Development of a Novel, Easy-to-Prepare, and Potentially Valuable Peptide Coupling Technology Utilizing Amide Acid as a Linker
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishment of Peptide Standard Curves
2.2. Degree by Which Different Equivalents of Anhydride Are Coupled to Peptides
2.3. Determination of the Peptide Reaction Site
3. Materials and Methods
3.1. Materials
3.2. Establishment of High-Performance Liquid Chromatographic Standard Curves for Peptides
- 0–25 min, with a linear gradient from 10% to 35% in liquid B;
- 25–30 min with a linear gradient from 35% to 10% in liquid B.
3.3. Coupling Reactions of Diglycolic Anhydride with Peptides
- The peptide (2 mg, 1.8 × 10−3 mmol) (peptide sequence HLRKLRKR) was dispensed in EP tubes with 0.5 mL of dichloromethane.
- Then, different equivalents of diethylene glycol anhydride were added to the solution in step 1, and the reaction was stirred for 12 h at room temperature.
- Postreaction treatment: The reacted system was frozen with liquid nitrogen and placed in a freeze-dryer to remove excess solvent.
3.4. Peptide Sequencing
- 0–50 min, with a linear gradient from 4% to 50% in liquid B;
- 50–54 min with a linear gradient from 50% to 100% in liquid B;
- for 54–60 min, fluid B was maintained at 100%.
3.5. NMR Experimental Methods
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; He, P.; Zhang, P.; Yi, X.; Xiao, C.; Chen, X. Polypeptides–Drug Conjugates for Anticancer Therapy. Adv. Healthc. Mater. 2021, 10, 2001974. [Google Scholar] [CrossRef] [PubMed]
- Bartholomä, M.D. Recent developments in the design of bifunctional chelators for metal-based radiopharmaceuticals used in Positron Emission Tomography. Inorganica Chim. Acta 2012, 389, 36–51. [Google Scholar] [CrossRef]
- Liu, S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug Deliv. Rev. 2008, 60, 347–1370. [Google Scholar] [CrossRef] [PubMed]
- Marcu, L.; Bezak, E.; Allen, B.J. Global comparison of targeted alpha vs targeted beta therapy for cancer: In vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hematol. 2018, 123, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, J.; Ding, Z.; Liu, Z. Radiopharmaceuticals heat anti-tumor immunity. Theranostics 2023, 13, 767–786. [Google Scholar] [CrossRef] [PubMed]
- Holik, H.A.; Ibrahim, F.M.; Elaine, A.A.; Putra, B.D.; Achmad, A.; Kartamihardja, A.H.S. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022, 27, 3062. [Google Scholar] [CrossRef] [PubMed]
- Whittenberg, J.J.; Li, H.; Zhou, H.; Koziol, J.; Desai, A.V.; Reichert, D.E.; Kenis, P.J.A. “Click Chip” Conjugation of Bifunctional Chelators to Biomolecules. Bioconjug. Chem. 2017, 28, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Zeglis, B.M.; Lewis, J.S. A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. Dalton Trans. 2011, 40, 6168–6195. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Eichenberger, L.S.; Fischer, G.; Holland, J.P. Photochemical Conjugation and One-Pot Radiolabelling of Antibodies for Immuno-PET. Angew. Chem. Int. Ed. 2019, 58, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J.R. Site-specific antibody drug conjugates for cancer therapy. mAbs 2013, 6, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Zeglis, B.M.; Davis, C.B.; Aggeler, R.; Kang, H.C.; Chen, A.; Agnew, B.J.; Lewis, J.S. An Enzyme-Mediated Methodology for the Site-Specific Radiolabeling of Antibodies Based on Catalyst-Free Click Chemistry. Bioconjug. Chem. 2013, 24, 1057–1067. [Google Scholar] [CrossRef]
- Dennler, P.; Chiotellis, A.; Fischer, E.; Brégeon, D.; Belmant, C.; Gauthier, L.; Lhospice, F.; Romagne, F.O.; Schibli, R. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug. Chem. 2014, 25, 569. [Google Scholar] [CrossRef] [PubMed]
- Wangler, C.; Bartenstein, R.S.; Wangler, P.B. Click-Chemistry Reactions in Radiopharmaceutical Chemistry: Fast & Easy Introduction of Radiolabels into Biomolecules for In Vivo Imaging. Curr. Med. Chem. 2010, 17, 1092–1116. [Google Scholar]
- Meghani, N.M.; Amin, H.H.; Lee, B.J. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov. Today 2017, 22, 1604–1619. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.P.; Podgorski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chem. Mater. 2013, 45, 724–744. [Google Scholar]
- Crisalli, P.; Kool, E.T. Water-Soluble Organocatalysts for Hydrazone and Oxime Formation. J. Org. Chem. 2013, 78, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Danese, M.; Bon, M.; Piccini, G.; Passerone, D. The reaction mechanism of the azide–alkyne Huisgen cycloaddition. Phys. Chem. Chem. Phys. 2019, 21, 19281–19287. [Google Scholar] [CrossRef] [PubMed]
- Mindt, T.L.; Schweinsberg, C.; Brans, L.; Hagenbach, A.; Abram, U.; Tourwé, D.; Garcia-Garayoa, E.; Schibli, R. A Click Approach to Structurally Diverse Conjugates Containing a Central Di-1,2,3-triazole Metal Chelate. ChemMedChem 2009, 4, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Bai, Y. Sex-Based Differences in the Association between Serum Copper and Kidney Function: Evidence from NHANES 2011–2016. Int. J. Environ. Res. Public Health 2022, 19, 14086. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Seibold, U.; Schirrmacher, R.; Wängler, B.; Wängler, C. 89Zr, a Radiometal Nuclide with High Potential for Molecular Imaging with PET: Chemistry, Applications and Remaining Challenges. Molecules 2013, 18, 6469–6490. [Google Scholar] [CrossRef] [PubMed]
- Chilla, S.N.M.; Henoumont, C.; Elst, L.V.; Muller, R.N.; Laurent, S. Importance of DOTA derivatives in bimodal imaging. Isr. J. Chem. 2017, 57, 800–808. [Google Scholar] [CrossRef]
- Jia, B.; Liu, Z.; Shi, J.; Yu, Z.; Yang, Z.; Zhao, H.; He, Z.; Liu, S.; Wang, F. Linker Effects on Biological Properties of 111In-Labeled DTPA Conjugates of a Cyclic RGDfK Dimer. Bioconjug. Chem. 2008, 19, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Bormans, G.; Cleeren, F. Radiopharmaceuticals for Cancer Imaging and Therapy. Pharmaceutics 2023, 15, 2262. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, C.W.; Müller, C.E.; Bongarzone, S. Diagnostic and Therapeutic Radiopharmaceuticals: A “Hot” Topic. J. Med. Chem. 2023, 66, 16457–16463. [Google Scholar] [CrossRef] [PubMed]
- Naganawa, H.; Shimojo, K.; Mitamura, H.; Sugo, Y.; Noro, J.; Goto, M. A new “green” extractant of the diglycol amic acid type for lanthanides. Solvent Extr. Res. Dev. Jpn. 2007, 14, 151–159. [Google Scholar]
- Ma, S.; Yang, F.; Tan, F.; Xie, M.; Yu, S.; Xue, L.; Li, Z.; Hu, T. Highly efficient and selective solvent extraction of zirconium and hafnium from chloride acid solution including amic acid extractant. Sep. Purif. Technol. 2021, 279, 119779. [Google Scholar] [CrossRef]
- Tang, T.; Yang, F.; Xie, M.; Xue, L.; Jiang, Z.; Xie, Z.; Wang, K.; Li, Z.; Geng, L.; Hu, T. Highly efficient separation and enrichment of hafnium from zirconium oxychloride solutions by advanced ion-imprinted membrane separation technology. J. Membr. Sci. 2023, 668, 121237. [Google Scholar] [CrossRef]
- Du, X.; He, X.; Huang, Y.; Fu, B.; Liang, B.; Lv, C.; Li, Y.; Gao, X.; Wang, Y. Simultaneous determination of seven effective components of Tripterygium glycosides in human biological matrices by ultra performance liquid chromatography–triple quadrupole mass spectrometry. J. Chromatogr. B 2019, 1113, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wlti, M.A.; Orts, J. The NMR2 Method to Determine Rapidly the Structure of the Binding Pocket of a Protein-Ligand Complex with High Accuracy. Magnetochemistry 2018, 4, 12. [Google Scholar] [CrossRef]
- Venkateswara Rao, C.; Rout, A.; Venkatesan, K.A. Selective separation of zirconium(IV) from uranium(VI) using dioxoamide ligand present in ammonium based ionic liquid: An application towards spent metallic fuel reprocessing. Sep. Purif. Technol. 2020, 247, 116963. [Google Scholar] [CrossRef]
- Godiya, C.B.; Cheng, X.; Li, D.; Chen, Z.; Lu, X. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 2019, 364, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kubota, F.; Baba, Y.; Kamiya, N.; Goto, M. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J. Hazard. Mater. 2013, 254–255, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, P.; Yang, F.; Liao, Q.; Zhang, Y.; Zhao, P.; Guo, W.; Bai, R.; Cai, C. Efficient diglycolamic acid extractant for separating and recycling Au(III). Miner. Eng. 2020, 150, 106254. [Google Scholar] [CrossRef]
- Zhao, Z.; Baba, Y.; Yoshida, W.; Kubota, F.; Goto, M. Development of novel adsorbent bearing aminocarbonylmethylglycine and its application to scandium separation. J. Chem. Technol. Biotechnol. 2016, 91, 2779–2784. [Google Scholar] [CrossRef]
- Suneesh, A.S.; Venkatesan, K.A.; Syamala, K.V.; Antony, M.P.; Vasudeva Rao, P.R. Mutual separation of americium(III) and europium(III) using glycolamic acid and thioglycolamic acid. Radiochim. Acta 2012, 100, 425–430. [Google Scholar] [CrossRef]
Peak Departure Time (min) | Peak Area |
---|---|
10.226 | 3.71 × 104 |
12.357 | 2.21 × 104 |
14.43 | 1843.00 |
14.792 | 1980.03 |
16.791 | 301.90 |
Peak Departure Time (min) | Peak Area |
---|---|
11.034 | 2.12 × 104 |
12.781 | 3.51 × 104 |
14.667 | 4965.46 |
15.024 | 5633.18 |
17.027 | 1162.03 |
Peak Departure Time (min) | Peak Area |
---|---|
10.529 | 8967.82 |
10.461 | 3.68 × 104 |
14.148 | 1.12 × 104 |
14.503 | 1.34 × 104 |
16.587 | 5453.32 |
Peak Departure Time (min) | Peak Area |
---|---|
10.597 | 8070.40 |
12.378 | 2.10 × 104 |
14.201 | 1.20 × 104 |
14.553 | 1.56 × 104 |
15.771 | 1.58 × 104 |
Peptide to Anhydride Equivalent Ratio | Raw Material Conversion Rate |
---|---|
1:10 | 43% |
1:20 | 67% |
1:40 | 86% |
1:60 | 87% |
Peak Departure Time (min) | Modifications | Modified Sequence | Mass | Intensity |
---|---|---|---|---|
HLRKLRKR | C4H4O4(HKR) | H(c4)LRKLRKR | 1221.7418 | 4.07 × 1011 |
HLRKLRKR | 2C4H4O4(HKR) | H(c4)LRKLRK(c4)R | 1337.7528 | 6.18 × 1011 |
HLRKLRKR | 2C4H4O4(HKR) | H(c4)LRK(c4)LRKR | 1337.7531 | 3.57 × 1011 |
HLRKLRKR | 3C4H4O4(HKR) | H(c4)LRK(c4)LRK(c4)R | 1453.7637 | 7.78 × 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, F.; Li, H. Development of a Novel, Easy-to-Prepare, and Potentially Valuable Peptide Coupling Technology Utilizing Amide Acid as a Linker. Pharmaceuticals 2024, 17, 981. https://doi.org/10.3390/ph17080981
Wang Y, Yang F, Li H. Development of a Novel, Easy-to-Prepare, and Potentially Valuable Peptide Coupling Technology Utilizing Amide Acid as a Linker. Pharmaceuticals. 2024; 17(8):981. https://doi.org/10.3390/ph17080981
Chicago/Turabian StyleWang, Yaling, Fan Yang, and Hongyan Li. 2024. "Development of a Novel, Easy-to-Prepare, and Potentially Valuable Peptide Coupling Technology Utilizing Amide Acid as a Linker" Pharmaceuticals 17, no. 8: 981. https://doi.org/10.3390/ph17080981
APA StyleWang, Y., Yang, F., & Li, H. (2024). Development of a Novel, Easy-to-Prepare, and Potentially Valuable Peptide Coupling Technology Utilizing Amide Acid as a Linker. Pharmaceuticals, 17(8), 981. https://doi.org/10.3390/ph17080981