Nifedipine Improves the Ketogenic Diet Effect on Insulin-Resistance-Induced Cognitive Dysfunction in Rats
Abstract
:1. Introduction
2. Results
2.1. Reversion to ND, with or without Nifedipine Therapy, Caused a Profound Body Weight Reduction
2.2. Fructose (10%)-Administration-Induced Insulin Resistance
2.3. Only Reversion to ND Succeeded in Normalizing the HOMA-IR Index
2.4. KD and Nifedipine-KD Improved Long-Term Memory in the Morris Water Maze (MWM) Behavioral Test
2.5. Lipid Profile: Cholesterol, Triglycerides (TGs), High-Density Lipoprotein (HDL), and Low-Density Lipoprotein (LDL) Were Measured to Estimate the Effect of Nifedipine and the Type of Nutrition on the Lipid Profile That Affects Cognitive Dysfunction
2.6. ND Normalized the Brain-Derived Neurotrophic Factor (BDNF) Level
2.7. Nifedipine and KD Failed to Improve Insulin Signaling and Metabolism
2.8. Nifedipine and KD Improved the Cerebral Cortex and Hippocampal Histopathological Score
2.9. Nifedipine and KD Noticeably Mitigated Aβ and Tau Protein Levels
3. Discussion
4. Material and Methods
4.1. Animals
4.2. Chemicals and Drugs
4.3. Induction of Insulin Resistance (IR) in Rats
4.4. Experimental Design: (Experimental Code: PO341)
- Group 1 (normal control rats): this group was administered nifedipine vehicle (PEG 400) p.o. for 5 weeks (9th week till the end of the 14th week).
- Group 2 (IR + ND): rats received 10% fructose for 8 weeks to induce insulin resistance, then were converted to ND for an additional 5 weeks.
- Group 3 (IR + KD): insulin-resistant rats were fed KD for an additional 5 weeks [41].
- Group 4 (IR + ND + nifedipine): insulin-resistant rats fed with ND were concurrently treated with nifedipine (5.2 mg/kg, p.o.) for 5 weeks [42].
- Group 5 (IR + KD + nifedipine): insulin-resistant rats fed with KD were concurrently treated with nifedipine (5.2 mg/kg, p.o.) for 5 weeks.
4.5. Behavioral Test: Morris Water Maze (MWM) Test
4.5.1. Acquisition Phase (Short-Term Memory Test)
4.5.2. Probe Phase (Long-Term Memory Test)
4.6. Biochemical Assessment
4.6.1. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)
4.6.2. Lipid Profile Measurements
4.6.3. ELISA Technique
4.7. Histopathological Investigation
4.8. Immunohistochemical Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vargas, E.; Joy, N.V.; Sepulveda, M.A.C. Biochemistry, Insulin Metabolic Effects; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Blazquez, E.; Velazquez, E.; Hurtado-Carneiro, V.; Ruiz-Albusac, J.M. Insulin in the brain: Its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front. Endocrinol. 2014, 5, 161. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tang, T.Y.; Lu, C.Q.; Ju, S. Insulin Resistance and Cognitive Impairment: Evidence from Neuroimaging. J. Magn. Reson. Imaging 2022, 56, 1621–1649. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Feldman, E. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp. Mol. Med. 2015, 47, e149. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinilla, F.; Cipolat, R.P.; Royes, L.F.F. Dietary fructose as a model to explore the influence of peripheral metabolism on brain function and plasticity. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166036. [Google Scholar] [CrossRef] [PubMed]
- Merino, B.; Fernandez-Diaz, C.M.; Cozar-Castellano, I.; Perdomo, G. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients 2019, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.P.; Bartness, T.J.; Mielke, J.G.; Parent, M.B. A high fructose diet impairs spatial memory in male rats. Neurobiol. Learn. Mem. 2009, 92, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, A.; Stoeckel, L.; Reagan, L.; Winstanley, C.; Page, K. Dietary influences on cognition. Physiol. Behav. 2018, 192, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Fournakis, N.; Ellison, J. Ketogenic Diet for the Treatment and Prevention of Dementia: A Review. J. Geriatr. Psychiatry Neurol. 2021, 34, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.M.; Patel, J.B.; Schaefer, T.J. Nifedipine. In StatPearls; Ineligible Companies: Treasure Island, FL, USA, 2023. [Google Scholar]
- Guan, P.P.; Cao, L.L.; Wang, P. Elevating the Levels of Calcium Ions Exacerbate Alzheimer’s Disease via Inducing the Production and Aggregation of beta-Amyloid Protein and Phosphorylated Tau. Int. J. Mol. Sci. 2021, 22, 5900. [Google Scholar] [CrossRef]
- Pitea, T.; Ionescu, G.; Engelson, E.; Albu, J. Accuracy of HOMA-IR in Clinical Practice: 342. Am. J. Gastroenterol. 2009, 104, S129. [Google Scholar] [CrossRef]
- Ting, R.; Dugre, N.; Allan, G.M.; Lindblad, A.J. Ketogenic diet for weight loss. Can. Fam. Physician 2018, 64, 906. [Google Scholar] [PubMed]
- Liu, Y.; Wei, Y.; Wu, L.; Lin, X.; Sun, R.; Chen, H.; Shen, S.; Deng, G. Fructose Induces Insulin Resistance of Gestational Diabetes Mellitus in Mice via the NLRP3 Inflammasome Pathway. Front. Nutr. 2022, 9, 839174. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Verde, L.; Camajani, E.; Šojat, A.S.; Marina, L.; Savastano, S.; Colao, A.; Caprio, M.; Muscogiuri, G. Effects of very low-calorie ketogenic diet on hypothalamic–pituitary–adrenal axis and renin–angiotensin–aldosterone system. J. Endocrinol. Investig. 2023, 46, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Harmon, D.M.; Kludtke, E.; Mickow, A.; Simha, V.; Kopecky, S. Dramatic elevation of LDL cholesterol from ketogenic-dieting: A Case Series. Am. J. Prev. Cardiol. 2023, 14, 100495. [Google Scholar] [CrossRef] [PubMed]
- Sano, M. Revisiting the merits of nifedipine. Hypertens. Res. 2011, 34, 1173–1174. [Google Scholar] [CrossRef] [PubMed]
- Al-Reshed, F.; Sindhu, S.; Al Madhoun, A.; Bahman, F.; AlSaeed, H.; Akhter, N.; Malik, Z.; Alzaid, F.; Al-Mulla, F.; Ahmad, R. Low carbohydrate intake correlates with trends of insulin resistance and metabolic acidosis in healthy lean individuals. Front. Public Health 2023, 11, 1115333. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Bianco, A.; Moro, T.; Mota, J.F.; Coelho-Ravagnani, C.F. The Effects of Ketogenic Diet on Insulin Sensitivity and Weight Loss, Which Came First: The Chicken or the Egg? Nutrients 2023, 15, 3120. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: A systematic review and meta-analysis. Nutr. Diabetes 2020, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, U.; Edizer, S.; Köse, M.; Akışin, Z.; Güzin, Y.; Pekuz, S.; Kırkgöz, H.H.; Yavuz, M.; Ünalp, A. The effect of ketogenic diet on serum lipid concentrations in children with medication resistant epilepsy. Seizure 2021, 91, 99–107. [Google Scholar] [CrossRef]
- Tian, Z.; Miyata, K.; Tabata, M.; Yano, M.; Tazume, H.; Aoi, J.; Takahashi, O.; Araki, K.; Kawasuji, M.; Oike, Y. Nifedipine increases energy expenditure by increasing PGC-1alpha expression in skeletal muscle. Hypertens. Res. 2011, 34, 1221–1227. [Google Scholar] [CrossRef]
- Bavane, D.S.; Rajesh, C.S.; Moharir, G.; Ambadasu, B. Beneficial effect of low dose amlodipine vs nifedipine on serum cholesterol profile of rabbits receiving standard diet. Int. J. Med. Res. Health Sci. 2013, 2, 47–51. [Google Scholar]
- Naidu, S.V.; Suresha, R.N.; Huralikuppi, J.C.; Ashwini, V. The Effect of Nifedipine on Oral Glucose Induced Glycaemic Changes in Normal Albino Rats. Int. J. Pharma Bio Sci. 2012, 10, 13. [Google Scholar]
- Wang, Y.; Gao, L.; Li, Y.; Chen, H.; Sun, Z. Nifedipine protects INS-1 beta-cell from high glucose-induced ER stress and apoptosis. Int. J. Mol. Sci. 2011, 12, 7569–7580. [Google Scholar] [CrossRef]
- Iwai, M.; Kanno, H.; Inaba, S.; Senba, I.; Sone, H.; Nakaoka, H.; Horiuchi, M. Nifedipine, a calcium-channel blocker, attenuated glucose intolerance and white adipose tissue dysfunction in type 2 diabetic KK-A(y) mice. Am. J. Hypertens. 2011, 24, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Tsukuda, K.; Mogi, M.; Li, J.-M.; Iwanami, J.; Min, L.-J.; Sakata, A.; Fujita, T.; Iwai, M.; Horiuchi, M. Diabetes-associated cognitive impairment is improved by a calcium channel blocker, nifedipine. Hypertension 2008, 51, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Kackley, M.L.; Buga, A.; Crabtree, C.D.; Sapper, T.N.; McElroy, C.A.; Focht, B.C.; Kraemer, W.J.; Volek, J.S. Influence of Nutritional Ketosis Achieved through Various Methods on Plasma Concentrations of Brain Derived Neurotropic Factor. Brain Sci. 2022, 12, 1143. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Patchett, E.; Nally, R.; Kearns, R.; Larney, M.; Egan, B. Effect of acute ingestion of beta-hydroxybutyrate salts on the response to graded exercise in trained cyclists. Eur. J. Sport. Sci. 2018, 18, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, B.J.; Cox, P.J.; Evans, R.D.; Santer, P.; Miller, J.J.; Faull, O.K.; Magor-Elliott, S.; Hiyama, S.; Stirling, M.; Clarke, K. On the Metabolism of Exogenous Ketones in Humans. Front. Physiol. 2017, 8, 848. [Google Scholar] [CrossRef]
- Wang, W.; Liu, W.; Zhu, H.; Li, F.; Wo, Y.; Shi, W.; Fan, X.; Ding, W. Electrical stimulation promotes BDNF expression in spinal cord neurons through Ca2+- and Erk-dependent signaling pathways. Cell. Mol. Neurobiol. 2011, 31, 459–467. [Google Scholar]
- Wang, L.; Li, J.; Di, L.J. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med. Res. Rev. 2022, 42, 946–982. [Google Scholar] [CrossRef]
- Tian, Y.; Jing, G.; Zhang, M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer’s disease and diabetes. Ageing Res. Rev. 2023, 90, 101999. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.K.; Sullivan, D.K.; Keller, J.E.; Burns, J.M.; Swerdlow, R.H. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front. Neurosci. 2022, 16, 899612. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.P.; Cao, L.L.; Yang, Y.; Wang, P. Calcium Ions Aggravate Alzheimer’s Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front. Mol. Neurosci. 2021, 14, 757515. [Google Scholar] [CrossRef] [PubMed]
- Gad, E.S.; Zaitone, S.A.; Moustafa, Y.M. Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats. Can. J. Physiol. Pharmacol. 2016, 94, 819–828. [Google Scholar] [CrossRef] [PubMed]
- El-Deen, A.E.N.; Mansour, A.E.; Elsamahy, A.M.R.; Dr Gad-Allah, A.M.M.; Abdeslam, A. Comparison the Effects of Three Forms of Ketogenic Diet on Adult Male Diabetic Albino rats. Anat. Physiol. Curr. Res. 2021, 10, 336. [Google Scholar]
- Mukam, J.N.; Mvongo, C.; Nkoubat, S.; Fankem, G.O.; Mfopa, A.; Noubissi, P.A.; Tagne, M.A.F.; Kamgang, R.; Oyono, J.-L.E. Early-induced diabetic obese rat MACAPOS 2. BMC Endocr. Disord. 2023, 23, 64. [Google Scholar]
- Wei, S.J.; Schell, J.R.; Chocron, E.S.; Varmazyad, M.; Xu, G.; Chen, W.H.; Martinez, G.M.; Dong, F.F.; Sreenivas, P.; Trevino, R.; et al. Ketogenic diet induces p53-dependent cellular senescence in multiple organs. Sci. Adv. 2024, 10, eado1463. [Google Scholar] [CrossRef] [PubMed]
- Hattori, T.; Nakano, K.; Kawakami, T.; Tamura, A.; Ara, T.; Wang, P. Therapy for nifedipine-induced gingival overgrowth by Saireito in rats. Eur. J. Med. Res. 2009, 14, 497–501. [Google Scholar] [CrossRef]
- Irfannuddin, I.; Sarahdeaz, S.F.P.; Murti, K.; Santoso, B.; Koibuchi, N. The effect of ketogenic diets on neurogenesis and apoptosis in the dentate gyrus of the male rat hippocampus. J. Physiol. Sci. 2021, 71, 3. [Google Scholar] [CrossRef]
- Shankpal, P.; Surve, S. Evaluation of Anti-Anxiety Evaluation of Anti-Anxiety Effect of Nifedipine Compared to Diazepam in Swiss Albino Mice Using Behavioural Models. Int. J. Pharm. Pharm. Sci. 2020, 12, 6–9. [Google Scholar] [CrossRef]
- Gaertner, D.J.; Hallman, T.M.; Hankenson, F.C.; Batchelder, M.A. Anesthesia and Analgesia, in the Laboratory Rodents, 2nd ed.; Fish, R.E., Brown, M.J., Danneman, P.J., Karas, A.Z., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 239–297. [Google Scholar]
- Tahmasebi, S.; Oryan, S.; Mohajerani, H.R.; Akbari, N.; Palizvan, M.R. Probiotics and Nigella sativa extract supplementation improved behavioral and electrophysiological effects of PTZ-induced chemical kindling in rats. Epilepsy Behav. 2020, 104 Pt A, 106897. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Liu, Y.; Li, D.; Dang, Y.; Yang, L. Effects of ketogenic diet on cognitive function in pentylenetetrazol-kindled rats. Epilepsy Res. 2021, 170, 106534. [Google Scholar] [CrossRef] [PubMed]
- Idowu, O.K.; Oluyomi, O.O.; Faniyan, O.O.; Dosumu, O.O.; Akinola, O.B. Thesynergistic ameliorative activity of peroxisomeproliferator-activated receptor-alpha and gammaagonists, fenofibrate and pioglitazone, onhippocampal neurodegeneration in a rat model ofinsulin resistance. Ibrain 2022, 8, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Ilić, I.R.; Stojanović, N.M.; Radulović, N.S.; Živković, V.V.; Randjelović, P.J.; Petrović, A.S.; Božić, M.; Ilić, R.S. The Quantitative ER Immunohistochemical Analysis in Breast Cancer: Detecting the 3 + 0, 4 + 0, and 5 + 0 Allred Score Cases. Medicina 2019, 55, 461. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
Experimental Groups | Mean Delta Body Weight after 8 Weeks of Treatment with 10% Fructose | Percentage % | Mean Delta Final Body Weight after Nifedipine and Nutrition Treatment | Percentage % |
---|---|---|---|---|
Normal rats | 94 | 87.29% | 30.34 | 14.51% |
IR + ND | 217.5 | 138.54% | −25.5 | −6.07% |
IR + KD | 198 | 111.86% | 17.5 | 4.58% |
IR + ND + Nifedipine | 243.5 | 148.48% | −46 | −10.76% |
IR + KD + Nifedipine | 206.5 | 130.7% | 32.5 | 8.86% |
Experimental Groups | FBG | FINS | HOMA-IR | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | 25% Percentile | 75% Percentile | Median | 25% Percentile | 75% Percentile | Median | 25% Percentile | 75% Percentile | |
Normal rats | 70 | 68 | 71.75 | 7.6 | 7.35 | 8.13 | 1.34 | 1.23 | 1.48 |
IR + ND | 76 | 73.25 | 83.50 | 8.4 | 8 | 9.33 | 1.59 | 1.35 | 1.84 |
IR + KD | 86 * | 78.25 | 90.75 | 10.30 *# | 9.53 | 11.73 | 2.18 *# | 1.77 | 2.79 |
IR + ND + Nifedipine | 85.50 * | 79 | 91.75 | 9.65 * | 8.88 | 10.15 | 2.05 * | 1.67 | 2.29 |
IR + KD + Nifedipine | 93.50 *# | 89 | 96.75 | 10.30 *# | 9.78 | 10.90 | 2.38 *# | 2.14 | 2.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Kareem, N.M.; Elshazly, S.M.; Abd El Fattah, M.A.; Aldahish, A.A.; Zaitone, S.A.; Ali, S.K.; Abd El-Haleim, E.A. Nifedipine Improves the Ketogenic Diet Effect on Insulin-Resistance-Induced Cognitive Dysfunction in Rats. Pharmaceuticals 2024, 17, 1054. https://doi.org/10.3390/ph17081054
Abdel-Kareem NM, Elshazly SM, Abd El Fattah MA, Aldahish AA, Zaitone SA, Ali SK, Abd El-Haleim EA. Nifedipine Improves the Ketogenic Diet Effect on Insulin-Resistance-Induced Cognitive Dysfunction in Rats. Pharmaceuticals. 2024; 17(8):1054. https://doi.org/10.3390/ph17081054
Chicago/Turabian StyleAbdel-Kareem, Nancy M., Shimaa M. Elshazly, May A. Abd El Fattah, Afaf A. Aldahish, Sawsan A. Zaitone, Sahar K. Ali, and Enas A. Abd El-Haleim. 2024. "Nifedipine Improves the Ketogenic Diet Effect on Insulin-Resistance-Induced Cognitive Dysfunction in Rats" Pharmaceuticals 17, no. 8: 1054. https://doi.org/10.3390/ph17081054
APA StyleAbdel-Kareem, N. M., Elshazly, S. M., Abd El Fattah, M. A., Aldahish, A. A., Zaitone, S. A., Ali, S. K., & Abd El-Haleim, E. A. (2024). Nifedipine Improves the Ketogenic Diet Effect on Insulin-Resistance-Induced Cognitive Dysfunction in Rats. Pharmaceuticals, 17(8), 1054. https://doi.org/10.3390/ph17081054