of peripheral nerve. Front. Physiol. 2023, 14, 1070227. [Google Scholar] [CrossRef] [PubMed]
- Pfau, D.B.; Haroun, O.; Lockwood, D.N.; Maier, C.; Schmitter, M.; Vollert, J.; Rice, A.S.C.; Treede, R.D. Mechanical detection and pain thresholds: Comparability of devices using stepped and ramped stimuli. Pain Rep. 2020, 5, e865. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C.; Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Price, D.D.; Mayer, D.J. Thermal hyperalgesia in association with the development of morphine tolerance in rats: Roles of excitatory amino acid receptors and protein kinase C. J. Neurosci. 1994, 14, 2301–2312. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, G.A.; Jafari-Sabet, M.; Abed, A.; Mesdaghinia, A.; Mahlooji, M.; Banafshe, H.R. Gabapentin enhances anti-nociceptive effects of morphine on heat, cold, and mechanical hyperalgesia in a rat model of neuropathic pain. Iran. J. Basic Med. Sci. 2014, 17, 753–759. [Google Scholar] [PubMed]
- Lin, H.C.; Huang, Y.H.; Chao, T.H.; Lin, W.Y.; Sun, W.Z.; Yen, C.T. Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol. Pain 2014, 10, 63. [Google Scholar] [CrossRef]
- Kilic, F.S.; Sirmagul, B.; Yildirim, E.; Oner, S.; Erol, K. Antinociceptive effects of gabapentin & its mechanism of action in experimental animal studies. Indian J. Med. Res. 2012, 135, 630–635. [Google Scholar] [PubMed]
- Verma, V.; Singh, N.; Singh Jaggi, A. Pregabalin in neuropathic pain: Evidences and possible mechanisms. Curr. Neuropharmacol. 2014, 12, 44–56. [Google Scholar] [CrossRef]
- Demir, C.F.; Balduz, M.; Taşcı, İ.; Kuloğlu, T. Protective effect of pregabalin on the brain tissue of diabetic rats. Diabetol. Int. 2021, 12, 207–216. [Google Scholar] [CrossRef]
- Calcutt, N.A.; Freshwater, J.D.; Mizisin, A.P. Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia 2004, 47, 718–724. [Google Scholar] [CrossRef]
- Mixcoatl-Zecuatl, T.; Jolivalt, C.G. A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br. J. Pharmacol. 2011, 164, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Subhan, F.; Abbas, M.; Zeb, J.; Shahid, M.; Sewell, R.D. A streptozotocin-induced diabetic neuropathic pain model for static or dynamic mechanical allodynia and vulvodynia: Validation using topical and systemic gabapentin. Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 1129–1140. [Google Scholar] [CrossRef]
- Austin, P.J.; Wu, A.; Moalem-Taylor, G. Chronic constriction of the sciatic nerve and pain hypersensitivity testing in rats. J. Vis. Exp. 2012, 61, 3393. [Google Scholar]
- Scripture, C.D.; Figg, W.D.; Sparreboom, A. Peripheral neuropathy induced by paclitaxel: Recent insights and future perspectives. Curr. Neuropharmacol. 2006, 4, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Banik, R.K.; Kabadi, R.A. A modified Hargreaves’ method for assessing threshold temperatures for heat nociception. J. Neurosci. Methods 2013, 219, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Colvin, L.A. Chemotherapy-induced peripheral neuropathy: Where are we now? Pain 2019, 160 (Suppl. S1), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther. 2008, 120, 1–34. [Google Scholar] [CrossRef]
- Hannaman, M.R.; Fitts, D.A.; Doss, R.M.; Weinstein, D.E.; Bryant, J.L. The refined biomimetic NeuroDigm GEL™ model of neuropathic pain in a mature rat. F1000Research 2017, 5, 2516. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Lee, J.B.; Deshpande, K.; Garbuzenko, O.B.; Minko, T.; Kagan, L. Prevention of paclitaxel-induced neuropathy by formulation approach. J. Control. Release 2019, 303, 109–116. [Google Scholar] [CrossRef]
- Archana, J.; Annapurna, A. Neuroprotective and antioxidant role of pregabalin in streptozotocin induced neurotoxicity. Int. J. Pharm. Sci. Res. 2016, 7, 4494. [Google Scholar] [CrossRef]
- Kuhad, A.; Bishnoi, M.; Chopra, K. Anti-nociceptive effect of duloxetine in mouse model of diabetic neuropathic pain. Indian J. Exp. Biol. 2009, 47, 193–197. [Google Scholar] [PubMed]
- Tembhurne, S.V.; Sakarkar, D.M. Effect of Fluoxetine on an experimental model of diabetes-induced neuropathic pain perception in the rat. Indian J. Pharm. Sci. 2011, 73, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Surcheva, S.; Todorova, L.; Maslarov, D.; Vlaskovska, M. Preclinic and clinic effectiveness of gabapentin and pregabalin for treatment of neuropathic pain in rats and diabetic patients. Biotechnol. Biotechnol. Equip. 2017, 31, 568–573. [Google Scholar] [CrossRef]
- Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014, 2, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Tuchman, M.; LaMoreaux, L.; Sharma, U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: A double-blind, placebo-controlled trial. Pain 2004, 110, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Gewandter, J.S.; Brell, J.; Cavaletti, G.; Dougherty, P.M.; Evans, S.; Howie, L.; McDermott, M.P.; O’Mara, A.; Smith, A.G.; Dastros-Pitei, D.; et al. Trial designs for chemotherapy-induced peripheral neuropathy prevention: ACTTION recommendations. Neurology 2018, 91, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.; Frank, B.; Marshall, A.; Khalil, R.S.; Ponirakis, G.; Petropoulos, I.N.; Cuthbertson, D.J.; Malik, R.A.; Alam, U. Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics 2021, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.L.; Angel-Scott, H.N.; Colvin, L.; Cramond, F.; Hair, K.; Khandoker, L.; Liao, J.; Macleod, M.; McCann, S.K.; Morland, R.; et al. Animal models of chemotherapy-induced peripheral neuropathy: A machine-assisted systematic review and meta-analysis. PLoS Biol. 2019, 17, e3000243. [Google Scholar] [CrossRef] [PubMed]
- Joseph, E.K.; Chen, X.; Bogen, O.; Levine, J.D. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J. Pain 2008, 9, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, H.S.; An, Y.S.; Chang, J.; Choi, J.; Im, G.J. Protective effect of resveratrol against cisplatin-induced ototoxicity in HEI-OC1 auditory cells. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, M.; Aung Myo, Y.P.; McKiver, B.D.; Osinska Warncke, U.; Thompson, D.; Mann, J.; Del Fabbro, E.; Desmoulière, A.; Billet, F.; Damaj, M.I. Key Developments in the potential of curcumin for the treatment of peripheral neuropathies. Antioxidants 2020, 9, 950. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Sung, B.; Ji, R.R.; Mao, J. Upregulation of spinal cannabinoid-1-receptors following nerve injury enhances the effects of Win 55,212-2 on neuropathic pain behaviors in rats. Pain 2003, 105, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Heo, B.H.; Yoon, M.H. A new rat model of cisplatin-induced neuropathic pain. Korean J. Pain 2015, 28, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Han, F.Y.; Wyse, B.D.; Smith, M.T. Optimization and pharmacological characterization of a refined cisplatin-induced rat model of peripheral neuropathic pain. Behav. Pharmacol. 2014, 25, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Boyette-Davis, J.A.; Cata, J.P.; Driver, L.C.; Novy, D.M.; Bruel, B.M.; Mooring, D.L.; Wendelschafer-Crabb, G.; Kennedy, W.R.; Dougherty, P.M. Persistent chemoneuropathy in patients receiving the plant alkaloids paclitaxel and vincristine. Cancer Chemother. Pharmacol. 2013, 71, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, V.A.; Canta, A.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett. 2015, 596, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Authier, N.; Balayssac, D.; Marchand, F.; Ling, B.; Zangarelli, A.; Descoeur, J.; Coudore, F.; Bourinet, E.; Eschalier, A. Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurotherapeutics 2009, 6, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Subhan, F.; Ahmad, N.; Sewell, R.D.E. Efficacy of a topical gabapentin gel in a cisplatin paradigm of chemotherapy-induced peripheral neuropathy. BMC Pharmacol. Toxicol. 2019, 20, 51. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Pang, H.; Ye, C.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Le-Lindqwister, N.; Fadul, C.E.; et al. Predictors of duloxetine response in patients with oxaliplatin-induced painful chemotherapy-induced peripheral neuropathy (CIPN): A secondary analysis of randomised controlled trial—CALGB/alliance 170601. Eur. J. Cancer Care 2017, 26, e12421. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.A.; Wiffen, P.J.; Derry, S.; McQuay, H.J. Gabapentin for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2011, 16, Cd007938. [Google Scholar]
- Keskinbora, K.; Pekel, A.F.; Aydinli, I. Gabapentin and an opioid combination versus opioid alone for the management of neuropathic cancer pain: A randomized open trial. J. Pain Symptom Manag. 2007, 34, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Lee, J.Y.; Choi, H.; Kim, Y.C.; Yang, S.; Jeong, J.; Park, H.J. Effect of pregabalin combined with duloxetine and tramadol on allodynia in chronic postischemic pain and spinal nerve ligation mouse models. Pharmaceutics 2022, 14, 670. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Zhang, Q.; Yang, C.; Xiao, L.; Xue, Z.; Zhu, J. Duloxetine, a balanced serotonin-norepinephrine reuptake inhibitor, improves painful chemotherapy-induced peripheral neuropathy by inhibiting activation of p38 MAPK and NF-κB. Front. Pharmacol. 2019, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.S.; Lanigan, M.T.; Upton, N.; Lione, L.A. Preclinical neuropathic pain assessment; the importance of translatability and bidirectional research. Front. Pharmacol. 2020, 11, 614990. [Google Scholar] [CrossRef] [PubMed]
- Kawashiri, T.; Inoue, M.; Mori, K.; Kobayashi, D.; Mine, K.; Ushio, S.; Kudamatsu, H.; Uchida, M.; Egashira, N.; Shimazoe, T. Preclinical and clinical evidence of therapeutic agents for paclitaxel-induced peripheral neuropathy. Int. J. Mol. Sci. 2021, 22, 8733. [Google Scholar] [CrossRef] [PubMed]
- Duggett, N.A.; Griffiths, L.A.; Flatters, S.J.L. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain 2017, 158, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Campbell, G.; Peacock, A.; Smith, K.; Bruno, R.; Hall, W.; Cohen, M.; Degenhardt, L. Health service utilisation by people living with chronic non-cancer pain: Findings from the Pain and Opioids IN Treatment (POINT) study. Aust. Health Rev. 2016, 40, 490–499. [Google Scholar] [PubMed]
- Li, W.; Guo, J.; Chen, J.; Yao, H.; Mao, R.; Li, C.; Zhang, G.; Chen, Z.; Xu, X.; Wang, C. Identification of immune infiltration and the potential biomarkers in diabetic peripheral neuropathy through bioinformatics and machine learning methods. Biomolecules 2022, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; van Nooten, F.; Wells, T.; Ryan, A.; Crawford, B.; Evans, C.; English, M. Neuropathic pain: A patient-centered approach to measuring outcomes. Health Expect. 2018, 21, 774–786. [Google Scholar]
- Ruiz-Medina, J.; Baulies, A.; Bura, S.A.; Valverde, O. Paclitaxel-induced neuropathic pain is age dependent and devolves on glial response. Eur. J. Pain 2013, 17, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 2019, 9, 789. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.Z.; Shi, R.J.; Chen, D.; Sun, Y.Y.; Wu, Q.W.; Wang, T.; Wang, P.H. Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell. Int. J. Clin. Exp. Pathol. 2013, 6, 2745–2756. [Google Scholar] [PubMed]
- Höke, A. Animal models of peripheral neuropathies. Neurotherapeutics 2012, 9, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Zajac, K.K.; Annaji, M.; Govindarajulu, M.; Nadar, R.M.; Bowen, D.; Babu, R.J.; Dhanasekaran, M. Clinical outcomes of chemotherapy in cancer patients with different ethnicities. Cancer Rep. 2023, 6 (Suppl. S1), e1830. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Dehpour, A.R. Ethical considerations in animal studies. J. Med. Ethics Hist. Med. 2009, 2, 12. [Google Scholar]
- Höke, A.; Ray, M. Rodent models of chemotherapy-induced peripheral neuropathy. Ilar J. 2014, 54, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Caraceni, A.; Zecca, E.; Bonezzi, C.; Arcuri, E.; Yaya Tur, R.; Maltoni, M.; Visentin, M.; Gorni, G.; Martini, C.; Tirelli, W.; et al. Gabapentin for neuropathic cancer pain: A randomized controlled trial from the Gabapentin Cancer Pain Study Group. J. Clin. Oncol. 2004, 22, 2909–2917. [Google Scholar] [CrossRef] [PubMed]
- Chiechio, S.; Zammataro, M.; Caraci, F.; Rampello, L.; Copani, A.; Sabato, A.F.; Nicoletti, F. Pregabalin in the treatment of chronic pain: An overview. Clin. Drug Investig. 2009, 29, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Chappell, A.S.; Ossanna, M.J.; Liu-Seifert, H.; Iyengar, S.; Skljarevski, V.; Li, L.C.; Bennett, R.M.; Collins, H. Duloxetine, a centrally acting analgesic, in the treatment of patients with osteoarthritis knee pain: A 13-week, randomized, placebo-controlled trial. Pain 2009, 146, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.W.; Portenoy, R.; Sharma, U.; Lamoreaux, L.; Bockbrader, H.; Knapp, L.E. Relief of painful diabetic peripheral neuropathy with pregabalin: A randomized, placebo-controlled trial. J. Pain 2005, 6, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Russell, G.; Strichartz, G.R.; Wang, G.K. The local and systemic actions of duloxetine in allodynia and hyperalgesia using a rat skin incision pain model. Anesth. Analg. 2015, 121, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Medeiros Dantas, J.; de Jesus Oliveira, M.; Silva, L.A.O.; Batista, S.; Dagostin, C.S.; Schachter, D.C. Monotherapy versus combination therapy in the treatment of painful diabetic neuropathy: A systematic review and meta-analysis. Clin. Drug Investig. 2023, 43, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Daeschler, S.C.; Pennekamp, A.; Tsilingiris, D.; Bursacovschi, C.; Aman, M.; Eisa, A.; Boecker, A.; Klimitz, F.; Stolle, A.; Kopf, S.; et al. Effect of surgical release of entrapped peripheral nerves in sensorimotor diabetic neuropathy on pain and sensory dysfunction—Study protocol of a prospective, controlled clinical trial. J. Pers. Med. 2023, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Bril, V.; England, J.; Franklin, G.M.; Backonja, M.; Cohen, J.; Del Toro, D.; Feldman, E.; Iverson, D.J.; Perkins, B.; Russell, J.W.; et al. Evidence-based guideline: Treatment of painful diabetic neuropathy: Report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2011, 76, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I.; Nevoret, M.L.; Casellini, C.; Parson, H. Diabetic neuropathy. Endocrinol. Metab. Clin. 2013, 42, 747–787. [Google Scholar] [CrossRef] [PubMed]
- Calcutt, N.A.; Cooper, M.E.; Kern, T.S.; Schmidt, A.M. Therapies for hyperglycemia-induced diabetic complications: From animal models to clinical trials. Nat. Rev. Drug Discov. 2009, 8, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Papp, G.; Szolcsányi, J.; Sántha, P. Sensory and motor nerve fibre regeneration following nerve injury in diabetic rats. Eur. J. Pharmacol. 2007, 576, 48–54. [Google Scholar]
- Singh, R.; Kishore, L.; Kaur, N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol. Res. 2014, 80, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.K.; Nones, C.F.; Reis, R.C.; Chichorro, J.G.; Cunha, J.M. Diabetic neuropathic pain: Physiopathology and treatment. World J. Diabetes 2015, 6, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Karanth, S.S.; Nayak, A.; Pai, M.R. Evaluation of the effect of some neuroprotective agents in diabetic neuropathy. Indian J. Pharmacol. 2008, 40, 204–207. [Google Scholar]
- Vincent, A.M.; Callaghan, B.C.; Smith, A.L.; Feldman, E.L. Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 2011, 7, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.I.; Rayment, C.; Hjermstad, M.; Aass, N.; Caraceni, A. Prevalence and aetiology of neuropathic pain in cancer patients: A systematic review. Pain 2013, 153, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.; Durso-De Cruz, E.; Emir, B.; Murphy, T.K. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: Findings from a routine clinical practice setting. J. Diabetes Its Complicat. 2014, 28, 713–718. [Google Scholar]
- Apfel, S.C. Nerve growth factor for the treatment of diabetic neuropathy: What went wrong, what went right, and what does the future hold? Int. Rev. Neurobiol. 2002, 50, 393–413. [Google Scholar] [PubMed]
- Dellon, A.L.; Muse, V.L.; Nickerson, D.S.; Barberá, J. Treatment of symptoms of diabetic neuropathy by peripheral nerve decompression. Plast. Reconstr. Surg. 2002, 109, 217–222. [Google Scholar]
- Zochodne, D.W. The challenges of diabetic polyneuropathy: A brief update. Curr. Opin. Neurol. 2014, 27, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.M.; Russell, J.W.; Low, P.; Feldman, E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 2004, 25, 612–628. [Google Scholar] [CrossRef]
- Obrosova, I.G.; Xu, W.; Lyzogubov, V.V.; Ilnytska, O. Evaluation of the antioxidant properties of the aldose reductase inhibitor Fidarestat and its effects on diabetic peripheral neuropathy. Diabetes 2005, 54, 3150–3157. [Google Scholar]
- Pop-Busui, R.; Sima, A.; Stevens, M. Diabetic neuropathy and oxidative stress. Diabetes Metab. Res. Rev. 2006, 22, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Cameron, N.E.; Cotter, M.A.; Robertson, S.; Maxfield, E.K. Anti-inflammatory and neuroprotective effects of the soluble guanylyl cyclase activator BAY 41-2272 in experimental diabetic neuropathy. Diabetes 2001, 50, 432–440. [Google Scholar]
- Cameron, N.E.; Eaton, S.E.; Cotter, M.A.; Tesfaye, S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 1997, 40, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Fernyhough, P.; Roy Chowdhury, S.K.; Schmidt, R.E. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Exp. Neurol. 2010, 223, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Yagihashi, S.; Yamagishi, S.; Wada, R. Pathology and pathogenetic mechanisms of diabetic neuropathy: Correlation with clinical signs and symptoms. Diabetes Res. Clin. Pract. 2007, 77 (Suppl. S1), S184–S189. [Google Scholar] [CrossRef] [PubMed]
- Sango, K.; Mizukami, H.; Yagihashi, S. Impaired axonal regeneration in diabetes. Perspective on the underlying mechanism from in vivo and in vitro experimental studies. Front. Biosci. 2006, 11, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Said, G.; Baudoin, D.; Toyooka, K. Sensory loss, pains, motor deficit and axonal regeneration in length-dependent diabetic polyneuropathy. J. Neurol. 2008, 255, 1693–1702. [Google Scholar] [CrossRef]
- Callaghan, B.; Feldman, E. The metabolic syndrome and neuropathy: Therapeutic challenges and opportunities. Ann. Neurol. 2013, 74, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.M.; Gordon, T.; Zochodne, D.W.; Power, H.A. Improving peripheral nerve regeneration: From molecular mechanisms to potential therapeutic targets. Exp. Neurol. 2014, 261, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Borsook, D.; Kussman, B.D.; George, E.; Becerra, L.R.; Burke, D.W. Surgically induced neuropathic pain: Understanding the perioperative process. Ann. Surg. 2013, 257, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Farguson, C.; Buhrlage, S.J.; Smith, C.M.; Schreiber, S.L. Exploiting synthetic lethal interactions for target identification and drug discovery. Cell Chem. Biol. 2010, 17, 346–355. [Google Scholar]
- Bracken, M.B. Why animal studies are often poor predictors of human reactions to exposure. J. R. Soc. Med. 2009, 102, 120–122. [Google Scholar] [CrossRef]
- Ablin, J.N.; Buskila, D. Personalized treatment of pain. Curr. Rheumatol. Rep. 2013, 15, 298. [Google Scholar] [CrossRef] [PubMed]
- Flecknell, P. Laboratory Animal Anaesthesia; Academic Press: Cambridge, MA, USA, 2009; ISBN 9780123693761. [Google Scholar]
- Mogil, J.S. Animal models of pain: Progress and challenges. Nat. Rev. Neurosci. 2009, 10, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Thacker, M.A.; Clark, A.K.; Marchand, F.; McMahon, S.B. Pathophysiology of peripheral neuropathic pain: Immune cells and molecules. Anesth. Analg. 2007, 105, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical considerations regarding animal experimentation. J. Prev. Med. Hyg. 2022, 63 (Suppl. S3), E255–E266. [Google Scholar]
- Vickers, A.J.; Altman, D.G. Statistics notes: Analysing controlled trials with baseline and follow up measurements. BMJ 2001, 323, 1123–1124. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.J.; Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Decosterd, I.; Woolf, C.J. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 2000, 87, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, G.M.; Ritchie, J.; Henry, J.L. Nerve constriction in the rat: Model of neuropathic, surgical and central pain. Pain 1999, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Dubner, R.; Hargreaves, K.M. The neurobiology of pain and its modulation. Clin. J. Pain 1989, 5 (Suppl. S2), S1–S4, discussion S4–S6. [Google Scholar]
- Tan, T.; Barry, P.; Reken, S.; Baker, M. Pharmacological management of neuropathic pain in non-specialist settings: Summary of NICE guidance. BMJ 2010, 340, c1079. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; DeGoes, S.; Curry, R.; Eisenach, J.C. Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery. Anesthesiology 2007, 106, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Lu, H.; Chen, C.; Gu, Z.; Hu, M.; Liu, L.; Yu, J.; Wei, G.; Huo, J. Diabetes mellitus as a risk factor for chemotherapy-induced peripheral neuropathy: A meta-analysis. Support Care Cancer 2021, 29, 7461–7469. [Google Scholar] [CrossRef] [PubMed]
- Staff, N.P.; Fehrenbacher, J.C.; Caillaud, M.; Damaj, M.I.; Segal, R.A.; Rieger, S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp. Neurol. 2020, 324, 113121. [Google Scholar] [CrossRef] [PubMed]
- Attal, N.; Bouhassira, D.; Gautron, M.; Vaillant, J.N.; Mitry, E.; Lepère, C.; Rougier, P.; Guirimand, F. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: A prospective quantified sensory assessment study. Pain 2009, 144, 245–252. [Google Scholar] [CrossRef] [PubMed]
Aspect | Disease-Induced Model | Cisplatin-Induced Model | Paclitaxel-Induced Model | Surgery-Induced Model |
---|---|---|---|---|
Induction Method | Chemically induced (e.g., streptozotocin injection) | Administration of cisplatin | Administration of paclitaxel | Surgical intervention (e.g., nerve ligation) |
Underlying Mechanism | High blood sugar levels leading to nerve damage | Direct DNA damage and oxidative stress | Microtubule stabilisation leading to nerve damage | Mechanical injury to nerves, leading to neuropathy |
Relevance to Peripheral Neuropathy | Peripheral neuropathy shares similarities with diabetic neuropathy | Chemotherapy-induced peripheral neuropathy | Chemotherapy-induced peripheral neuropathy | It may mimic diabetic neuropathy or exacerbate it |
Symptomatology | Neuropathic pain, numbness, tingling, weakness | Neuropathic pain, numbness, tingling, weakness | Neuropathic pain, numbness, tingling, weakness | Neuropathic pain, numbness, tingling, weakness |
Experimental Control | Moderate | High | High | Moderate to high |
Therapeutic Studies | Ghasemi et al. (2023) [20] | Gu et al. (2021) [134] | Staff et al. (2020) [135] | Attal et al. (2018) [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jali, A.M.; Banji, D.; Banji, O.J.F.; Hurubi, K.Y.; Tawhari, F.Y.; Alameer, A.A.; Dohal, A.S.; Zanqoti, R.A. Navigating Preclinical Models and Medications for Peripheral Neuropathy: A Review. Pharmaceuticals 2024, 17, 1010. https://doi.org/10.3390/ph17081010
Jali AM, Banji D, Banji OJF, Hurubi KY, Tawhari FY, Alameer AA, Dohal AS, Zanqoti RA. Navigating Preclinical Models and Medications for Peripheral Neuropathy: A Review. Pharmaceuticals. 2024; 17(8):1010. https://doi.org/10.3390/ph17081010
Chicago/Turabian StyleJali, Abdulmajeed M., David Banji, Otilia J. F. Banji, Khalid Y. Hurubi, Faisal Y. Tawhari, Atheer A. Alameer, Atyaf S. Dohal, and Raha A. Zanqoti. 2024. "Navigating Preclinical Models and Medications for Peripheral Neuropathy: A Review" Pharmaceuticals 17, no. 8: 1010. https://doi.org/10.3390/ph17081010
APA StyleJali, A. M., Banji, D., Banji, O. J. F., Hurubi, K. Y., Tawhari, F. Y., Alameer, A. A., Dohal, A. S., & Zanqoti, R. A. (2024). Navigating Preclinical Models and Medications for Peripheral Neuropathy: A Review. Pharmaceuticals, 17(8), 1010. https://doi.org/10.3390/ph17081010