Managing Post-Transplant Diabetes Mellitus after Kidney Transplantation: Challenges and Advances in Treatment
Abstract
:1. Introduction
2. Methods
3. Basic Medications in the Post-Transplant Period and in the Development of Diabetes after Transplantation
3.1. Treatment Used after Transplantation
3.1.1. Glucocorticosteroids
3.1.2. Immunosuppressive Drugs
3.2. Treatment of PTDM
3.2.1. Lifestyle Modification
3.2.2. Insulin Therapy
3.2.3. Metformin
3.2.4. Thiazolidinediones
3.2.5. Sulfonylurea Derivatives
3.2.6. DPP-4 Inhibitors
3.2.7. SGLT-2 Inhibitors
3.2.8. GLP-1 Analogs
3.2.9. Long-Acting Dual GIP and GLP-1 Receptor Agonist
3.3. New Directions in the Treatment of Diabetes Mellitus
3.3.1. Glucokinase Activators
Dorzagliatin
TMG-123
ADV-1002401
LY2608204
3.3.2. Imeglimin
3.3.3. Amycretin
3.3.4. Pramlintide
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shivaswamy, V.; Boerner, B.; Larsen, J. Post-Transplant Diabetes Mellitus: Causes, Treatment, and Impact on Outcomes. Endocr. Rev. 2016, 37, 37–61. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Guo, M.; Yuan, X. Progress of new-onset diabetes after liver and kidney transplantation. Front. Endocrinol. 2023, 14, 1091843. [Google Scholar] [CrossRef]
- Solhjoo, M.; Kumar, S.C. New Onset Diabetes After Transplant. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK544220/ (accessed on 20 May 2024).
- Davidson, J.; Wilkinson, A.; Dantal, J.; Dotta, F.; Haller, H.; Hernandez, D.; Kasiske, B.L.; Kiberd, B.; Krentz, A.; Legendre, C.; et al. New-onset diabetes after transplantation: 2003 international consensus guidelines1. Transplantation 2003, 75, SS3–SS24. [Google Scholar] [CrossRef] [PubMed]
- Katwal, P.C.; Jirjees, S.; Htun, Z.M.; Aldawudi, I.; Khan, S. The Effect of Anemia and the Goal of Optimal HbA1c Control in Diabetes and Non-Diabetes. Cureus 2020, 12, e8431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shabir, S.; Jham, S.; Harper, L.; Ball, S.; Borrows, R.; Sharif, A. Validity of glycated haemoglobin to diagnose new onset diabetes after transplantation. Transplant. Int. 2013, 26, 315–321. [Google Scholar] [CrossRef]
- Sharif, A.; Hecking, M.; de Vries, A.P.; Porrini, E.; Hornum, M.; Rasoul-Rockenschaub, S.; Berlakovich, G.; Krebs, M.; Kautzky-Willer, A.; Schernthaner, G.; et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: Recommendations and future directions. Am. J. Transplant. 2014, 14, 1992–2000. [Google Scholar] [CrossRef]
- New-Onset Diabetes After Transplantation (NODAT) A Scientific Session on Diagnostic and Therapeutic Challenges in Preparation of the 2013 International Consensus Guidelines. Vienna, Austria, 8 September 2013. Available online: http://vienna.esot.org/Science/Preparation-of-the-new-International-Consensus-Guidelines (accessed on 10 April 2014).
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41 (Suppl. 1), S13–S27. [Google Scholar] [CrossRef]
- Aziz, F. New Onset Diabetes Mellitus after Transplant: The Challenge Continues. Kidney360 2021, 2, 1212–1214. [Google Scholar] [CrossRef]
- Porrini, E.; Díaz, J.M.; Moreso, F.; Lauzurrica, R.; Ibernon, M.; Torres, I.S.; Ruiz, R.B.; Rodríguez Rodríguez, A.E.; Mallén, P.D.; Bayés-Genís, B.; et al. Prediabetes is a risk factor for cardiovascular disease following renal transplantation. Kidney Int. 2019, 96, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Radek, M.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. Diabetes and Cardiovascular Risk in Renal Transplant Patients. Int. J. Mol. Sci. 2021, 22, 3422. [Google Scholar] [CrossRef] [PubMed]
- Mourad, G.; Glyda, M.; Albano, L.; Viklický, O.; Merville, P.; Tydén, G.; Mourad, M.; Lõhmus, A.; Witzke, O.; Christiaans, M.H.L.; et al. Incidence of Posttransplantation Diabetes Mellitus in De Novo Kidney Transplant Recipients Receiving Prolonged-Release Tacrolimus-Based Immunosuppression with 2 Different Corticosteroid Minimization Strategies: ADVANCE, A Randomized Controlled Trial. Transplantation 2017, 101, 1924–1934. [Google Scholar] [CrossRef] [PubMed]
- Alajous, S.; Budhiraja, P. New-Onset Diabetes Mellitus after Kidney Transplantation. J. Clin. Med. 2024, 13, 1928. [Google Scholar] [CrossRef] [PubMed]
- Tokodai, K.; Amada, N.; Haga, I.; Takayama, T.; Nakamura, A.; Kashiwadate, T. Insulin resistance as a risk factor for new-onset diabetes after kidney transplantation. Transplant. Proc. 2014, 46, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Zelle, D.M.; Corpeleijn, E.; Deinum, J.; Stolk, R.P.; Gans, R.O.; Navis, G.; Bakker, S.J. Pancreatic β-cell dysfunction and risk of new-onset diabetes after kidney transplantation. Diabetes Care 2013, 36, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
- Dong, F. Analysis of Influencing Factors of Blood Glucose Changes and Islet Function in Patients with Abnormal Glucose Metabolism after Renal Transplantation; Qingdao University: Qingdao, China, 2020. [Google Scholar] [CrossRef]
- Bensellam, M.; Jonas, J.C.; Laybutt, D.R. Mechanisms of β-cell dedifferentiation in diabetes: Recent findings and future research directions. J. Endocrinol. 2018, 236, R109–R143. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.-Y.T.; Cruz, D.; Madera-Marin, L.; Ravender, R.; Garcia, P. Diabetic Kidney Disease in Post-Kidney Transplant Patients. J. Clin. Med. 2024, 13, 793. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.J.; Palming, J.; Rizell, M.; Aureliano, M.; Carvalho, E.; Svensson, M.K.; Eriksson, J.W. Cyclosporine A and tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: Increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents. J. Clin. Endocrinol. Metab. 2014, 99, E1885–E1894. [Google Scholar] [CrossRef] [PubMed]
- Triñanes, J.; Rodriguez-Rodriguez, A.E.; Brito-Casillas, Y.; Wagner, A.; De Vries, A.P.J.; Cuesto, G.; Acebes, A.; Salido, E.; Torres, A.; Porrini, E. Deciphering Tacrolimus-Induced Toxicity in Pancreatic β Cells. Am. J. Transplant. 2017, 17, 2829–2840. [Google Scholar] [CrossRef] [PubMed]
- Okumi, M.; Unagami, K.; Hirai, T.; Shimizu, T.; Ishida, H.; Tanabe, K. Japan Academic Consortium of Kidney Transplantation (JACK). Diabetes mellitus after kidney transplantation in Japanese patients: The Japan Academic Consortium of Kidney Transplantation study. Int. J. Urol. 2017, 24, 197–204. [Google Scholar] [CrossRef]
- Chakkera, H.A.; Mandarino, L.J. Calcineurin inhibition and new-onset diabetes mellitus after transplantation. Transplantation 2013, 95, 647–652. [Google Scholar] [CrossRef]
- Palepu, S.; Prasad, G.V. New-onset diabetes mellitus after kidney transplantation: Current status and future directions. World J. Diabetes 2015, 6, 445–455. [Google Scholar] [CrossRef]
- Lim, L.M.; Chang, J.M.; Kuo, H.T. Diabetic Kidney Disease in Post-Transplant Diabetes Mellitus: Causes, Treatment and Outcomes. Biomedicines 2023, 11, 470. [Google Scholar] [CrossRef]
- Hsu, D.C.; Katelaris, C.H. Long-term management of patients taking immunosuppressive drugs. Aust. Prescr. 2009, 32, 68–71. [Google Scholar] [CrossRef]
- Ograczyk, E.; Kowalewicz-Kulbat, M.; Wawrocki, S.; Fol, M. Immunosupresja—Wymagający sprzymierzeniec na trudne czasy [Immunosuppression—Tough ally in torrid time]. Postepy Hig. Med. Dosw. 2015, 69, 1299–1312. (In Polish) [Google Scholar] [CrossRef]
- Durlik, M.; Danielewicz, R. Zalecenia Dotyczące Leczenia Immunosupresyjnego po Przeszczepieniu Narządów Unaczynionych; Fundacja Zjednoczeni dla Transplantacji: Warszawa, Poland, 2021. [Google Scholar]
- Klimczak, D. Leczenie immunosupresyjne po przeszczepieniu nerki. Prz. Urol. 2017, 2, 102. [Google Scholar]
- Strehl, C.; Ehlers, L.; Gaber, T.; Buttgereit, F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front. Immunol. 2019, 10, 1744. [Google Scholar] [CrossRef]
- Koshi, E.J.; Young, K.; Mostales, J.C.; Vo, K.B.; Burgess, L.P. Complications of Corticosteroid Therapy: A Comprehensive Literature Review. J. Pharm Technol. 2022, 38, 360–367. [Google Scholar] [CrossRef]
- Bauerle, K.T.; Harris, C. Glucocorticoids and Diabetes. Mo. Med. 2016, 113, 378–383. [Google Scholar]
- Luan, F.L.; Steffick, D.E.; Ojo, A.O. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. Transplantation 2011, 91, 334–341. [Google Scholar] [CrossRef]
- Alfieri, C.; Favi, E.; Campioli, E.; Cicero, E.; Molinari, P.; Campise, M.; Gandolfo, M.T.; Regalia, A.; Cresseri, D.; Messa, P.; et al. Prevalence and Risk Factors of Abnormal Glucose Metabolism and New-Onset Diabetes Mellitus after Kidney Transplantation: A Single-Center Retrospective Observational Cohort Study. Medicina 2022, 58, 1608. [Google Scholar] [CrossRef]
- Pahor, K.; Maver, B.; Blagus, T.; Vončina, B.; Praznik, M.; Goričar, K.; Dolžan, V.; Arnol, M.; Mlinšek, G. Glucocorticoid pathway polymorphisms and diabetes after kidney transplantation. Clin. Nephrol. 2021, 96, 114–118. [Google Scholar] [CrossRef]
- Farouk, S.S.; Rein, J.L. The Many Faces of Calcineurin Inhibitor Toxicity-What the FK? Adv. Chronic Kidney Dis. 2020, 27, 56–66. [Google Scholar] [CrossRef]
- Nandula, S.A.; Boddepalli, C.S.; Gutlapalli, S.D.; Lavu, V.K.; Abdelwahab Mohamed Abdelwahab, R.; Huang, R.; Potla, S.; Bhalla, S.; AlQabandi, Y.; Balani, P. New-Onset Diabetes Mellitus in Post-renal Transplant Patients on Tacrolimus and Mycophenolate: A Systematic Review. Cureus 2022, 14, e31482. [Google Scholar] [CrossRef]
- Terrec, F.; Jouve, T.; Naciri-Bennani, H.; Benhamou, P.Y.; Malvezzi, P.; Janbon, B.; Giovannini, D.; Rostaing, L.; Noble, J. Late Conversion from Calcineurin Inhibitors to Belatacept in Kidney-Transplant Recipients Has a Significant Beneficial Impact on Glycemic Parameters. Transplant. Direct. 2019, 6, e517. [Google Scholar] [CrossRef]
- Sharif, A.; Chakkera, H.; de Vries, A.P.J.; Eller, K.; Guthoff, M.; Haller, M.C.; Hornum, M.; Nordheim, E.; Kautzky-Willer, A.; Krebs, M.; et al. International consensus on post-transplantation diabetes mellitus. Nephrol. Dial. Transplant. 2024, 39, 531–549. [Google Scholar] [CrossRef]
- Newman, J.D.; Schlendorf, K.H.; Cox, Z.L.; Zalawadiya, S.K.; Powers, A.C.; Niswender, K.D.; Shah, R.V.; Lindenfeld, J. Post-transplant diabetes mellitus following heart transplantation. J. Heart Lung Transplant. 2022, 41, 1537–1546. [Google Scholar] [CrossRef]
- Montero, N.; Quero, M.; Melilli, E.; Pérez-Sáez, M.J.; Redondo-Pachón, D.; Bestard, O.; Crespo, M.; Cruzado, J.M.; Pascual, J. Mammalian Target of Rapamycin Inhibitors Combined with Calcineurin Inhibitors as Initial Immunosuppression in Renal Transplantation: A Meta-analysis. Transplantation 2019, 103, 2031–2056. [Google Scholar] [CrossRef]
- Munoz Pena, J.M.; Cusi, K. Posttransplant Diabetes Mellitus: Recent Developments in Pharmacological Management of Hyperglycemia. J. Clin. Endocrinol. Metab. 2023, 109, e1–e11. [Google Scholar] [CrossRef]
- Goldmannova, D.; Karasek, D.; Krystynik, O.; Zadrazil, J. New-onset diabetes mellitus after renal transplantation. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2016, 160, 195–200. [Google Scholar] [CrossRef]
- Byambasukh, O.; Osté, M.C.J.; Gomes-Neto, A.W.; van den Berg, E.; Navis, G.; Bakker, S.J.L.; Corpeleijn, E. Physical Activity and the Development of Post-Transplant Diabetes Mellitus, and Cardiovascular- and All-Cause Mortality in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 415. [Google Scholar] [CrossRef]
- Klangjareonchai, T.; Eguchi, N.; Tantisattamo, E.; Ferrey, A.J.; Reddy, U.; Dafoe, D.C.; Ichii, H. Current Pharmacological Intervention and Medical Management for Diabetic Kidney Transplant Recipients. Pharmaceutics 2021, 13, 413. [Google Scholar] [CrossRef]
- Saqib, S.; Ullah, F.; Naeem, M.; Younas, M.; Ayaz, A.; Ali, S.; Zaman, W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules 2022, 27, 6728. [Google Scholar] [CrossRef]
- Asghar, M.; Younas, M.; Arshad, B.; Zaman, W.; Ayaz, A.; Rasheed, S.; Shah, A.H.; Ullah, F.; Saqib, S. Bioactive Potential of Cultivated Mentha arvensis L. For preservation and production of health-oriented food. J. Anim. Plant Sci. 2022, 32, 835–844. [Google Scholar] [CrossRef]
- Kuningas, K.; Driscoll, J.; Mair, R.; Smith, H.; Dutton, M.; Day, E.; Sharif, A.A. Comparing Glycaemic Benefits of Active Versus Passive Lifestyle Intervention in Kidney Allograft Recipients: A Randomized Controlled Trial. Transplantation 2020, 104, 1491–1499. [Google Scholar] [CrossRef]
- Tufton, N.; Ahmad, S.; Rolfe, C.; Rajkariar, R.; Byrne, C.; Chowdhury, T.A. New-onset diabetes after renal transplantation. Diabet. Med. 2014, 31, 1284–1292. [Google Scholar] [CrossRef]
- Juan Khong, M.; Chong, C.P. Prevention and management of new-onset diabetes mellitus in kidney transplantation. Neth. J. Med. 2014, 72, 127–134. [Google Scholar]
- Ponticelli, C.; Favi, E.; Ferraresso, M. New-Onset Diabetes after Kidney Transplantation. Medicina 2021, 57, 250. [Google Scholar] [CrossRef]
- Tilinca, M.C.; Tiuca, R.A.; Tilea, I.; Varga, A. The SGLT-2 Inhibitors in Personalized Therapy of Diabetes Mellitus Patients. J. Pers. Med. 2021, 11, 1249. [Google Scholar] [CrossRef]
- Suarez, O.; Pardo, M.; Gonzalez, S.; Escobar-Serna, D.P.; Castaneda, D.A.; Rodriguez, D.; Osorio, J.C.; Lozano, E. Diabetes mellitus and renal transplantation in adults: Is there enough evidence for diagnosis, treatment, and prevention of new-onset diabetes after renal transplantation? Transplant. Proc. 2014, 46, 3015–3020. [Google Scholar] [CrossRef]
- Conte, C.; Secchi, A. Post-transplantation diabetes in kidney transplant recipients: An update on management and prevention. Acta Diabetol. 2018, 55, 763–779. [Google Scholar] [CrossRef]
- Wissing, K.M.; Pipeleers, L. Obesity, metabolic syndrome and diabetes mellitus after renal transplantation: Prevention and treatment. Transplant. Rev. 2014, 28, 37–46. [Google Scholar] [CrossRef]
- Flory, J.; Lipska, K. Metformin in 2019. JAMA 2019, 321, 1926–1927. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Thiazolidinediones: The Forgotten Diabetes Medications. Curr. Diab Rep. 2019, 19, 151. [Google Scholar] [CrossRef]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Srinivasan, S.; Yee, S.W.; Giacomini, K.M. Pharmacogenetics of Antidiabetic Drugs. Adv. Pharmacol. 2018, 83, 361–389. [Google Scholar] [CrossRef]
- Galindo, R.J.; Fried, M.; Breen, T.; Tamler, R. Hyperglycemia management in patients with posttransplantation diabetes. Endocr. Pract. 2016, 22, 454–465. [Google Scholar] [CrossRef]
- Haidinger, M.; Werzowa, J.; Hecking, M.; Antlanger, M.; Stemer, G.; Pleiner, J.; Kopecky, C.; Kovarik, J.J.; Döller, D.; Pacini, G.; et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation--a randomized, double-blind, placebo-controlled trial. Am. J. Transplant. 2014, 14, 115–123. [Google Scholar] [CrossRef]
- Delos Santos, R.B.; Hagopian, J.C.; Chen, L.; Ramakrishnan, M.; Wijeweera, H.; Klein, C.L.; Brennan, D.C. Sitagliptin Versus Placebo to Reduce the Incidence and Severity of Posttransplant Diabetes Mellitus After Kidney Transplantation-A Single-center, Randomized, Double-blind Controlled Trial. Transplantation 2023, 107, 1180–1187. [Google Scholar] [CrossRef]
- Lin, W.Q.; Cai, Z.J.; Chen, T.; Liu, M.B.; Li, N.; Zheng, B. Cost-Effectiveness of Dipeptidylpeptidase-4 Inhibitors Added to Metformin in Patients with Type 2 Diabetes in China. Front. Endocrinol. 2021, 12, 684960. [Google Scholar] [CrossRef]
- Montada-Atin, T.; Prasad, G.V.R. Recent advances in new-onset diabetes mellitus after kidney transplantation. World J. Diabetes 2021, 12, 541–555. [Google Scholar] [CrossRef]
- Hecking, M.; Sharif, A.; Eller, K.; Jenssen, T. Management of post-transplant diabetes: Immunosuppression, early prevention, and novel antidiabetics. Transplant. Int. 2021, 34, 27–48. [Google Scholar] [CrossRef]
- Ferrannini, E.; Mark, M.; Mayoux, E. CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis. Diabetes Care 2016, 39, 1108–1114. [Google Scholar] [CrossRef]
- Chin-Yee, B.; Solh, Z.; Hsia, C. Erythrocytosis induced by sodium-glucose cotransporter-2 inhibitors. CMAJ 2020, 192, E1271. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef]
- Halden, T.A.; Egeland, E.J.; Åsberg, A.; Hartmann, A.; Midtvedt, K.; Khiabani, H.Z.; Holst, J.J.; Knop, F.K.; Hornum, M.; Feldt-Rasmussen, B.; et al. GLP-1 Restores Altered Insulin and Glucagon Secretion in Posttransplantation Diabetes. Diabetes Care 2016, 39, 617–624. [Google Scholar] [CrossRef]
- Liou, J.H.; Liu, Y.M.; Chen, C.H. Management of Diabetes Mellitus with Glucagonlike Peptide-1 Agonist Liraglutide in Renal Transplant Recipients: A Retrospective Study. Transplant. Proc. 2018, 50, 2502–2505. [Google Scholar] [CrossRef]
- Schwaiger, E.; Burghart, L.; Signorini, L.; Ristl, R.; Kopecky, C.; Tura, A.; Pacini, G.; Wrba, T.; Antlanger, M.; Schmaldienst, S.; et al. Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am. J. Transplant. 2019, 19, 907–919. [Google Scholar] [CrossRef]
- Halden, T.A.S.; Kvitne, K.E.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Åsberg, A.; Jenssen, T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients with Posttransplant Diabetes Mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef]
- Mahling, M.; Schork, A.; Nadalin, S.; Fritsche, A.; Heyne, N.; Guthoff, M. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibition in Kidney Transplant Recipients with Diabetes Mellitus. Kidney Blood Press. Res. 2019, 44, 984–992. [Google Scholar] [CrossRef]
- Shah, M.; Virani, Z.; Rajput, P.; Shah, B. Efficacy and Safety of Canagliflozin in Kidney Transplant Patients. Indian. J. Nephrol. 2019, 29, 278–281. [Google Scholar] [CrossRef]
- Attallah, N.; Yassine, L. Use of Empagliflozin in Recipients of Kidney Transplant: A Report of 8 Cases. Transplant. Proc. 2019, 51, 3275–3280. [Google Scholar] [CrossRef]
- Pinelli, N.R.; Patel, A.; Salinitri, F.D. Coadministration of liraglutide with tacrolimus in kidney transplant recipients: A case series. Diabetes Care 2013, 36, e171–e172. [Google Scholar] [CrossRef]
- Singh, P.; Taufeeq, M.; Pesavento, T.E.; Washburn, K.; Walsh, D.; Meng, S. Comparison of the glucagon-like-peptide-1 receptor agonists dulaglutide and liraglutide for the management of diabetes in solid organ transplant: A retrospective study. Diabetes Obes. Metab. 2020, 22, 879–884. [Google Scholar] [CrossRef]
- Kukla, A.; Hill, J.; Merzkani, M.; Bentall, A.; Lorenz, E.C.; Park, W.D.; D’Costa, M.; Kudva, Y.C.; Stegall, M.D.; Shah, P. The Use of GLP1R Agonists for the Treatment of Type 2 Diabetes in Kidney Transplant Recipients. Transplant. Direct. 2020, 6, e524. [Google Scholar] [CrossRef]
- Thangavelu, T.; Lyden, E.; Shivaswamy, V. A Retrospective Study of Glucagon-Like Peptide 1 Receptor Agonists for the Management of Diabetes After Transplantation. Diabetes Ther. 2020, 11, 987–994. [Google Scholar] [CrossRef]
- Syed, Y.Y. Tirzepatide: First Approval. Drugs 2022, 82, 1213–1220. [Google Scholar] [CrossRef]
- Samuel, S.M.; Varghese, E.; Kubatka, P.; Büsselberg, D. Tirzepatide-Friend or Foe in Diabetic Cancer Patients? Biomolecules 2022, 12, 1580. [Google Scholar] [CrossRef]
- De Block, C.; Bailey, C.; Wysham, C.; Hemmingway, A.; Allen, S.E.; Peleshok, J. Tirzepatide for the treatment of adults with type 2 diabetes: An endocrine perspective. Diabetes Obes. Metab. 2023, 25, 3–17. [Google Scholar] [CrossRef]
- Matuszek, B.; Lenart-Lipińska, M.; Nowakowski, A. Hormony inkretynowe w leczeniu cukrzycy typu 2 Część I: Wpływ insulinotropowych hormonów jelitowych (inkretyn) na metabolizm glukozy. Pol. J. Endocrinol. 2007, 58, 522–528. [Google Scholar]
- Lingvay, I.; Mosenzon, O.; Brown, K.; Cui, X.; O’Neill, C.; Fernández Landó, L.; Patel, H. Systolic blood pressure reduction with tirzepatide in patients with type 2 diabetes: Insights from SURPASS clinical program. Cardiovasc. Diabetol. 2023, 22, 66. [Google Scholar] [CrossRef]
- Del Prato, S.; Kahn, S.E.; Pavo, I.; Weerakkody, G.J.; Yang, Z.; Doupis, J.; Aizenberg, D.; Wynne, A.G.; Riesmeyer, J.S.; Heine, R.J.; et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): A randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 2021, 398, 1811–1824. [Google Scholar] [CrossRef]
- Bosch, C.; Carriazo, S.; Soler, M.J.; Ortiz, A.; Fernandez-Fernandez, B. Tirzepatide and prevention of chronic kidney disease. Clin. Kidney J. 2022, 16, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Anglart, G.; Janik, L.; Dettlaff, K. Tirzepatide—A new analogue of incretin hormones. Farm. Polska 2023, 79, 289–296. [Google Scholar] [CrossRef]
- Toulis, K.A.; Nirantharakumar, K.; Pourzitaki, C.; Barnett, A.H.; Tahrani, A.A. Glucokinase Activators for Type 2 Diabetes: Challenges and Future Developments. Drugs 2020, 80, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Li, X.; Ma, J.; Zeng, J.; Gan, S.; Dong, X.; Yang, J.; Lin, X.; Cai, H.; Song, W.; et al. Dorzagliatin in drug-naïve patients with type 2 diabetes: A randomized, double-blind, placebo-controlled phase 3 trial. Nat. Med. 2022, 28, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Kaur, U.; Pathak, B.K.; Meerashahib, T.J.; Krishna, D.V.V.; Chakrabarti, S.S. Should Glucokinase be Given a Chance in Diabetes Therapeutics? A Clinical-Pharmacological Review of Dorzagliatin and Lessons Learned So Far. Clin. Drug Investig. 2024, 44, 223–250. [Google Scholar] [CrossRef] [PubMed]
- Tsumura, Y.; Tsushima, Y.; Tamura, A.; Hasebe, M.; Kanou, M.; Kato, H.; Kobayashi, T. TMG-123, a novel glucokinase activator, exerts durable effects on hyperglycemia without increasing triglyceride in diabetic animal models. PLoS ONE 2017, 12, e0172252. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Shimomoto, T.; Tamura, A.; Namekawa, J.; Iijima, T.; Ochiai, H. A novel glucokinase activator TMG-123 causes long-lasting hypoglycemia and impairs spermatogenesis irreversibly in rats. J. Toxicol. Sci. 2021, 46, 115–123. [Google Scholar] [CrossRef]
- Tsumura, Y.; Tsushima, Y.; Tamura, A.; Kato, H.; Kobayashi, T. Disruptions in hepatic glucose metabolism are involved in the diminished efficacy after chronic treatment with glucokinase activator. PLoS ONE 2022, 17, e0265761. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Shao, F.; Ding, Y.; Fu, Z.; Fu, Q.; Ding, S.; Xie, L.; Chen, J.; Zhou, S.; Zhang, H.; et al. Safety, Pharmacokinetics, and Pharmacodynamics of Globalagliatin, a Glucokinase Activator, in Chinese Patients with Type 2 Diabetes Mellitus: A Randomized, Phase Ib, 28-day Ascending Dose Study. Clin. Drug Investig. 2020, 40, 1155–1166. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Y.; Wang, X.; Pu, Z.; Liu, Y.; Jiang, C.; Shen, X.; Sun, H.; Xie, H. Unveiling the Influence of a High-Fat Meal on the Pharmacokinetics of Oral Globalagliatin, A Glucokinase Activator, in Healthy Chinese Volunteers. Drugs R D 2024, 24, 41–50. [Google Scholar] [CrossRef]
- Lamb, Y.N. Imeglimin Hydrochloride: First Approval. Drugs 2021, 81, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.C.; Gupta, S. Imeglimin: The New Kid on the Block. Curr. Diab Rep. 2024, 24, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Hallakou-Bozec, S.; Vial, G.; Kergoat, M.; Fouqueray, P.; Bolze, S.; Borel, A.L.; Fontaine, E.; Moller, D.E. Mechanism of action of Imeglimin: A novel therapeutic agent for type 2 diabetes. Diabetes Obes. Metab. 2021, 23, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Grzeszczak, W. Imeglimin: A new antidiabetic drug with potential future in the treatment of patients with type 2 diabetes. Endokrynol. Pol. 2022, 73, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Molecular Mechanisms by Which Imeglimin Improves Glucose Homeostasis. J. Diabetes Res. 2020, 2020, 8768954. [Google Scholar] [CrossRef] [PubMed]
- Obesity Care; Novo Nordisk Pharmaceuticals. Available online: https://www.novonordisk.com/content/dam/nncorp/global/en/investors/irmaterial/cmd/2024/P5-Obesity-Care.pdf (accessed on 20 May 2024).
- Reuters. Novo Nordisk to begin Phase II trial of experimental obesity drug amycretin in H2 2024. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/novo-nordisk-begin-phase-ii-trial-experimental-obesity-drug-amycretin-h2-2024-2024-03-07/ (accessed on 7 March 2024).
- HCPLive. Novo Nordisk Delivers Updates on Development of Semaglutide, Cagrisema, Amycretin, and More. 2024. Available online: https://www.hcplive.com/view/novo-nordisk-delivers-updates-on-development-of-semaglutide-cagrisema-amycretin-and-more (accessed on 20 May 2024).
- Hart, R. Novo Nordisk’s New Obesity Pill Beats Wegovy in Early Trial. Forbes. Available online: https://www.forbes.com/sites/roberthart/2024/03/07/novo-nordisks-new-obesity-pill-beats-wegovy-in-early-trial/ (accessed on 7 March 2024).
- Ruchi, F.; Romeres, D.; Schiavon, M.; Renuse, S.; Pandey, A.; Man, C.D.; Cobelli, C.; Basu, R.; Basu, A. 1377-P: Pramlintide Lowers Postprandial Glucagon Concentrations by Inhibiting Glucagon Secretion without Altering Clearance in Type 1 Diabetes: A [13C15N]-Glucagon Study. Diabetes 2022, 71 (Suppl. 1), 1377-P. [Google Scholar] [CrossRef]
- Qiao, Y.C.; Ling, W.; Pan, Y.H.; Chen, Y.L.; Zhou, D.; Huang, Y.M.; Zhang, X.X.; Zhao, H.L. Efficacy and safety of pramlintide injection adjunct to insulin therapy in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. Oncotarget 2017, 8, 66504–66515. [Google Scholar] [CrossRef]
Figure | Risk Factors | Description |
---|---|---|
non-modifiable | Age | 2.9-fold higher risk in patients over 45 years of age |
Origins | African American, Hispanic, South Asian descent | |
Deceased donor | ||
Previous glucose intolerance | e.g., during pregnancy, steroid therapy | |
Male donor | ||
Genetic | association with HLA B27, HLA A28, HLA A30, HLA Bw42, adiponectin 276G/T, KCNQ1, NFATc4 | |
modifiable | Obesity | higher risk 1.73 times |
Sedentary lifestyle | ||
Metabolic syndrome | ||
Viral infections | e.g., HCV, CMV | |
Corticosteroids | ||
Calcineurin-inhibitors | ||
Sirolimus | ||
Acute rejection |
Author | Transplanted Organ | N Patients | Agent | HbA1c | Oral Glucose Insulin Sensitivity (OGIS) Index | Body Weight | eGFR | Other |
---|---|---|---|---|---|---|---|---|
SGLT2 | ||||||||
Schwaiger et al. [71] | kidney | 14 (4 weeks) +8 (12 months) | Empagliflozin | increase from 6.5 ± 0.8% to 6.6 ± 0.7% (p = 0.12) | decrease from 390 ± 66 to 328 ± 85 mL/min per m2 (p = 0.01) | decrease of 1.6 kg | decrease from 55.6 ± 20.3 to 47.5 ± 15.1 mL/min per 1.73 m2 (p = 0.008) (after 4 weeks) | OGTT increased from 232 ± 82 mg/dL to 273 ± 116 mg/dL (after 4 weeks, p = 0.06) and to 251 ± 71 mg/dL (after 12 months, p = 0.41); beta cell glucose sensitivity improved from 28.6 ± 17.1 to 36.6 ± 23.5 pmol·min−1·m−2·mM−1 (p = 0.06). |
Halden et al. [72] | kidney | N = 22 vs. n = 22 (placebo) | Empagliflozin | decrease from 0.2% to 0.1% | there was no significant difference in insulin sensitivity index during treatment (p = 0.59) | decrease of 2.5 kg (p = 0.014) | there was no significant difference after 24 weeks | Patients with eGFR ≥ 60 mL/min/1.73 m2 showed a trend towards greater reductions in HbA1c compared with patients with eGFR < 60 mL/min/1.73 m2; Insulin secretion did not change significantly; C-peptide concentration after 2 hours increased in the empagliflozin group compared with a decrease in C-peptide concentration in the placebo group; 24-h renal glucose excretion increased; Renal glucose excretion decreased with worsening renal function. There were no significant differences in weight reduction between patients with baseline eGFR > 60 mL/min/1.73 m2 and eGFR < 60 mL/min/1.73 m2 (p = 0.97). |
Mahling et al. [73] | kidney | 10 | Empagliflozin | decrease from 7.3% to 7.1% | no data | decrease of 1.0 kg | remained stable | |
Shah et al. [74] | kidney | 24 | Canagliflozin | decrease from 8.5 ± 1.5% to 7.6 ± 1% | no data | decrease from 78.6 ± 12.1 kg to 76.1 ± 11.2 kg after 6 months (p < 0.05) | decrease from 86 ± 20 to 83 ± 18 mL/min per 1.73 m2 (p > 0.05) | |
Attallah et al. [75] | kidney | 8 | Empagliflozin | decreased by 0.85 g/dL | no data | decrease of 2.4 kg after 1 year | no data | |
GLP-1 | ||||||||
Pinelli et al. [76] | kidney | 5 | Liraglutide | no data | no data | decrease of 2.1 ± 1.3 kg after 21 days of treatment | no data | There were no differences in fasting blood glucose levels (5.0 ± 1.2 vs. 5.3 ± 0.5 mmol/L). Liraglutide seemed to reduce blood glucose levels at 60 (7.3 ± 1.2 vs. 5.9 ± 0.5 mmol/L) and 120 min (7.1 ± 0.8 vs. 6.0 ± 0.4 mmol/L). |
Liou et al. [70] | kidney | 7 | Liraglutide | decreased from 10.0 ± 1.6% to 8.1 ± 0.8% (p = 0.043) | no data | decrease from 78.0 ± 7.8 kg to 75.1 ± 9.1 kg (p = 0.032) | increase from 67.7 ± 18.7 to 76.5 ± 18.7 mg/dL (p = 0.024) | Glycaemic control improved fasting blood sugar (FBS) from an initial level of 228.6 ± 39.1 mg/dL to a final FBS of 166.0 ± 26.6 mg/dL (p = 0.103), with a significant improvement in lowest glucose control 136.4 ± 5.8 mg/dL, (p = 0.017). |
Singh et al. [77] | kidney, liver, heart | 63 | Dulaglutide | decreased by 10%, 5.3% and 8.4% after 6, 12 and 24 months | no data | decrease of 2%, 4% and 5.2% after 6, 12 and 24 months | increase of 15% after 24 months | |
Singh et al. [77] | kidney, liver, heart | 25 | Liraglutide | initially decreased by 5.3% and 3% after 6 and 12 months, followed by an increase of 2% after 24 months | no data | decrease of 0.09%, 0.87% and 0.89% after 6, 12 and 24 months | decrease of 8% after 24 months | |
Kukla et al. [78] | 14 (82%) kidney, 1 (5.9%) kidney and liver, 2 (11.8%) kidney and heart | 17 | Liraglutide, Exenaglutide, Dulaglutide | remained statistically constant | no data | There was no statistical difference; only in 7 patients there was a decrease of 8.6 kg after 12 months (p = 0.07) | remained stable | Fasting blood glucose remained statistically unchanged. There was a significant reduction in total daily insulin dosage by a median of 30 IU (p = 0.007). |
Thangavelu et al. [79] | 7 kidney, 7 liver, 5 heart | 19 | Exenaglutide, Liraglutide, Dulaglutide, Semaglutide | decreased by 1.08%, 0.96% and 0.75% at 3, 6 and 12 months | no data | decrease of 4.86 kg after 12 months | remained stable after 12 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudzki, G.; Knop-Chodyła, K.; Piasecka, Z.; Kochanowska-Mazurek, A.; Głaz, A.; Wesołek-Bielaska, E.; Woźniak, M. Managing Post-Transplant Diabetes Mellitus after Kidney Transplantation: Challenges and Advances in Treatment. Pharmaceuticals 2024, 17, 987. https://doi.org/10.3390/ph17080987
Rudzki G, Knop-Chodyła K, Piasecka Z, Kochanowska-Mazurek A, Głaz A, Wesołek-Bielaska E, Woźniak M. Managing Post-Transplant Diabetes Mellitus after Kidney Transplantation: Challenges and Advances in Treatment. Pharmaceuticals. 2024; 17(8):987. https://doi.org/10.3390/ph17080987
Chicago/Turabian StyleRudzki, Grzegorz, Kinga Knop-Chodyła, Zuzanna Piasecka, Anna Kochanowska-Mazurek, Aneta Głaz, Ewelina Wesołek-Bielaska, and Magdalena Woźniak. 2024. "Managing Post-Transplant Diabetes Mellitus after Kidney Transplantation: Challenges and Advances in Treatment" Pharmaceuticals 17, no. 8: 987. https://doi.org/10.3390/ph17080987
APA StyleRudzki, G., Knop-Chodyła, K., Piasecka, Z., Kochanowska-Mazurek, A., Głaz, A., Wesołek-Bielaska, E., & Woźniak, M. (2024). Managing Post-Transplant Diabetes Mellitus after Kidney Transplantation: Challenges and Advances in Treatment. Pharmaceuticals, 17(8), 987. https://doi.org/10.3390/ph17080987