Inhibition of Nitric Oxide Synthesis Prevents the Effects of Intermittent Social Defeat on Cocaine-Induced Conditioned Place Preference in Male Mice
Abstract
:1. Introduction
2. Results
2.1. Behavioural Analysis during Episodes of Defeat
2.2. Role of 7-NI in the Short-Term Effects of ISD
2.3. Role of 7-NI in the Long-Term Effects of ISD
2.4. Correlations between Behavioural Measurements
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Drugs
4.3. Experimental Protocols
4.3.1. Intermittent Social Defeat (ISD)
4.3.2. Elevated Plus Maze (EPM)
4.3.3. Social Interaction Test
4.3.4. Object Recognition Test (ORT)
4.3.5. Tail Suspension Test (TST)
4.3.6. Conditioned Place Preference (CPP)
4.4. Experimental Design
4.5. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.H.; Badiani, A.; Miczek, K.A.; Müller, C.P. Non-pharmacological factors that determine drug use and addiction. Neurosci. Biobehav. Rev. 2020, 110, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Schulkin, J. Addiction and stress: An allostatic view. Neurosci. Biobehav. Rev. 2019, 106, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Ruisoto, P.; Contador, I. The role of stress in drug addiction. An integrative review. Physiol. Behav. 2019, 202, 62–68. [Google Scholar] [CrossRef] [PubMed]
- García-Pardo, M.P.; Calpe-López, C.; Miñarro, J.; Aguilar, M.A. Role of N-methyl-D-aspartate receptors in the long-term effects of repeated social defeat stress on the rewarding and psychomotor properties of cocaine in mice. Behav. Brain Res. 2019, 361, 95–103. [Google Scholar] [CrossRef]
- Calpe-López, C.; García-Pardo, M.P.; Martínez-Caballero, M.A.; Santos-Ortíz, A.; Aguilar, M.A. Behavioral traits associated with resilience to the effects of repeated social defeat on cocaine-induced conditioned place preference in mice. Front. Behav. Neurosci. 2020, 13, 278. [Google Scholar] [CrossRef]
- Calpe-López, C.; Martínez-Caballero, M.A.; García-Pardo, M.P.; Aguilar, M.A. Intermittent voluntary wheel running promotes resilience to the negative consequences of repeated social defeat in mice. Physiol. Behav. 2022, 254, 113916. [Google Scholar] [CrossRef]
- Calpe-López, C.; Martínez-Caballero, M.A.; García-Pardo, M.P.; Aguilar, M.A. Brief maternal separation inoculates against the effects of social stress on depression-like behavior and cocaine reward in mice. Front. Pharmacol. 2022, 13, 825522. [Google Scholar] [CrossRef] [PubMed]
- Milivojevic, V.; Sinha, R. Central and peripheral biomarkers of stress response for addiction risk and relapse vulnerability. Trends Mol. Med. 2018, 24, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Montagud-Romero, S.; Nuñez, C.; Blanco-Gandia, M.C.; Martínez-Laorden, E.; Aguilar, M.A.; Navarro-Zaragoza, J.; Almela, P.; Milanés, M.V.; Laorden, M.L.; Miñarro, J.; et al. Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: Dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system. Psychopharmacology 2017, 234, 2063–2075. [Google Scholar] [CrossRef]
- Ferrer-Pérez, C.; Reguilón, M.D.; Manzanedo, C.; Aguilar, M.A.; Miñarro, J.; Rodríguez-Arias, M. Antagonism of corticotropin-releasing factor CRF(1) receptors blocks the enhanced response to cocaine after social stress. Eur. J. Pharmacol. 2018, 823, 87–95. [Google Scholar] [CrossRef]
- García-Pardo, M.P.; Miñarro, J.; Llansola, M.; Felipo, V.; Aguilar, M.A. Role of NMDA and AMPA glutamatergic receptors in the effects of social defeat on the rewarding properties of MDMA in mice. Eur. J. Neurosci. 2019, 50, 2623–2634. [Google Scholar] [CrossRef] [PubMed]
- García-Pardo, M.P.; LLansola, M.; Felipo, V.; De la Rubia Ortí, J.E.; Aguilar, M.A. Blockade of nitric oxide signalling promotes resilience to the effects of social defeat stress on the conditioned rewarding properties of MDMA in mice. Nitric Oxide 2020, 98, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.Y.; Huang, S.Y.; Gao, L.; Lin, Y.H.; Chang, L.; Wu, H.Y.; Zhu, D.Y.; Luo, C.X. Neuronal nitric oxide synthase in nucleus accumbens specifically mediates susceptibility to social defeat stress through cyclin-dependent kinase 5. J. Neurosci. 2021, 41, 2523–2539. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.P.; Laverde, C.F.; Nunes-de-Souza, R.L. Anxiogenesis induced by social defeat in male mice: Role of nitric oxide, NMDA, and CRF1 receptors in the medial prefrontal cortex and BNST. Neuropharmacology 2020, 166, 107973. [Google Scholar] [CrossRef]
- Volke, V.; Soosaar, A.; Kõks, S.; Bourin, M.; Männistö, P.T.; Vasar, E. 7-Nitroindazole, a nitric oxide synthase inhibitor, has anxiolytic-like properties in exploratory models of anxiety. Psychopharmacology 1997, 131, 399–405. [Google Scholar] [CrossRef]
- Santos-Rocha, J.B.; Rae, M.; Teixeira, A.M.A.; Teixeira, S.A.; Munhoz, C.D.; Muscará, M.N.; Marcourakis, T.; Szumlinski, K.K.; Camarini, R. Involvement of neuronal nitric oxide synthase in cross-sensitization between chronic unpredictable stress and ethanol in adolescent and adult mice. Alcohol 2018, 68, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gilhotra, N.; Dhingra, D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res. 2010, 1352, 167–175. [Google Scholar] [CrossRef]
- Gilhotra, N.; Dhingra, D. Possible involvement of GABAergic and nitriergic systems for antianxiety-like activity of piperine in unstressed and stressed mice. Pharmacol. Rep. 2014, 66, 885–891. [Google Scholar] [CrossRef]
- Gilhotra, N.; Jain, H.; Dhingra, D. Differential effects of nitric oxide synthase inhibitors on anxiety in unstressed and stressed mice. Indian J. Exp. Biol. 2010, 48, 365–372. [Google Scholar]
- Dhingra, D.; Chhillar, R.; Gupta, A. Antianxiety-like activity of gallic acid in unstressed and stressed mice: Possible involvement of nitriergic system. Neurochem. Res. 2012, 37, 487–494. [Google Scholar] [CrossRef]
- Harvey, B.H.; Oosthuizen, F.; Brand, L.; Wegener, G.; Stein, D.J. Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus. Psychopharmacology 2004, 175, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Pokk, P.; Väli, M. The effects of the nitric oxide synthase inhibitors on the behaviour of small-platform-stressed mice in the plus-maze test. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.G.; Hu, Y.; Hua, Y.; Hu, M.; Luo, C.X.; Han, X.; Zhu, X.J.; Wang, B.; Xu, J.S.; Zhu, D.Y. Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J. Neurochem. 2007, 103, 1843–1854. [Google Scholar] [CrossRef]
- Zhou, Q.G.; Zhu, X.H.; Nemes, A.D.; Zhu, D.Y. Neuronal nitric oxide synthase and affective disorders. IBRO Rep. 2018, 5, 116–132. [Google Scholar] [CrossRef]
- Abdel-Haq, M.; Ojha, S.K.; Hamoudi, W.; Kumar, A.; Kumar Tripathi, M.; Khaliulin, I.; Domb, A.J.; Amal, H. Effects of extended-release 7-nitroindazole gel formulation treatment on the behavior of Shank3 mouse model of autism. Nitric Oxide 2023, 140–141, 41–49. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Ojha, S.K.; Kartawy, M.; Hamoudi, W.; Choudhary, A.; Stern, S.; Aran, A.; Amal, H. The NO Answer for Autism Spectrum Disorder. Adv. Sci. 2023, 10, e2205783. [Google Scholar] [CrossRef]
- Amiri, S.; Haj-Mirzaian, A.; Rahimi-Balaei, M.; Razmi, A.; Kordjazy, N.; Shirzadian, A.; Mehr, S.E.; Sianati, H.; Dehpour, A.R. Co-occurrence of anxiety and depressive-like behaviors following adolescent social isolation in male mice; possible role of nitrergic system. Physiol. Behav. 2015, 145, 38–44. [Google Scholar] [CrossRef]
- da Costa, V.F.; Caipa Ramírez, J.C.; Viatela Ramírez, S.; Avalo-Zuluaga, J.H.; Baptista-de-Souza, D.; Canto-de-Souza, L.; Planeta, C.S.; Rico Rodríguez, J.L.; Nunes-de-Souza, R.L. Emotional- and cognitive-like responses induced by social defeat stress in male mice are modulated by the BNST, amygdala, and hippocampus. Front. Integr. Neurosci. 2023, 17, 1168640. [Google Scholar] [CrossRef]
- Jin, H.M.; Muna, S.; Bagalkot, T.R.; Cui, Y.; Yadav, B.K.; Chung, Y.C. The effects of social defeat on behavior and dopaminergic markers in mice. Neuroscience 2015, 288, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Dang, R.; Wang, M.; Li, X.; Wang, H.; Liu, L.; Wu, Q.; Zhao, J.; Ji, P.; Zhong, L.; Licinio, J.; et al. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J. Neuroinflammation 2022, 19, 41. [Google Scholar] [CrossRef]
- García-Pardo, M.P.; Roger-Sánchez, C.; Rodríguez-Arias, M.; Miñarro, J.; Aguilar, M.A. Cognitive and behavioural effects induced by social stress plus MDMA administration in mice. Behav. Brain Res. 2017, 319, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Wendelmuth, M.; Willam, M.; Todorov, H.; Radyushkin, K.; Gerber, S.; Schweiger, S. Dynamic longitudinal behavior in animals exposed to chronic social defeat stress. PLoS ONE 2020, 15, e0235268. [Google Scholar] [CrossRef] [PubMed]
- Frankowska, M.; Smaga, I.; Gawlińska, K.; Pieniążek, R.; Filip, M. Further proof on the role of accumbal nNOS in cocaine-seeking behavior in rats. Pharmacol. Rep. 2024, 76, 338–347. [Google Scholar] [CrossRef]
- Siemsen, B.M.; McFaddin, J.A.; Haigh, K.; Brock, A.G.; Leath, M.N.; Hooker, K.N.; McGonegal, L.K.; Scofield, M.D. Amperometric measurements of cocaine cue and novel context-evoked glutamate and nitric oxide release in the nucleus accumbens core. J. Neurochem. 2020, 153, 599–616. [Google Scholar] [CrossRef]
- Smith, A.C.W.; Scofield, M.D.; Heinsbroek, J.A.; Gipson, C.D.; Neuhofer, D.; Roberts-Wolfe, D.J.; Spencer, S.; Garcia-Keller, C.; Stankeviciute, N.M.; Smith, R.J.; et al. Accumbens nNOS interneurons regulate cocaine relapse. J. Neurosci. 2017, 37, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Vitcheva, V.; Simeonova, R.; Kondeva-Burdina, M.; Mitcheva, M. Selective nitric oxide synthase inhibitor 7-Nitroindazole protects against cocaine-induced oxidative stress in rat brain. Oxid. Med. Cell Longev. 2015, 2015, 157876. [Google Scholar] [CrossRef]
- Thériault, R.K.; Leri, F.; Kalisch, B. The role of neuronal nitric oxide synthase in cocaine place preference and mu opioid receptor expression in the nucleus accumbens. Psychopharmacology 2018, 235, 2675–2685. [Google Scholar] [CrossRef]
- Artur de la Villarmois, E.; Gabach, L.A.; Bianconi, S.; Poretti, M.B.; Occhieppo, V.; Schiöth, H.B.; Carlini, V.P.; Pérez, M.F. Pharmacological NOS-1 inhibition within the hippocampus prevented expression of cocaine sensitization: Correlation with reduced synaptic transmission. Mol. Neurobiol. 2020, 57, 450–460. [Google Scholar] [CrossRef]
- Kamii, H.; Taoka, N.; Minami, M.; Kaneda, K. Nitric oxide in the medial prefrontal cortex contributes to the acquisition of cocaine place preference and synaptic plasticity in the laterodorsal tegmental nucleus. Neurosci. Lett. 2017, 660, 39–44. [Google Scholar] [CrossRef]
- Zhou, Q.G.; Zhu, L.J.; Chen, C.; Wu, H.Y.; Luo, C.X.; Chang, L.; Zhu, D.Y. Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor. J. Neurosci. 2011, 31, 7579–7590. [Google Scholar] [CrossRef]
- Chen, H.-J.C.; Spiers, J.G.; Sernia, C.; Lavidis, N.A. Response of the nitrergic system to activation of the neuroendocrine stress axis. Front. Neurosci. 2015, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Di Monte, D.A.; Royland, J.E.; Anderson, A.; Castagnoli, K.; Castagnoli, N.; Langston, J.W. Inhibition of monoamine oxidase contributes to the protective effect of 7-nitroindazole against MPTP neurotoxicity. J. Neurochem. 1997, 69, 1771–1773. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Arias, M.; Miñarro, J.; Aguilar, M.A.; Pinazo, J.; Simón, V.M. Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur. Neuropsychopharmacol. 1998, 8, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Miczek, K.A.; Thompson, M.L.; Shuster, L. Opioid-like analgesia in defeated mice. Science 1982, 215, 1520–1522. [Google Scholar] [CrossRef]
- Ribeiro Do Couto, B.; Aguilar, M.A.; Manzanedo, C.; Rodríguez-Arias, M.; Armario, A.; Miñarro, J. Social stress is as effective as physical stress in reinstating morphine-induced place preference in mice. Psychopharmacology 2006, 185, 459–470. [Google Scholar] [CrossRef]
- Brain, P.F.; McAllister, K.H.; Walmsley, S. Drug effects on social behaviors. In Psychopharmacology; Boulton, A.A., Bake, G.B., Greenshaw, A.J., Eds.; The Humana Press Inc: Clifton, NJ, USA, 1989; pp. 687–739. [Google Scholar]
- Rodgers, R.J.; Dalvi, A. Anxiety, defence and the elevated plus-maze. Neurosci. Biobehav. Rev. 1997, 21, 801–810. [Google Scholar] [CrossRef]
- Campos, A.C.; Fogaca, M.V.; Aguiar, D.C.; Guimarães, F.S. Animal models of anxiety disorders and stress. Braz. J. Psychiatry 2013, 35, S101–S111. [Google Scholar] [CrossRef]
- Henriques-Alves, A.M.; Queiroz, C.M. Ethological evaluation of the effects of social defeat stress in mice: Beyond the social interaction ratio. Front. Behav. Neurosci. 2016, 9, 364. [Google Scholar] [CrossRef]
- Krishnan, V.; Han, M.H.; Graham, D.L.; Berton, O.; Renthal, W.; Russo, S.J.; LaPlant, Q.; Graham, A.; Lutter, M.; Lagace, D.C.; et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007, 131, 391–404. [Google Scholar] [CrossRef]
- Winters, B.D.; Saksida, L.M.; Bussey, T.J. Object recognition memory: Neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci. Biobehav. Rev. 2008, 32, 1055–1070. [Google Scholar] [CrossRef]
- Pollak, D.D.; Rey, C.E.; Monje, F.J. Rodent models in depression research: Classical strategies and new directions. Ann. Med. 2010, 42, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Mombereau, C.; Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005, 29, 571–625. [Google Scholar] [CrossRef] [PubMed]
- Vaugeois, J.M.; Passera, G.; Zuccaro, F.; Costentin, J. Individual differences in response to imipramine in the mouse tail suspension test. Psychopharmacology 1997, 134, 387–391. [Google Scholar] [CrossRef]
- Maldonado, C.; Rodríguez-Arias, M.; Castillo, A.; Aguilar, M.A.; Miñarro, J. Effect of memantine and CNQX in the acquisition, expression and reinstatement of cocaine-induced conditioned place preference. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 932–939. [Google Scholar] [CrossRef] [PubMed]
Experimental Animals | Avoidance/ Flee | Latency Avoid/Flee | Defence/ Submission | Latency Defence/Subm. | ||||
Encounter | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 4 |
Defeated mice treated with VEH | 117.39 | 168.72 | [26.52 | 5.15] | 15.64 | 20.86 | 40.71 | 73.2 |
(n = 10) | ±31.24 | ±22.61 | ±13.71 | ±1.53 | ±3.23 | ±5.38 | ±17.17 | ±34.82 |
Defeated mice treated with 7-NI7 | 142.87 | 155.49 | 4.64 | 4.32 | 9.5 | 15.39 | 74.67 | 37.86 |
(n = 12) | ±20.28 | ±21.24 | ±2.07 | ±1.31 | ±2.43 | ±3.89 | ±27.12 | ±12.81 |
Defeated mice treated with 7-NI12 | 96.5 | 125.21 | [2.69 | 2.67] * | 14.27 | 17.54 | 65.84 | 31.75 |
(n = 12) | ±17.73 | ±24.63 | ±0.55 | ±0.91 | ±4.32 | ±3.38 | ±26.53 | ±12.03 |
Aggressive Opponents | Threat | Latency Threat | Attack | Latency Attack | ||||
Encounter | 1 | 4 # | 1 | 4 | 1 | 4 | 1 | 4 |
Confronted with VEH-treated mice | [15.89 | 10.32] | 23.48 | 43.56 | 40.96 | 36.47 | 22.28 | 6.98 |
(n = 10) | ±2.77 | ±2.17 | ±13.26 | ±19.25 | ±5.18 | ±7.7 | ±12.79 | ±2.06 |
Confronted with 7-NI7 treated mice | 14.01 | 8.32 | 15.26 | 25.39 | 35.1 | 29.09 | 3.78 | 3.73 |
(n = 12) | ±3.33 | ±1.84 | ±7.1 | ±9.93 | ±3.69 | ±2.9 | ±0.98 | ±1.12 |
Confronted with 7-NI12 treated mice | [6.84 | 6.4] * | 22.46 | 41.32 | 31.18 | 26.04 | 2.67 | 4.6 |
(n = 12) | ±1.53 | ±1.59 | ±8.35 | ±15.65 | ±4.35 | ±5.22 | ±0.55 | ±2.27 |
Threat 1 | Threat 4 | LThreat 1 | LThreat 4 | LAttack 1 | Av/Flee 1 | Av/Flee 4 | LAv/Flee 1 | LAv/Flee 4 | Def/S 1 | Def/S 4 | LDef/S 1 | LDef/S 4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Threat 1 | ns | ns | ns | ns | r = −0.357; R2 = 0.127 | ns | ns | ns | ns | ns | ns | ns | |
Threat 4 | ns | ns | ns | ns | ns | r = −0.444; R2 = 0.197 | ns | ns | ns | r = 0.613; R2 = 0.375 | ns | ns | |
LThreat 1 | ns | ns | ns | r = 0.638; R2 = 0.407 | ns | ns | r = 0.58; R2 = 0.336 | ns | ns | ns | r = 0.461; R2 = 0.213 | ns | |
LThreat 4 | ns | ns | ns | ns | ns | ns | ns | ns | ns | r = −0.357; R2 = 0.128 | ns | r = 0.516; R2 = 0.266 | |
LAttack 1 | ns | ns | 0.001 | ns | ns | ns | r = 0.937; R2 = 0.879 | ns | ns | ns | ns | ns | |
Av/Flee 1 | 0.05 | ns | ns | ns | ns | ns | r = −0.36; R2 = 0.129 | ns | r = −0.458; R2 = 0.210 | ns | ns | ns | |
Av/Flee 4 | ns | 0.01 | ns | ns | ns | ns | ns | ns | ns | r = −0.731; R2 = 0.535 | ns | r = 0.423; R2 = 0.179 | |
LAv/Flee 1 | ns | ns | 0.001 | ns | 0.01 | 0.05 | ns | ns | ns | ns | ns | ns | |
LAv/Flee 4 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Def/S 1 | ns | ns | ns | ns | ns | 0.01 | ns | ns | ns | ns | r = −0.498; R2 = 0.248 | ns | |
Def/S 4 | ns | 0.001 | ns | 0.05 | ns | ns | 0.01 | ns | ns | ns | ns | r = −0.485; R2 = 0.235 | |
LDef/S 1 | ns | ns | 0.01 | ns | ns | ns | ns | ns | ns | 0.01 | ns | ns | |
LDef/S 4 | ns | ns | ns | 0.01 | ns | ns | 0.05 | ns | ns | ns | 0.01 | ns |
Threat 1 | Attack 1 | Attack 4 | LAttack 1 | Av/Flee 4 | LAv/Flee 1 | Def/S 4 | Immob | LImmob | TOA | %TOA | EOA | %EOA | ISI | CPP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Threat 1 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | r = −0.356; R2 = 0.126 | ns | |
Attack 1 | ns | ns | ns | ns | ns | ns | ns | ns | r = 0.361; R2 = 0.130 | r = 0.371; R2 = 0.137 | r = 0.361; R2 = 0.130 | ns | ns | ns | |
Attack 4 | ns | ns | ns | ns | ns | ns | ns | ns | r = 0.401; R2 = 0.161 | r = 0.363; R2 = 0.131 | ns | r = 0.342; R2 = 0.117 | r = 0.369; R2 = 0.136 | ns | |
LAttack 1 | ns | ns | ns | ns | r = 0.937; R2 = 0.879 | ns | ns | r = 0.507; R2 = 0.257 | ns | ns | ns | ns | ns | ns | |
Av/Flee 4 | ns | ns | ns | ns | ns | r = −0.731; R2 = 0.535 | ns | ns | r = 0.366; R2 = 0.134 | ns | ns | ns | ns | ||
LAv/Flee 1 | ns | ns | ns | 0.001 | ns | ns | ns | r = 0.475; R2 = 0.225 | ns | ns | ns | ns | ns | ns | |
Def/S 4 | ns | ns | ns | ns | 0.001 | ns | r = 0.345; R2 = 0.119 | ns | r = −0.496; R2 = 0.246 | r = −0.431; R2 = 0.186 | r = −0.424; R2 = 0.179 | ns | ns | r = 0.371; R2 = 0.138 | |
Immob | ns | ns | ns | ns | ns | ns | 0.05 | ns | ns | ns | ns | ns | r = 0.443; R2 = 0.196 | ns | |
L Immob | ns | ns | ns | 0.01 | ns | 0.01 | ns | ns | ns | ns | ns | ns | ns | ns | |
TOA | ns | 0.05 | 0.05 | ns | 0.05 | ns | 0.01 | ns | ns | r = 0.96; R2 = 0.922 | r = 0.878; R2 = 0.771 | r = 0.821; R2 = 0.674 | ns | ns | |
%TOA | ns | 0.05 | 0.05 | ns | 0.05 | ns | 0.05 | ns | ns | 0.001 | r = 0.852; R2 = 0.725 | r = 0.888; R2 = 0.788 | ns | ns | |
EOA | ns | 0.05 | ns | ns | ns | ns | 0.05 | ns | ns | 0.001 | 0.001 | r = 0.825; R2 = 0.681 | r = −0.381; R2 = 0.145 | ns | |
%EOA | ns | ns | 0.05 | ns | ns | ns | ns | ns | ns | 0.001 | 0.001 | 0.001 | ns | ns | |
ISI | 0.05 | ns | 0.05 | ns | ns | ns | ns | 0.01 | ns | ns | ns | 0.05 | ns | ns | |
CPP | ns | ns | ns | ns | ns | ns | 0.05 | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Caballero, M.Á.; García-Pardo, M.P.; Calpe-López, C.; Arenas, M.C.; Manzanedo, C.; Aguilar, M.A. Inhibition of Nitric Oxide Synthesis Prevents the Effects of Intermittent Social Defeat on Cocaine-Induced Conditioned Place Preference in Male Mice. Pharmaceuticals 2024, 17, 1203. https://doi.org/10.3390/ph17091203
Martínez-Caballero MÁ, García-Pardo MP, Calpe-López C, Arenas MC, Manzanedo C, Aguilar MA. Inhibition of Nitric Oxide Synthesis Prevents the Effects of Intermittent Social Defeat on Cocaine-Induced Conditioned Place Preference in Male Mice. Pharmaceuticals. 2024; 17(9):1203. https://doi.org/10.3390/ph17091203
Chicago/Turabian StyleMartínez-Caballero, María Ángeles, María Pilar García-Pardo, Claudia Calpe-López, María Carmen Arenas, Carmen Manzanedo, and María Asuncion Aguilar. 2024. "Inhibition of Nitric Oxide Synthesis Prevents the Effects of Intermittent Social Defeat on Cocaine-Induced Conditioned Place Preference in Male Mice" Pharmaceuticals 17, no. 9: 1203. https://doi.org/10.3390/ph17091203
APA StyleMartínez-Caballero, M. Á., García-Pardo, M. P., Calpe-López, C., Arenas, M. C., Manzanedo, C., & Aguilar, M. A. (2024). Inhibition of Nitric Oxide Synthesis Prevents the Effects of Intermittent Social Defeat on Cocaine-Induced Conditioned Place Preference in Male Mice. Pharmaceuticals, 17(9), 1203. https://doi.org/10.3390/ph17091203