Autoimmune Thyroiditis Mitigates the Effect of Metformin on Plasma Prolactin Concentration in Men with Drug-Induced Hyperprolactinemia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Study Design
4.3. Laboratory Assays
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ueno, M. Molecular anatomy of the brain endothelial barrier: An overview of the distributional features. Curr. Med. Chem. 2007, 14, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, M.P.; Marek, B.; Kajdaniuk, D.; Rokicka, D.; Szymborska-Kajanek, A.; Strojek, K. Metformin—A new old drug. Endokrynol. Pol. 2017, 68, 482–496. [Google Scholar] [CrossRef]
- Labuzek, K.; Suchy, D.; Gabryel, B.; Bielecka, A.; Liber, S.; Okopień, B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol. Rep. 2010, 62, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, C.; Rotondi, M.; Pirola, I.; Agosti, B.; Gandossi, E.; Valentini, U.; De Martino, E.; Cimino, A.; Chiovato, L.; Agabiti-Rosei, E.; et al. TSH-lowering effect of metformin in type 2 diabetic patients: Differences between euthyroid, untreated hypothyroid, and euthyroid on L-T4 therapy patients. Diabetes Care 2009, 32, 1589–1590. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Xu, S.; Chen, G.; Derwahl, M.; Liu, C. Metformin and thyroid disease. J. Endocrinol. 2017, 233, R43–R51. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Szkróbka, W.; Okopień, B. The effect of metformin on serum gonadotropin levels in postmenopausal women with diabetes and prediabetes: A pilot study. Exp. Clin. Endocrinol. Diabetes 2018, 126, 645–650. [Google Scholar] [CrossRef]
- Velija-Ašimi, Z. Evaluation of endocrine changes in women with the polycystic ovary syndrome during metformin treatment. Bosn. J. Basic Med. Sci. 2013, 13, 180–185. [Google Scholar] [CrossRef]
- Krysiak, R.; Okrzesik, J.; Okopień, B. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: A pilot study. Endocrine 2015, 49, 242–249. [Google Scholar] [CrossRef]
- Wu, R.R.; Jin, H.; Gao, K.; Twamley, E.W.; Ou, J.J.; Shao, P.; Wang, J.; Guo, X.F.; Davis, J.M.; Chan, P.K.; et al. Metformin for treatment of antipsychotic-induced amenorrhea and weight gain in women with worst-episode schizophrenia: A double-blind, randomized, placebo-controlled study. Am. J. Psychiatry 2012, 169, 813–821. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, X.H.; Cai, D.B.; Ungvari, G.S.; Ng, C.H.; Wang, N.; Ning, Y.P.; Xiang, Y.T. Adjunctive metformin for antipsychotic related hyperprolactinemia: A meta-analysis of randomized controlled trials. J. Psychopharmacol. 2017, 31, 625–631. [Google Scholar] [CrossRef]
- Bo, Q.J.; Wang, Z.M.; Li, X.B.; Ma, X.; Wang, C.Y.; de Leon, J. Adjunctive metformin for antipsychotic-induced hyperprolactinemia: A systematic review. Psychiatry Res. 2016, 237, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Szkróbka, W.; Okopień, B. The effect of metformin on prolactin levels in patients with drug-induced hyperprolactinemia. Eur. J. Intern. Med. 2016, 30, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Auriemma, R.S.; Pirchio, R.; De Alcubierre, D.; Pivonello, R.; Colao, A. Dopamine agonists: From the 1970s to today. Neuroendocrinology 2019, 109, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Rusgis, M.M.; Alabbasi, A.Y.; Nelson, L.A. Guidance on the treatment of antipsychotic-induced hyperprolactinemia when switching the antipsychotic is not an option. Am. J. Health Syst. Pharm. 2021, 78, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Auriemma, R.S.; De Alcubierre, D.; Pirchio, R.; Pivonello, R.; Colao, A. The effects of hyperprolactinemia and its control on metabolic diseases. Expert Rev. Endocrinol. Metab. 2018, 13, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Auriemma, R.S.; De Alcubierre, D.; Pirchio, R.; Pivonello, R.; Colao, A. Glucose abnormalities associated to prolactin secreting pituitary adenomas. Front. Endocrinol. 2019, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.; Glintborg, D. Metabolic syndrome in hyperprolactinemia. Front. Horm. Res. 2018, 49, 29–47. [Google Scholar] [PubMed]
- Arslan, M.S.; Topaloglu, O.; Sahin, M.; Tutal, E.; Gungunes, A.; Cakir, E.; Ozturk, I.U.; Karbek, B.; Ucan, B.; Ginis, Z.; et al. Preclinical atherosclerosis in patients with prolactinoma. Endocr. Pract. 2014, 20, 447–451. [Google Scholar] [CrossRef]
- Gierach, M.; Bruska-Sikorska, M.; Rojek, M.; Junik, R. Hyperprolactinemia and insulin resistance. Endokrynol. Pol. 2022, 73, 959–967. [Google Scholar] [CrossRef]
- Yavuz, D.; Deyneli, O.; Akpinar, I.; Yildiz, E.; Gözü, H.; Sezgin, O.; Haklar, G.; Akalin, S. Endothelial function, insulin sensitivity and inflammatory markers in hyperprolactinemic pre-menopausal women. Eur. J. Endocrinol. 2003, 149, 187–193. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. Sex-dependent effect of metformin on serum prolactin levels in hyperprolactinemic patients with type 2 diabetes: A pilot study. Exp. Clin. Endocrinol. Diabetes 2018, 126, 342–348. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. Endogenous testosterone determines metformin action on prolactin levels in hyperprolactinaemic men: A pilot study. Basic Clin. Pharmacol. Toxicol. 2020, 126, 110–115. [Google Scholar] [CrossRef]
- Cunningham, G.R. Testosterone and metabolic syndrome. Asian J. Androl. 2015, 17, 192–196. [Google Scholar] [CrossRef]
- Louters, M.; Pearlman, M.; Solsrud, E.; Pearlman, A. Functional hypogonadism among patients with obesity, diabetes, and metabolic syndrome. Int. J. Impot. Res. 2022, 34, 714–720. [Google Scholar] [CrossRef]
- Krysiak, R.; Basiak, M.; Machnik, G.; Okopień, B. Impaired gonadotropin-lowering effects of metformin in postmenopausal women with autoimmune thyroiditis: A pilot study. Pharmaceuticals 2023, 16, 922. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Madej, A.; Okopień, B. The effect of metformin on plasma prolactin levels in young women with autoimmune thyroiditis. J. Clin. Med. 2023, 12, 3769. [Google Scholar] [CrossRef]
- Gessl, A.; Lemmens-Gruber, R.; Kautzky-Willer, A. Thyroid disorders. Handb. Exp. Pharmacol. 2012, 214, 361–386. [Google Scholar]
- Merrill, S.J.; Minucci, S.B. Thyroid autoimmunity: An interplay of factors. Vitam. Horm. 2018, 106, 129–145. [Google Scholar]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 34, 101367. [Google Scholar] [CrossRef]
- Wortsman, J.; Rosner, W.; Dufau, M.L. Abnormal testicular function in men with primary hypothyroidism. Am. J. Med. 1987, 82, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Xia, F.; Wang, N.; Chen, C.; Nie, X.; Li, Q.; Han, B.; Zhai, H.; Jiang, B.; et al. A higher ratio of estradiol to testosterone is associated with autoimmune thyroid disease in males. Thyroid 2017, 27, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Doukas, C.; Saltiki, K.; Mantzou, A.; Cimponeriu, A.; Terzidis, K.; Sarika, L.; Mavrikakis, M.; Sfikakis, P.; Alevizaki, M. Hormonal parameters and sex hormone receptor gene polymorphisms in men with autoimmune diseases. Rheumatol. Int. 2013, 34, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Casto, C.; Pepe, G.; Li Pomi, A.; Corica, D.; Aversa, T.; Wasniewska, M. Hashimoto thyroiditis and Graves’ disease in genetic syndromes in pediatric age. Genes 2021, 12, 222. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. The effect of testosterone on thyroid autoimmunity in euthyroid men with Hashimoto thyroiditis and low testosterone levels. J. Clin. Pharm. Ther. 2019, 44, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Samperi, I.; Lithgow, K.; Karavitaki, N. Hyperprolactinaemia. J. Clin. Med. 2019, 8, 2203. [Google Scholar] [CrossRef]
- Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and autoimmunity. Front. Immunol. 2018, 9, 73. [Google Scholar] [CrossRef]
- Fahie-Wilson, M.N.; John, R.; Ellis, A.R. Macroprolactin; high molecular mass forms of circulating prolactin. Ann. Clin. Biochem. 2005, 42 Pt 3, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Szkróbka, W.; Okopień, B. A neutral effect of metformin treatment on macroprolactin content in women with macroprolactinemia. Exp. Clin. Endocrinol. Diabetes 2016, 125, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Cocks Eschler, D.; Javanmard, P.; Cox, K.; Geer, E.B. Prolactinoma through the female life cycle. Endocrine 2018, 59, 16–29. [Google Scholar] [CrossRef]
- Bottai, T.; Quintin, P.; Perrin, E. Antipsychotics and the risk of diabetes: A general data review. Eur. Psychiatry 2005, 20 (Suppl. S4), S349–S357. [Google Scholar] [CrossRef]
- ThirumalaI, A.; Anawalt, B.D. Epidemiology of male hypogonadism. Endocrinol. Metab. Clin. N. Am. 2022, 51, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Orgiazzi, J. Thyroid autoimmunity. Presse Med. 2012, 41, e611–e625. [Google Scholar] [CrossRef] [PubMed]
- Vilar, L.; Vilar, C.F.; Lyra, R.; Freitas, M.D. Pitfalls in the diagnostic evaluation of hyperprolactinemia. Neuroendocrinology 2019, 109, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Sharif, K.; Tiosano, S.; Watad, A.; Comaneshter, D.; Cohen, A.D.; Shoenfeld, Y.; Amital, H. The link between schizophrenia and hypothyroidism: A population-based study. Immunol. Res. 2018, 66, 663–667. [Google Scholar] [CrossRef]
- Jia, X.; Zhai, T.; Zhang, J.A. Metformin reduces autoimmune antibody levels in patients with Hashimoto thyroiditis: A systematic review and meta-analysis. Autoimmunity 2020, 53, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol. 2019, 234, 81527–88161. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Tosca, L.; Froment, P.; Rame, C.; McNeilly, J.R.; McNeilly, A.S.; Maillard, V.; Dupont, J. Metformin decreases GnRH- and activin-induced gonadotropin secretion in rat pituitary cells: Potential involvement of adenosine 5′ monophosphate-activated protein kinase (PRKA). Biol. Reprod. 2011, 84, 351–362. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.; Hardie, D.G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013, 493, 346–355. [Google Scholar] [CrossRef]
- Jeon, S.M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 2016, 48, e245. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Dhindsa, S.; Batra, M.; Green, K.; Abuaysheh, S.; Kuhadiya, N.D.; Makdissi, A.; Chaudhuri, A.; Sandhu, S.; Dandona, P. Testosterone increases the expression and phosphorylation of AMP kinase α in men with hypogonadism and type 2 diabetes. J. Clin. Endocrinol. Metab. 2020, 105, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Grattan, D.R. 60 years of neuroendocrinology: The hypothalamo-prolactin axis. J. Endocrinol. 2015, 226, T101–T122. [Google Scholar] [CrossRef] [PubMed]
- Ortega-González, C.; Cardoza, L.; Coutiño, B.; Hidalgo, R.; Arteaga-Troncoso, G.; Parra, A. Insulin sensitizing drugs increase the endogenous dopaminergic tone in obese insulin-resistant women with polycystic ovary syndrome. J. Endocrinol. 2005, 184, 232–239. [Google Scholar] [CrossRef] [PubMed]
- González, M.C.; Abreu, P.; Barroso-Chinea, P.; Cruz-Muros, I.; González-Hernández, T. Effect of intracerebroventricular injection of lipopolysaccharide on the tuberoinfundibular dopaminergic system of the rat. Neuroscience 2004, 127, 251–259. [Google Scholar] [CrossRef]
- Smith, B.K.; Steinberg, G.R. AMP-activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.Y.; Chen, S.M.; Li, W.C. Dopamine receptor agonists mechanism of actions on glucose lowering and their connections with prolactin actions. Front. Clin. Diabetes Healthc. 2023, 4, 935872. [Google Scholar] [CrossRef]
- Blaslov, K.; Gajski, D.; Vucelić, V.; Gaćina, P.; Mirošević, G.; Marinković, J.; Vrkljan, M.; Rotim, K. The association of subclinical insulin resistance with thyroid autoimmunity in euthyroid individuals. Acta Clin. Croat. 2020, 59, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Cardiometabolic profile of young women with hypoprolactinemia. Endocrine 2022, 78, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Montejo, Á.L.; Arango, C.; Bernardo, M.; Carrasco, J.L.; Crespo-Facorro, B.; Del Pino-Montes, J.; García-Escudero, M.A.; García-Rizo, C.; González-Pinto, A.; Hernández, A.I.; et al. Multidisciplinary consensus on the therapeutic recommendations for iatrogenic hyperprolactinemia secondary to antipsychotics. Front. Neuroendocrinol. 2017, 45, 25–34. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Autoimmune thyroiditis attenuates cardiometabolic effects of cabergoline in young women with hyperprolactinemia. J. Clin. Pharmacol. 2023, 63, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Szkróbka, W.; Okopień, B. Sexual function and depressive symptoms in young women with euthyroid Hashimoto thyroiditis receiving vitamin D, selenomethionine and myo-inositol: A pilot study. Nutrients 2023, 15, 2815. [Google Scholar] [CrossRef] [PubMed]
- Grigg, J.; Worsley, R.; Thew, C.; Gurvich, C.; Thomas, N.; Kulkarni, J. Antipsychotic-induced hyperprolactinemia: Synthesis of world-wide guidelines and integrated recommendations for assessment, management and future research. Psychopharmacology 2017, 234, 3279–3297. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Impact of metformin on hypothalamic-pituitary-thyroid axis activity in women with autoimmune and non-autoimmune subclinical hypothyroidism: A pilot study. Pharmacol. Rep. 2024, 76, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Trofimiuk-Müldner, M.; Konopka, J.; Sokołowski, G.; Dubiel, A.; Kieć-Klimczak, M.; Kluczyński, Ł.; Motyka, M.; Rzepka, E.; Walczyk, J.; Sokołowska, M.; et al. Current iodine nutrition status in Poland (2017): Is the Polish model of obligatory iodine prophylaxis able to eliminate iodine deficiency in the population? Public Health Nutr. 2020, 23, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Kłapcińska, B.; Poprzecki, S.; Danch, A.; Sobczak, A.; Kempa, K. Selenium levels in blood of Upper Silesian population: Evidence of suboptimal selenium status in a significant percentage of the population. Biol. Trace Elem. Res. 2005, 108, 1–15. [Google Scholar] [CrossRef]
- Streiner, D.L. Regression toward the mean: Its etiology, diagnosis, and treatment. Can. J. Psychiatry 2001, 46, 72–76. [Google Scholar] [CrossRef]
Variable | Group A | Group B | p-Value |
---|---|---|---|
Number (n) | 24 | 24 | - |
Age (years) | 60 ± 8 | 62 ± 9 | 0.4200 |
Type-2 diabetes (%)/prediabetes (%) | 50/50 | 54/46 | 0.8342 |
Smokers (%)/Number of cigarettes a day (n)/Duration of smoking (years) | 42/11 ± 5/32 ± 10 | 46/10 ± 6/34 ± 11 | 0.7523 |
BMI (kg/m2) | 24.9 ± 4.3 | 24.5 ± 4.8 | 0.7624 |
Systolic blood pressure (mmHg) | 130 ± 15 | 128 ± 14 | 0.6352 |
Diastolic blood pressure (mmHg) | 85 ± 5 | 84 ± 5 | 0.4918 |
Variable | Group A | Group B | p-Value * |
---|---|---|---|
Glucose (mg/dL) [70–99] | |||
Baseline | 121 ± 11 | 123 ± 12 | 0.5502 |
Follow-up | 112 ± 10 | 105 ± 10 | 0.0193 |
p-value ** | 0.0048 | <0.0001 | - |
HOMA1-IR [<2.0] | |||
Baseline | 4.2 ± 1.3 | 4.0 ± 1.2 | 0.5824 |
Follow-up | 3.2 ± 1.0 | 2.1 ± 0.8 | 0.0001 |
p-value ** | 0.0045 | <0.0001 | - |
Glycated hemoglobin [4.0–5.6] | |||
Baseline | 6.7 ± 0.5 | 6.8 ± 0.6 | 0.5346 |
Follow-up | 6.3 ± 0.5 | 5.9 ± 0.4 | 0.0037 |
p-value ** | 0.0080 | <0.0001 | - |
Total prolactin (ng/mL) [5–17] | |||
Baseline | 55.2 ± 12.3 | 56.8 ± 13.8 | 0.6735 |
Follow-up | 52.7 ± 13.4 | 44.8 ± 11.8 | 0.0354 |
p-value ** | 0.5702 | 0.0022 | - |
Monomeric prolactin (ng/mL) [3–15] | |||
Baseline | 50.4 ± 11.2 | 52.5 ± 12.9 | 0.5500 |
Follow-up | 48.6 ± 10.6 | 40.9 ± 11.6 | 0.0216 |
p-value ** | 0.5918 | 0.0020 | - |
Macroprolactin (ng/mL) [2–12] | |||
Baseline | 4.8 ± 3.1 | 4.3 ± 2.9 | 0.5667 |
Follow-up | 4.1 ± 3.5 | 3.9 ± 2.5 | 0.8208 |
p-value ** | 0.4670 | 0.6112 | - |
TPOAb (IU/mL) [<35] | |||
Baseline | 840 ± 305 | 13 ± 12 | <0.0001 |
Follow-up | 668 ± 285 | 11 ± 14 | <0.0001 |
p-value ** | 0.0978 | 0.5978 | - |
TgAb (IU/mL) [<35] | |||
Baseline | 828 ± 320 | 17 ± 12 | <0.0001 |
Follow-up | 685 ± 276 | 16 ± 18 | <0.0001 |
p-value ** | 0.1042 | 0.8219 | - |
TSH (mIU/L) [0.4–4.5] | |||
Baseline | 3.2 ± 1.3 | 3.0 ± 1.4 | 0.6105 |
Follow-up | 2.8 ± 1.2 | 2.3 ± 1.2 | 0.1557 |
p-value ** | 0.2738 | 0.0693 | - |
Free thyroxine (pmol/L) [10.2–21.4] | |||
Baseline | 14.8 ± 2.4 | 15.2 ± 2.6 | 0.5824 |
Follow-up | 15.1 ± 2.7 | 15.6 ± 2.9 | 0.5395 |
p-value ** | 0.6860 | 0.6174 | - |
Free triiodothyronine (pmol/L) [2.2–6.7] | |||
Baseline | 3.6 ± 0.8 | 3.5 ± 0.9 | 0.6860 |
Follow-up | 3.7 ± 0.8 | 3.7 ± 1.0 | 1.0000 |
p-value ** | 0.6670 | 0.4701 | - |
FSH (U/L) [1.5–9.5] | |||
Baseline | 3.4 ± 1.0 | 3.2 ± 1.2 | 0.5346 |
Follow-up | 3.7 ± 1.3 | 3.6 ± 1.4 | 0.7988 |
p-value ** | 0.3749 | 0.2934 | - |
LH (U/L) [1.5–8.5] | |||
Baseline | 2.9 ± 0.8 | 3.0 ± 1.4 | 0.7626 |
Follow-up | 3.2 ± 1.0 | 3.6 ± 1.1 | 0.1940 |
p-value ** | 0.2571 | 0.1056 | - |
Testosterone (ng/mL) [3.5–17.0] | |||
Baseline | 4.4 ± 1.0 | 4.2 ± 1.3 | 0.5532 |
Follow-up | 4.7 ± 1.2 | 4.9 ± 1.5 | 0.6125 |
p-value ** | 0.3517 | 0.908 | - |
ACTH (pg/mL) [15–70] | |||
Baseline | 29 ± 14 | 34 ± 18 | 0.2883 |
Follow-up | 35 ± 15 | 38 ± 16 | 0.5061 |
p-value ** | 0.1587 | 0.4200 | - |
IGF-1 (ng/mL) [50–180] | |||
Baseline | 102 ± 48 | 97 ± 40 | 0.6968 |
Follow-up | 114 ± 50 | 118 ± 60 | 0.8030 |
p-value ** | 0.4007 | 0.1604 | - |
hsCRP (mg/L) [<1.5] | |||
Baseline | 2.8 ± 1.0 | 2.2 ± 0.8 | 0.0263 |
Follow-up | 2.6 ± 0.8 | 1.5 ± 0.6 | <0.0001 |
p-value ** | 0.4481 | 0.0013 | - |
Estimated glomerular filtration rate (mL/min/1.73 m2) [<60] | |||
Baseline | 89 ± 13 | 91 ± 15 | 0.6239 |
After 6 months | 92 ± 14 | 92 ± 16 | 1.0000 |
p-value ** | 0.4457 | 0.8242 | - |
Variable | Group A | Group B | p-Value |
---|---|---|---|
Δ Glucose | −7 ± 3 | −15 ± 6 | <0.0001 |
Δ HOMA1-IR | −24 ± 20 | −48 ± 23 | 0.0004 |
Δ Glycated hemoglobin | −6 ± 5 | −13 ± 5 | <0.0001 |
Δ Total prolactin | −5 ± 8 | −21 ± 8 | <0.0001 |
Δ Monomeric prolactin | −3 ± 7 | −22 ± 10 | <0.0001 |
Δ Macroprolactin | −15 ± 18 | −9 ± 20 | 0.2803 |
Δ TPOAb | −20 ± 18 | −15 ± 24 | 0.4184 |
Δ TgAb | −17 ± 23 | −6 ± 28 | 0.1438 |
Δ TSH | −13 ± 14 | −23 ± 22 | 0.0667 |
Δ Free thyroxine | 2 ± 6 | 3 ± 7 | 0.5988 |
Δ Free triiodothyronine | 3 ± 10 | 6 ± 14 | 0.3974 |
Δ FSH | 9 ± 10 | 13 ± 12 | 0.2160 |
Δ LH | 10 ± 12 | 20 ± 23 | 0.0653 |
Δ Testosterone | 7 ± 13 | 17 ± 20 | 0.0457 |
Δ ACTH | 21 ± 20 | 12 ± 18 | 0.1081 |
Δ IGF-1 | 12 ± 25 | 22 ± 20 | 0.1328 |
Δ hsCRP | −7 ± 14 | −32 ± 20 | <0.0001 |
Δ Estimated glomerular filtration rate | 3 ± 7 | 1 ± 6 | 0.2934 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysiak, R.; Basiak, M.; Szkróbka, W.; Okopień, B. Autoimmune Thyroiditis Mitigates the Effect of Metformin on Plasma Prolactin Concentration in Men with Drug-Induced Hyperprolactinemia. Pharmaceuticals 2024, 17, 976. https://doi.org/10.3390/ph17080976
Krysiak R, Basiak M, Szkróbka W, Okopień B. Autoimmune Thyroiditis Mitigates the Effect of Metformin on Plasma Prolactin Concentration in Men with Drug-Induced Hyperprolactinemia. Pharmaceuticals. 2024; 17(8):976. https://doi.org/10.3390/ph17080976
Chicago/Turabian StyleKrysiak, Robert, Marcin Basiak, Witold Szkróbka, and Bogusław Okopień. 2024. "Autoimmune Thyroiditis Mitigates the Effect of Metformin on Plasma Prolactin Concentration in Men with Drug-Induced Hyperprolactinemia" Pharmaceuticals 17, no. 8: 976. https://doi.org/10.3390/ph17080976
APA StyleKrysiak, R., Basiak, M., Szkróbka, W., & Okopień, B. (2024). Autoimmune Thyroiditis Mitigates the Effect of Metformin on Plasma Prolactin Concentration in Men with Drug-Induced Hyperprolactinemia. Pharmaceuticals, 17(8), 976. https://doi.org/10.3390/ph17080976