Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga (Inonotus obliquus) Growing on Betula pendula and Betula pubescens
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Study of Chaga
Extracts and Content of Biochemical Compounds
2.2. Cytotoxic Activity of Chaga Extracts
3. Discussion
4. Materials and Methods
4.1. Sample Sites, Fungal Isolation, Detection, and Preparation
4.2. Cytotoxic Assay
4.3. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, M.-W.; Hur, H.; Chang, K.-C.; Lee, T.-S.; Ka, K.-H.; Jankovsky, L. Introduction to distribution and ecology of sterile conks of Inonotus obliquus. Mycobiology 2008, 36, 199–202. [Google Scholar] [CrossRef]
- Adamson, K.; Kütt, K.; Vester, M.; Jürimaa, K.; Silm, M.; Drenkhan, R. Mycelial growth of Inonotus obliquus on malt extract media and on wood of different host species. Scand. J. For. Res. 2023, 38, 131–143. [Google Scholar] [CrossRef]
- Adamson, K.; Vester, M.; Kütt, K.; Riit, T.; Padari, A.; Jürimaa, K.; Drenkhan, R. An investigation of Inonotus obliquus in Estonia: Its distribution, abundance of conks, rot extent in infected trees, and peculiarities of basidiospore dispersal. For. Ecol. Manag. 2024, 562, 121917. [Google Scholar] [CrossRef]
- Drenkhan, R.; Kaldmäe, H.; Silm, M.; Adamson, K.; Bleive, U.; Aluvee, A.; Erik, M.; Raal, A. Comparative Analyses of Bioactive Compounds in Inonotus obliquus Conks Growing on Alnus and Betula. Biomolecules 2022, 12, 1178. [Google Scholar] [CrossRef]
- Zhong, X.-H.; Kuang, R.; Lu, S.-J.; Yang, S.-Y.; Sun, D.-Z. Progress of research on Inonotus obliquus. Chin. J. Integr. Med. 2009, 15, 156–160. [Google Scholar] [CrossRef]
- Glamočlija, J.; Ćirić, A.; Nikolić, M.; Fernandes, Â.; Barros, L.; Calhelha, R.C.; Isabel, C.F.R.; Ferreira, I.C.F.R.; Soković, M.; van Griensven, L.J.L.D. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. J. Ethnopharmacol. 2015, 162, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Chiu, W.-C.; Chiu, Y.-S. Effect of Inonotus obliquus extract supplementation on endurance exercise and energy-consuming processes through lipid transport in mice. Nutrients 2022, 14, 5007. [Google Scholar] [CrossRef]
- Chang, Y.; Bai, M.; Xue, X.-B.; Zou, C.-X.; Huang, X.-X.; Song, S.-J. Isolation of chemical compositions as dietary antioxidant supplements and neuroprotectants from Chaga mushroom (Inonotus obliquus). Food Biosci. 2022, 47, 101623. [Google Scholar] [CrossRef]
- Łysakowska, P.; Sobota, A.; Wirkijowska, A. Medicinal mushrooms: Their bioactive components, nutritional value and application in functional food production—A review. Molecules 2023, 28, 5393. [Google Scholar] [CrossRef]
- Nikitina, S.A.; Habibrakhmanova, V.R.; Sysoeva, M.A. Chemical composition and biological activity of triterpenes and steroids of chaga mushroom. Biochemistry 2016, 10, 63–69. [Google Scholar] [CrossRef]
- Ern, P.T.Y.; Quan, T.Y.; Yee, F.S.; Yin, A.C.Y. Therapeutic Properties of Inonotus obliquus (Chaga Mushroom): A Review. Mycology 2023, 15, 144–161. [Google Scholar] [CrossRef]
- Anwaier, G.; Wen, C.; Cao, Y.-N.; Qi, R. A Review of the Bioactive Ingredients, Pharmacological Functions and Mechanisms of Inonotus obliquus. Mini-Rev. Org. Chem. 2021, 18, 529–538. [Google Scholar] [CrossRef]
- Plehn, S.; Wagle, S.; Rupasinghe, H.P.V. Chaga Mushroom Triterpenoids as Adjuncts to Minimally Invasive Cancer Therapies: A Review. Curr. Res. Toxicol. 2023, 5, 100137. [Google Scholar] [CrossRef]
- Sak, K.; Jürisoo, K.; Raal, A. Estonian folk traditional experiences on natural anticancer remedies: From past to the future. Pharm. Biol. 2014, 52, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Ho, D.V.; Nguyen, P.D.Q.; Vo, H.Q.; Do, T.T.; Raal, A. Cytotoxic Evaluation of Compounds Isolated from the Aerial Parts of Hedyotis pilulifera and Methanol Extract of Inonotus obliquus. Nat. Prod. Commun. 2018, 13, 939–941. [Google Scholar] [CrossRef]
- Bebenek, E.; Chrobak, E.; Piechowska, A.; Gluszek, S.; Boryczka, S. Betulin: A natural product with promising anticancer activity against colorectal cancer cells. Med. Stud. Stud. Med. 2020, 36, 297–301. [Google Scholar] [CrossRef]
- Kim, T.I.; Choi, J.-G.; Kim, J.H.; Li, W.; Chung, H.-S. Blocking effect of chaga mushroom (Inonotus oliquus) extract for immune checkpoint CTLA-4/CD80 interaction. Appl. Sci. 2020, 10, 5774. [Google Scholar] [CrossRef]
- Ma, L.; Chen, H.; Dong, P.; Lu, X. Anti-Inflammatory and Anticancer Activities of Extracts and Compounds from the Mushroom Inonotus obliquus. Food Chem. 2013, 139, 503–508. [Google Scholar] [CrossRef]
- Arata, S.; Watanabe, J.; Maeda, M.; Yamamoto, M.; Matsuhashi, H.; Mochizuki, M.; Kagami, N.; Honda, K.; Inagaki, M. Continuous Intake of the Chaga Mushroom (Inonotus obliquus) Aqueous Extract Suppresses Cancer Progression and Maintains Body Temperature in Mice. Heliyon 2016, 2, e00111. [Google Scholar] [CrossRef]
- Ryu, K.; Nakamura, S.; Nakashima, S.; Aihara, M.; Fukaya, M.; Iwami, J.; Asao, Y.; Yoshikawa, M.; Matsuda, H. Triterpenes with Anti-Invasive Activity from Sclerotia of Inonotus obliquus. Nat. Prod. Commun. 2017, 12, 225–228. [Google Scholar] [CrossRef]
- Géry, A.; Dubreule, C.; André, V.; Rioult, J.-P.; Bouchart, V.; Heutte, N.; Eldin de Pécoulas, P.; Krivomaz, T.; Garon, D. Chaga (Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B). Integr. Cancer Ther. 2018, 17, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Abugomaa, A.; Elbadawy, M.; Ishihara, Y.; Yamamoto, H.; Kaneda, M.; Yamawaki, H.; Shinohara, Y.; Usui, T.; Sasaki, K. Anti-Cancer Activity of Chaga Mushroom (Inonotus obliquus) against Dog Bladder Cancer Organoids. Front. Pharmacol. 2023, 14, 1159516. [Google Scholar] [CrossRef]
- Cancer. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 2 January 2024).
- Szychowski, K.A.; Rybczyńska-Tkaczyk, K.; Tobiasz, J.; Yelnytska-Stawasz, V.; Pomianek, T.; Gmiński, J. Biological and anticancer properties of Inonotus obliquus extracts. Process Biochem. 2018, 73, 180–187. [Google Scholar] [CrossRef]
- Youn, M.-J.; Kim, J.-K.; Park, S.-Y.; Kim, Y.; Park, C.; Kim, E.S.; Park, K.-I.; So, H.S.; Park, R. Potential anticancer properties of the water extract of Inonotus obliquus by induction of apoptosis in melanoma B16-F10 cells. J. Ethnopharmacol. 2009, 121, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Szychowski, K.A.; Skora, B.; Pomianek, T.; Gminski, J. Inonotus obliquus—From folk medicine to clinical use. J. Tradit. Complement. Med. 2021, 11, 293–302. [Google Scholar] [CrossRef]
- Kang, J.-H.; Jang, J.-E.; Mishra, S.K.; Lee, H.-J.; Nho, C.W.; Shin, D.; Jin, M.; Kim, M.K.; Choi, C.; Oh, S.H. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J. Ethnopharmacol. 2015, 173, 303–312. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, E.J.; Kim, S.H. Ethanol extract of Inonotus obliquus (Chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells. Nutr. Res. Pract. 2015, 9, 111–116. [Google Scholar] [CrossRef]
- Fan, L.; Ding, S.; Ai, L.; Deng, K. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydr. Polym. 2012, 90, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, L.; Li, L.; Huang, X.; Liu, Y.; Wang, D.; Teng, L. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS ONE 2017, 12, e0180476. [Google Scholar] [CrossRef]
- Jiang, S.; Shi, F.; Lin, H.; Ying, Y.; Luo, L.; Huang, D.; Luo, Z. Inonotus obliquus polysaccharides induces apoptosis of lung cancer cells and alters energy metabolism via the LKB1/AMPK axis. Int. J. Biol. Macromol. 2020, 151, 1277–1286. [Google Scholar] [CrossRef]
- Duru, K.C.; Kovaleva, E.G.; Danilova, I.G.; Bijl, P. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother. Res. 2019, 33, 1966–1980. [Google Scholar] [CrossRef]
- Bhui, K.; Srivastava, A.K.; Shukla, Y. Cytotoxic action of natural pentacyclic triterpenes of cancer cells: Lupane-type compounds. In Pentacyclic Troterpenes as Promising Agents in Cancer; Book Series Cancer Etiology Diagnosis and, Treatments; Salvador, J.A.R., Ed.; Nova Science Publishers: New York, NY, USA, 2010; pp. 49–87. [Google Scholar]
- John, R.; Dalal, B.; Shankarkumar, A.; Devarajan, P.V. Innovative betulin nanosuspension exhibits enhanced anticancer activity in a triple negative breast cancer cell line and Zebrafish angiogenesis model. Int. J. Pharm. 2021, 600, 120511. [Google Scholar] [CrossRef]
- Güttler, A.; Eiselt, Y.; Funtan, A.; Thiel, A.; Petrenko, M.; Keßler, J.; Thondorf, I.; Paschke, R.; Vordermark, D.; Bache, M. Betulin sulfonamides as carbonic anhydrase inhibitors and anticancer agents in breast cancer cells. Int. J. Mol. Sci. 2021, 22, 8808. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.V.; Ho, D.V.; Le, A.T.; Heinämäki, J.; Raal, A.; Nguyen, H.T. Secondary Metabolites from Alphonsea Tonkinensis A.DC. Showing Inhibition of Nitric Oxide Production and Cytotoxic Activity. J. Pharm. Pharmacogn. Res. 2021, 9, 24–32. [Google Scholar] [CrossRef]
- Raal, A.; Jaama, M.; Utt, M.; Püssa, T.; Žvikas, V.; Jakštas, V.; Koshovyi, O.; Nguyen, K.V.; Nguyen, H.T. The Phytochemical Profile and Anticancer Activity of Anthemis tinctoria and Angelica sylvestris Used in Estonian Ethnomedicine. Plants 2022, 11, 994. [Google Scholar] [CrossRef]
- Park, J.; Nguyen, T.M.N.; Park, H.A.; Nguyen, M.T.T.; Lee, N.Y.; Ban, S.Y.; Park, K.B.; Lee, C.K.; Kim, J.; Park, J.T. Protective Effects of Lanostane Triterpenoids from Chaga Mushroom in Human Keratinocytes, HaCaT Cells, against Inflammatory and Oxidative Stresses. Int. J. Mol. Sci. 2023, 24, 12803. [Google Scholar] [CrossRef]
- Upska, K.; Klavins, L.; Radenkovs, V.; Nikolajeva, V.; Faven, L.; Isosaari, E.; Lauberts, M.; Busa, L.; Viksna, A.; Klavins, M. Extraction possibilities of lipid fraction and authentication assessment of chaga (Inonotus obliquus). Biomass Convers. Biorefin. 2023, 13, 14005–14021. [Google Scholar] [CrossRef]
- Ryzhova, G.L.; Kravtsova, S.S.; Matasova, S.A.; Gribel, N.V.; Pashinskii, V.G.; Dychko, K.A. Chemical and pharmaceutical characteristics of dry extract from black birch fungus. Pharm. Chem. J. 1997, 31, 44–47. [Google Scholar] [CrossRef]
- Park, E.; Jeon, K.; Byun, B.H. Ethanol extract of Inonotus obliquus shows antigenotoxic effect on hydrogen peroxide induced DNA damage in human lymphocytes. Cancer Prev. Res. 2005, 10, 54–59. [Google Scholar]
- Chung, M.J.; Chung, C.K.; Jeong, Y.; Ham, S.S. Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing sarcoma-180 cells. Nutr. Res. Pract. 2010, 4, 177–182. [Google Scholar] [CrossRef]
- Zhao, F.; Mai, Q.; Ma, J.; Xu, M.; Wang, X.; Cui, T.; Qiu, F.; Han, G. Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia 2015, 101, 34–40. [Google Scholar] [CrossRef]
- Rios, J. Effects of triterpenes on the immune system. J. Ethnopharmacol. 2010, 128, 1–14. [Google Scholar] [CrossRef]
- Fordjour, E.; Charles, F.; Manful, C.F.; Javed, R.; Galagedara, L.W.; Cuss, C.W.; Cheema, M.; Thomas, R. Chaga mushroom: A super-fungus with countless facets and untapped potential. Front. Pharmacol. 2023, 14, 1273786. [Google Scholar] [CrossRef]
- Tian, L.; Wang, Y.; Qing, J.; Zhou, W.; Sun, L.; Li, R.; Li, Y. A review of the pharmacological activities and protective effects of Inonotus obliquus triterpenoids in kidney diseases. Open Chem. 2022, 20, 651–665. [Google Scholar] [CrossRef]
- Debnath, T.; Park, D.K.; Lee, B.R.; Jin, H.L.; Lee, S.Y.; Samad, N.B.; Lim, B.O. Antioxidant activity of Inonotus obliquus grown on germinated brown rice extracts. J. Food Biochem. 2013, 37, 456–464. [Google Scholar] [CrossRef]
- Sak, K.; Nguyen, T.H.; Ho, V.D.; Do, T.T.; Raal, A. Cytotoxic effect of chamomile (Matricaria recutita) and marigold (Calendula officinalis) extract on human melanoma SK-MEL-2 and epidermoid carcinoma KB cells. Cogent Med. 2017, 4, 1333218. [Google Scholar] [CrossRef]
- Raal, A.; Nguyen, T.H.; Ho, V.D.; Do, T.T. Selective cytotoxic action of Scots pine (Pinus sylvestris L.) needles extract in human cancer cell lines. Pharmacogn. Mag. 2015, 11, S290–S295. [Google Scholar] [CrossRef]
- Youn, M.-J.; Kim, J.-K.; Park, S.-Y.; Kim, Y.; Kim, S.-J.; Lee, J.S.; Chai, K.Y.; Kim, H.-J.; Cui, M.-X.; So, H.S.; et al. Chaga Mushroom (Inonotus obliquus) Induces G0/G1 Arrest and Apoptosis in Human Hepatoma HepG2 Cells. World J. Gastroenterol. 2008, 14, 511–517. [Google Scholar] [CrossRef]
- Baek, J.; Roh, H.-S.; Baek, K.-H.; Lee, S.; Lee, S.; Song, S.-S.; Kim, K.H. Bioactivity-Based Analysis and Chemical Characterization of Cytotoxic Constituents from Chaga Mushroom (Inonotus obliquus) That Induce Apoptosis in Human Lung Adenocarcinoma Cells. J. Ethnopharmacol. 2018, 224, 63–75. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kang, J.-H.; Song, K.-H.; Park, M.S.; Kim, D.-K.; Park, Y.-J.; Choi, C.; Kim, H.M.; Kim, M.K.; Oh, S.H. Inonotus obliquus Suppresses Proliferation of Colorectal Cancer Cells and Tumor Growth in Mice Models by Downregulation of β-Catenin/NF-κB-Signaling Pathways. Eur. J. Inflamm. 2013, 11, 615–629. [Google Scholar] [CrossRef]
- Panda, S.K.; Sahoo, G.; Swain, S.S.; Luyten, W. Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. Pharmaceuticals 2022, 15, 176. [Google Scholar] [CrossRef]
- Gao, X.; Homayoonfal, M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: A multifaceted approach to combat cancer. Cancer Cell Int. 2023, 23, 324. [Google Scholar] [CrossRef]
- Trivedi, T.; Patel, K.; Belgamwar, V.; Wadher, K. Functional polysaccharide lentinan: Role in anti-cancer therapies and management of carcinomas. Pharmacol. Res. Mod. Chin. Med. 2022, 2, 100045. [Google Scholar] [CrossRef]
- Cortina-Escribano, M.; Veteli, P.; Linnakoski, R.; Miina, J.; Vanhanen, H. Effect of wood residues on the growth of Ganoderma lucidum. Karstenia 2020, 58, 16–28. [Google Scholar] [CrossRef]
- Miina, J.; Peltola, R.; Veteli, P.; Linnakoski, R.; Escribano, M.C.; Haveri-Heikkilä, J.; Mattila, P.; Marnila, P.; Pihlava, J.M.; Hellström, J.; et al. Inoculation success of Inonotus obliquus in living birch (Betula spp.). For. Ecol. Manag. 2021, 492, 119244. [Google Scholar] [CrossRef]
- Drenkhan, R.; Adamson, K.; Jürimaa, K.; Hanso, M. Dothistroma septosporum on firs (Abies spp.) in the northern Baltics. For. Pathol. 2014, 44, 250–254. [Google Scholar] [CrossRef]
- Hall, T.A. Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT/2000/XP/7. BioEdit. 2013. Available online: https://thalljiscience.github.io/ (accessed on 26 April 2024).
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxic assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Youssef, A.M.M.; Maaty, D.A.M.; Al-Saraireh, Y.M. Phytochemistry and anticancer effects of Mangrove (Rhizophora mucronata Lam.) leaves and stems extract against different cancer cell lines. Pharmaceuticals 2023, 16, 4. [Google Scholar] [CrossRef]
- Hadisaputri, Y.E.; Nurhaniefah, A.A.; Sukmara, S.; Zuhrotun, A.; Hendriani, R.; Sopyan, I. Callyspongia spp.: Secondary metabolites, pharmacological activities, and mechanisms. Metabolites 2023, 13, 217. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi, Version 2.3; Jamovi: Sydney, Australia, 2022. Available online: https://www.jamovi.org(accessed on 3 January 2024).
Antioxidant Activity | Triterpenoids | Species | ||||
---|---|---|---|---|---|---|
Aox GA eq 1 mg/g | Sitosterol mg/g | Lanosterol mg/g | Betulin mg/g | Betulinic Acid mg/g | Inotodiol mg/g | |
21.5 ± 0.065 | 0.780 ± 0.149 | 8.89 ± 0.497 a | 7.22 ± 0.104 a | 2.77 ± 0.165 | 169 ± 6.60 a | B. pendula |
dry extract | ||||||
21.4 ± 0.045 | 0.770 ± 0.0964 | 11.1 ± 0.364 ab | 14.9 ± 0.690 b | 2.05 ± 0.476 | 149 ± 2.30 b | B. pubescens dry extract |
Basic Characteristics | Name |
---|---|
Human carcinoma in the mouth | KB |
Human breast adenocarcinoma | MDA-MB-231 |
Human breast carcinoma | MCF7 |
Human prostate carcinoma | LNCaP |
Human lung carcinoma | SK-LU-1 |
Human lung adenocarcinoma | CL141 |
Human lung carcinoma | A549 |
Lewis lung carcinoma–high metastasis | LLC |
Human hepatocellular carcinoma | HepG2 |
Human hepatocellular carcinoma | Hep3B |
Human hepatocyte-derived carcinoma | Huh7 |
Drug-resistant human hepatocyte-derived carcinoma | Huh 7R |
Human acute leukaemia | HL-60 |
Human differentiated human gastric adenocarcinoma | MKN7 |
Human gastric carcinoma | NCI-N87 |
Human gastric adenocarcinoma | AGS |
Human stomach carcinoma | SNU-1 |
Human ovarian adenocarcinoma | SW626 |
Human cervix carcinoma | Hela |
Human colon adenocarcinoma | SW480 |
Human colorectal adenocarcinoma | HT-29 |
Human rhabdomyosarcoma | RD |
Human malignant melanoma | SK-Mel-2 |
Human kidney adenocarcinoma | ACHN |
Human acute myeloid leukaemia | OCI/AML3 |
Human chronic myelogenous leukaemia | K562 |
Human acute T cell leukaemia | Jurkat |
Human undifferentiated thyroid carcinoma | 8505c |
Human thyroid anaplastic carcinoma | CAL-62 |
Human urine bladder carcinoma | T24 |
Pluripotent human embryonal carcinoma | NTERA2 |
Cancer Cell Line | IC50 a (µg/mL) | ||
---|---|---|---|
Betula pendula | Betula pubescens | Ellipticine b | |
KB | 63.35 ± 2.89 | 74.90 ± 1.38 | 0.49 ± 0.03 |
MCF-7 | 77.92 ± 4.49 | 90.87 ± 3.82 | 0.61 ± 0.05 |
MDA-MB-231 | 97.73 ± 3.78 | >100 | 0.68 ± 0.07 |
LNCaP | 70.46 ± 2.17 | >100 | 0.44 ± 0.04 |
SK-LU-1 | >100 | >100 | 0.45 ± 0.05 |
CL141 | >100 | 92.81 ± 4.55 | 0.55 ± 0.03 |
A549 | 85.44 ± 5.27 | 78.32 ± 3.31 | 0.62 ± 0.04 |
LLC | 52.29 ± 3.57 | 55.89 ± 2.37 | 0.35 ± 0.03 |
HepG2 | 37.71 ± 2.08 | 49.99 ± 1.94 | 0.37 ± 0.02 |
Hep3B | 76.70 ± 3.42 | >100 | 0.73 ± 0.04 |
Huh-7 | 95.34 ± 3.36 | >100 | 0.56 ± 0.05 |
Huh-7R | >100 | >100 | 0.66 ± 0.06 |
HL-60 | 79.02 ± 2.82 | 71.21 ± 2.41 | 0.64 ± 0.05 |
MKN7 | 68.85 ± 4.06 | >100 | 0.36 ± 0.02 |
NCI-N87 | >100 | >100 | 0.75 ± 0.06 |
AGS | >100 | >100 | 0.68 ± 0.03 |
SNU1 | 95.82 ± 2.97 | 97.02 ± 4.61 | 0.44 ± 0.02 |
SW626 | 82.88 ± 5.84 | >100 | 0.51 ± 0.03 |
Hela | 68.50 ± 3.45 | 94.28 ± 4.69 | 0.50 ± 0.04 |
SW480 | 87.10 ± 5.19 | >100 | 0.53 ± 0.02 |
HT29 | 86.08 ± 6.03 | >100 | 0.37 ± 0.03 |
RD | 84.12 ± 5.95 | 82.08 ± 3.96 | 0.74 ± 0.02 |
SK-Mel-2 | 62.82 ± 3.20 | 71.18 ± 4.61 | 0.57 ± 0.02 |
ACHN | >100 | >100 | 0.77 ± 0.02 |
OCI/AML3 | 55.57 ± 4.33 | >100 | 0.57 ± 0.03 |
K562 | 61.41 ± 3.28 | 75.00 ± 3.17 | 0.46 ± 0.04 |
Jurkat | 63.48 ± 3.15 | 76.16 ± 2.88 | 0.68 ± 0.05 |
8505c | 91.50 ± 1.80 | 69.42 ± 3.10 | 0.59 ± 0.02 |
CAL-62 | 43.30 ± 2.52 | 69.42 ± 3.10 | 0.59 ± 0.02 |
T24 | 76.76 ± 4.71 | 93.81 ± 5.66 | 0.54 ± 0.02 |
NTERA-2 | >100 | 70.11 ± 3.93 | 0.57 ± 0.03 |
Accession No. in GenBank ** | Fungal Collection Code * | Sampling Date | Geographical Coordinates | Host | Strain No. |
---|---|---|---|---|---|
OP019325 | TFC101258 | 21 December 2019 | N58.90373, E26.44672 | Betula pendula | PAT29045 |
OP942253 | TFC101271 | 30 December 2019 | N58.06711, E26.42738 | Betula pendula | PAT29055 |
PP346417 | TFC101304 | 11 February 2020 | N58.2567, E26.6659 | Betula pendula | PAT29051 |
OP942256 | TFC101274 | 9 November 2021 | N58.52718, E22.91413 | Betula pendula | PATKA880 |
OP942259 | TFC101277 | 11 November 2021 | N58.91147, E22.35235 | Betula pendula | PATKA896 |
OP942263 | TFC101281 | 27 January 2022 | N57.82154, E27.48639 | Betula pendula | PATKA1567 |
OP942264 | TFC101282 | 27 January 2022 | N57.82154, E27.48639 | Betula pendula | PATKA1568 |
OP942268 | TFC101286 | 25 January 2022 | N59.01350, E27.60455 | Betula pendula | PATKA1575 |
OP942272 | TFC101290 | 3 February 2022 | N59.27381, E25.36868 | Betula pendula | PATKA1679 |
OP942273 | TFC101291 | 3 February 2022 | N59.27381, E25.36868 | Betula pendula | PATKA1680 |
OP942269 | TFC101287 | 25 January 2022 | N59.01654, E27.44207 | Betula pubescens | PATKA1576 |
OP942270 | TFC101288 | 25 January 2022 | N59.01367, E27.53098 | Betula pubescens | PATKA1577 |
OP942260 | TFC101278 | 11 November 2021 | N58.98419, E22.72165 | Betula pubescens | PATKA900 |
PP346418 | TFC101305 | 17 October 2020 | N58.9065, E26.0808 | Betula pubescens | PATRD3354 |
PP346419 | TFC101306 | 29 October 2020 | N58.3203, E25.7080 | Betula pubescens | PATRD3364 |
PP346420 | TFC101307 | 5 March 2021 | N58.3776, E25.9267 | Betula pubescens | PATRD3402 |
- | TFC101308 | 15 March 2021 | N58.9566, E25.4320 | Betula pubescens | PATRD3355_1 |
PP346421 | TFC101309 | 27 October 2021 | N58.6825, E25.6854 | Betula pubescens | PATRD3356 |
PP346422 | TFC101310 | 17 December 2021 | N59.4096, E26.6767 | Betula pubescens | PATRD3386 |
PP346423 | TFC101311 | 17 December 2021 | N59.4932, E26.5887 | Betula pubescens | PATRD3385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raal, A.; Kaldmäe, H.; Kütt, K.; Jürimaa, K.; Silm, M.; Bleive, U.; Aluvee, A.; Adamson, K.; Vester, M.; Erik, M.; et al. Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga (Inonotus obliquus) Growing on Betula pendula and Betula pubescens. Pharmaceuticals 2024, 17, 1013. https://doi.org/10.3390/ph17081013
Raal A, Kaldmäe H, Kütt K, Jürimaa K, Silm M, Bleive U, Aluvee A, Adamson K, Vester M, Erik M, et al. Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga (Inonotus obliquus) Growing on Betula pendula and Betula pubescens. Pharmaceuticals. 2024; 17(8):1013. https://doi.org/10.3390/ph17081013
Chicago/Turabian StyleRaal, Ain, Hedi Kaldmäe, Karin Kütt, Katrin Jürimaa, Maidu Silm, Uko Bleive, Alar Aluvee, Kalev Adamson, Marili Vester, Mart Erik, and et al. 2024. "Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga (Inonotus obliquus) Growing on Betula pendula and Betula pubescens" Pharmaceuticals 17, no. 8: 1013. https://doi.org/10.3390/ph17081013
APA StyleRaal, A., Kaldmäe, H., Kütt, K., Jürimaa, K., Silm, M., Bleive, U., Aluvee, A., Adamson, K., Vester, M., Erik, M., Koshovyi, O., Nguyen, K. V., Nguyen, H. T., & Drenkhan, R. (2024). Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga (Inonotus obliquus) Growing on Betula pendula and Betula pubescens. Pharmaceuticals, 17(8), 1013. https://doi.org/10.3390/ph17081013