Evaluation of the Impact of Infusion Set Design on the Particulate Load Induced by Vancomycin–Piperacillin/Tazobactam Incompatibility
Abstract
:1. Introduction
2. Results
2.1. The Overall Results
2.2. Impact of Differences in Tubing Length and Internal Diameter
2.3. Impact of Using a Multilumen Medical Device
2.4. Impact of the Location of the Infusion Site for Vancomycin and Piperacillin/Tazobactam
2.5. Impact of Vancomycin Dilution
3. Discussion
3.1. Impact of the Common Volume of a Medical Infusion Device (Length, Internal Diameter, Multilumen Devices)
3.2. Impact of the Distance between Incompatible Drugs on an Infusion Line
4. Materials and Methods
4.1. Experiments, Devices, and Drugs
4.1.1. Products and Medical Devices
4.1.2. Infusion Lines and Standard Operating Procedures
4.2. Instrument: Dynamic Particle Counts
4.3. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taxis, K.; Barber, N. Incidence and Severity of Intravenous Drug Errors in a German Hospital. Eur. J. Clin. Pharmacol. 2004, 59, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Tardy, C.; Maison, O.; Faudel, A.; Sarfati, L.; Iroir, G.; Rioufol, C.; Lepape, A.; Parat, S. Incompatibilités Médicamenteuses Physico-Chimiques En Unités de Soins Intensifs: État Des Lieux et Mise En Place de Mesures Préventives. Pharm. Hosp. Clin. 2017, 52, e18. [Google Scholar] [CrossRef]
- Bertsche, T.; Mayer, Y.; Stahl, R.; Hoppe-Tichy, T.; Encke, J.; Haefeli, W.E. Prevention of Intravenous Drug Incompatibilities in an Intensive Care Unit. Am. J. Health Syst. Pharm. 2008, 65, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Maison, O.; Tardy, C.; Cabelguenne, D.; Parat, S.; Ducastelle, S.; Piriou, V.; Lepape, A.; Lalande, L. Drug Incompatibilities in Intravenous Therapy: Evaluation and Proposition of Preventive Tools in Intensive Care and Hematology Units. Eur. J. Clin. Pharmacol. 2019, 75, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Leopoldino, R.W.; Costa, H.T.; Costa, T.X.; Martins, R.R.; Oliveira, A.G. Potential Drug Incompatibilities in the Neonatal Intensive Care Unit: A Network Analysis Approach. BMC Pharmacol. Toxicol. 2018, 19, 83. [Google Scholar] [CrossRef]
- Foinard, A.; Décaudin, B.; Barthélémy, C.; Debaene, B.; Odou, P. Impact of Physical Incompatibility on Drug Mass Flow Rates: Example of Furosemide-Midazolam Incompatibility. Ann. Intensive Care 2012, 2, 28. [Google Scholar] [CrossRef]
- Hecker, J.F.; Fisk, G.C.; Lewis, G.B. Phlebitis and Extravasation (“tissuing”) with Intravenous Infusions. Med. J. Aust. 1984, 140, 658–660. [Google Scholar] [CrossRef]
- DeLuca, P.P.; Rapp, R.P.; Bivins, B.; McKean, H.E.; Griffen, W.O. Filtration and Infusion Phlebitis: A Double-Blind Prospective Clinical Study. Am. J. Hosp. Pharm. 1975, 32, 1001–1007. [Google Scholar]
- Bradley, J.S.; Wassel, R.T.; Lee, L.; Nambiar, S. Intravenous Ceftriaxone and Calcium in the Neonate: Assessing the Risk for Cardiopulmonary Adverse Events. Pediatrics 2009, 123, e609–e613. [Google Scholar] [CrossRef]
- Reedy, J.S.; Kuhlman, J.E.; Voytovich, M. Microvascular Pulmonary Emboli Secondary to Precipitated Crystals in a Patient Receiving Total Parenteral Nutrition: A Case Report and Description of the High-Resolution CT Findings. Chest 1999, 115, 892–895. [Google Scholar]
- Négrier, L.; Martin Mena, A.; Lebuffe, G.; Odou, P.; Genay, S.; Décaudin, B. Strategies to Prevent Drug Incompatibility during Simultaneous Multi-Drug Infusion in Intensive Care Units: A Literature Review. Eur. J. Clin. Pharmacol. 2021, 77, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Stabilis 4.0. Available online: https://www.stabilis.org/ (accessed on 10 June 2024).
- King Guide Publications Home Page. Available online: https://kingguide.com/ (accessed on 10 June 2024).
- Camut, A.; Hédin, P.; Jouannet, M.; Sekely, M.; Simana, F.; De Stampa, M.; Vedel, I. Prevention of the psychomotor maladaptation syndrome at home, nursing case management. Soins Gerontol. 2007, 33–36. [Google Scholar]
- Ma, N.H.; Walker, S.A.N.; Elligsen, M.; Kiss, A.; Palmay, L.; Ho, G.; Powis, J.; Bansal, V.; Leis, J.A. Retrospective Multicentre Matched Cohort Study Comparing Safety and Efficacy Outcomes of Intermittent-Infusion versus Continuous-Infusion Vancomycin. J. Antimicrob. Chemother. 2020, 75, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Kanji, S.; Lam, J.; Johanson, C.; Singh, A.; Goddard, R.; Fairbairn, J.; Lloyd, T.; Monsour, D.; Kakal, J. Systematic Review of Physical and Chemical Compatibility of Commonly Used Medications Administered by Continuous Infusion in Intensive Care Units. Crit. Care Med. 2010, 38, 1890–1898. [Google Scholar] [CrossRef] [PubMed]
- D’Huart, É.; Vigneron, J.; Charmillon, A.; Clarot, I.; Demoré, B. Physicochemical Stability of Vancomycin at High Concentrations in Polypropylene Syringes. Can. J. Hosp. Pharm. 2019, 72, 360–368. [Google Scholar] [CrossRef]
- Martin Mena, A.; Négrier, L.; Treizebré, A.; Guilbert, M.; Bonnaire, L.; Daniau, V.; Leba Bonki, G.; Odou, P.; Genay, S.; Décaudin, B. Evaluation of Strategies for Reducing Vancomycin-Piperacillin/Tazobactam Incompatibility. Pharmaceutics 2023, 15, 2069. [Google Scholar] [CrossRef]
- Perez, M.; Décaudin, B.; Abou Chahla, W.; Nelken, B.; Barthélémy, C.; Lebuffe, G.; Odou, P. In Vitro Analysis of Overall Particulate Contamination Exposure during Multidrug IV Therapy: Impact of Infusion Sets. Pediatr. Blood Cancer 2015, 62, 1042–1047. [Google Scholar] [CrossRef]
- Perez, M.; Décaudin, B.; Foinard, A.; Barthélémy, C.; Debaene, B.; Lebuffe, G.; Odou, P. Compatibility of Medications during Multi-Infusion Therapy: A Controlled in Vitro Study on a Multilumen Infusion Device. Anaesth. Crit. Care Pain Med. 2015, 34, 83–88. [Google Scholar] [CrossRef]
- Foinard, A.; Décaudin, B.; Barthélémy, C.; Debaene, B.; Odou, P. The Impact of Multilumen Infusion Devices on the Occurrence of Known Physical Drug Incompatibility: A Controlled in Vitro Study. Anesth. Analg. 2013, 116, 101–106. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R.; Beldavs, Z.G.; Dumyati, G.; Janelle, S.J.; Kainer, M.A.; Lynfield, R.; Nadle, J.; Neuhauser, M.M.; Ray, S.M.; et al. Prevalence of Antimicrobial Use in US Acute Care Hospitals, May-September 2011. JAMA 2014, 312, 1438–1446. [Google Scholar] [CrossRef]
- Watkins, R.R.; Deresinski, S. Increasing Evidence of the Nephrotoxicity of Piperacillin/Tazobactam and Vancomycin Combination Therapy-What Is the Clinician to Do? Clin. Infect. Dis. 2017, 65, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.G.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; et al. 2012 Infectious Diseases Society of America Clinical Practice Guideline for the Diagnosis and Treatment of Diabetic Foot Infections. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.C.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, 147–159. [Google Scholar] [CrossRef]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.C.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and Management of Complicated Intra-Abdominal Infection in Adults and Children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.N.; Venkatesan, N.; Manek, M.; Rhodes, N.J.; Scheetz, M.H. Visual and Absorbance Analyses of Admixtures Containing Vancomycin and Piperacillin-Tazobactam at Commonly Used Concentrations. Am. J. Health Syst. Pharm. 2016, 73, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Négrier, L.; Martin Mena, A.; Lebuffe, G.; Maury, É.; Gaudy, R.; Degand, F.; Thibaut, M.; Carta, N.; Odou, P.; Genay, S.; et al. Simultaneous Infusion of Two Incompatible Antibiotics: Impact of the Choice of Infusion Device and Concomitant Simulated Fluid Volume Support on the Particulate Load and the Drug Mass Flow Rates. Int. J. Pharm. 2022, 627, 122220. [Google Scholar] [CrossRef]
- Lovich, M.A.; Doles, J.; Peterfreund, R.A. The Impact of Carrier Flow Rate and Infusion Set Dead-Volume on the Dynamics of Intravenous Drug Delivery. Anesth. Analg. 2005, 100, 1048. [Google Scholar] [CrossRef]
- Wade, J.; Cooper, M.; Ragan, R. Simulated Y-Site Compatibility of Vancomycin and Piperacillin-Tazobactam. Hosp. Pharm. 2015, 50, 376–379. [Google Scholar] [CrossRef]
- Raverdy, V.; Ampe, E.; Hecq, J.-D.; Tulkens, P.M. Stability and Compatibility of Vancomycin for Administration by Continuous Infusion. J. Antimicrob. Chemother. 2013, 68, 1179–1182. [Google Scholar] [CrossRef]
- Leung, E.; Venkatesan, N.; Ly, S.C.; Scheetz, M.H. Physical Compatibility of Vancomycin and Piperacillin Sodium-Tazobactam at Concentrations Typically Used during Prolonged Infusions. Am. J. Health Syst. Pharm. 2013, 70, 1163–1166. [Google Scholar] [CrossRef]
- Kufel, W.D.; Miller, C.D.; Johnson, P.R.; Reid, K.; Zahra, J.J.; Seabury, R.W. Y-Site Incompatibility Between Premix Concentrations of Vancomycin and Piperacillin-Tazobactam: Do Current Compatibility Testing Methodologies Tell the Whole Story? Hosp. Pharm. 2017, 52, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Résumé Des Caractéristiques Du Produit. Available online: http://agence-prd.ansm.sante.fr/php/ecodex/rcp/R0255032.htm (accessed on 18 June 2023).
- Drouet, M.; Chai, F.; Barthélémy, C.; Lebuffe, G.; Debaene, B.; Décaudin, B.; Odou, P. Endothelial Cell Toxicity of Vancomycin Infusion Combined with Other Antibiotics. Antimicrob. Agents Chemother. 2015, 59, 4901–4906. [Google Scholar] [CrossRef] [PubMed]
- Robibaro, B.; Vorbach, H.; Weigel, G.; Weihs, A.; Hlousek, M.; Presterl, E.; Georgopoulos, A.; Griesmacher, A.; Graninger, W. Influence of Glycopeptide Antibiotics on Purine Metabolism of Endothelial Cells. In Purine and Pyrimidine Metabolism in Man IX; Griesmacher, A., Müller, M.M., Chiba, P., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1998; pp. 833–838. ISBN 978-1-4615-5381-6. [Google Scholar]
- Drouet, M.; Chai, F.; Barthélémy, C.; Lebuffe, G.; Debaene, B.; Décaudin, B.; Odou, P. Influence of Vancomycin Infusion Methods on Endothelial Cell Toxicity. Antimicrob. Agents Chemother. 2015, 59, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Moss, D.R.; Bartels, K.; Peterfreund, G.L.; Lovich, M.A.; Sims, N.M.; Peterfreund, R.A. An in Vitro Analysis of Central Venous Drug Delivery by Continuous Infusion: The Effect of Manifold Design and Port Selection. Anesth. Analg. 2009, 109, 1524–1529. [Google Scholar] [CrossRef]
- Perez, M.; Décaudin, B.; Abou Chahla, W.; Nelken, B.; Storme, L.; Masse, M.; Barthélémy, C.; Lebuffe, G.; Odou, P. Effectiveness of In-Line Filters to Completely Remove Particulate Contamination During a Pediatric Multidrug Infusion Protocol. Sci. Rep. 2018, 8, 7714. [Google Scholar] [CrossRef]
- Nichols, K.R.; Demarco, M.W.; Vertin, M.D.; Knoderer, C.A. Y-Site Compatibility of Vancomycin and Piperacillin/Tazobactam at Commonly Utilized Pediatric Concentrations. Hosp. Pharm. 2013, 48, 44–47. [Google Scholar] [CrossRef]
Total Infusion Time | Peak 1 | Peak 2 | Peak 1 + 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Particles | Total | ≥10 µm | ≥25 µm | Percentage of Total Particles | Percentage of Particles ≥10 µm | Percentage of Particles ≥25 µm | Percentage of Total Particles | Percentage of Particles ≥10 µm | Percentage of Particles ≥25 µm | Percentage of Total Particles | Percentage of Particles ≥10 µm | Percentage of Particles ≥25 µm |
Set-up A | 1,679,849 ± 544,761 | 115,494 ± 21,315 | 20,469 ± 6023 | 84.2% | 86.6% | 94.0% | 8.7% | 8.7% | 5.7% | 92.9% | 95.3% | 99.8% |
Set-up B | 9,069,394 ± 4,145,341 | 671,673 ± 172,810 | 148,887 ± 74,396 | 12.0% | 18.1% | 22.7% | 69.6% | 85.1% | 77.3% | 97.9% | 99.3% | 99.9% |
Set-up C | 587,312 ± 205,362 | 30,830 ± 10,810 | 3738 ± 2405 | 66.5% | 65.0% | 70.8% | 6.2% | 12.5% | 18.8% | 72.7% | 75.4% | 89.6% |
Set-up D | 2,209,363 ± 842,171 | 169,728 ± 34,977 | 45,903 ± 9743 | 20.4% | 18.3% | 16.0% | 73.4% | 77.1% | 83.6% | 93.8% | 95.4% | 99.6% |
Set-up E | 3,703,771 ± 1,020,732 | 304,889 ± 81,586 | 71,841 ± 17,097 | 9.0% | 8.9% | 7.8% | 82.3% | 84.2% | 87.1% | 91.3% | 93.1% | 94.9% |
Set-up F | 64,300 ± 13,162 | 485 ± 127 | 5 ± 8 | no peak | no peak | no peak | ||||||
Set-up G | 4,405,799 ± 808,412 | 302,880 ± 109,452 | 34,592 ± 38,470 | no peak | 98.7% | 98.2% | 99.4% | 98.7% | 98.2% | 99.4% | ||
Set-up H | 13,090,974 ± 4,070,835 | 1,306,725 ± 431,423 | 361,961 ± 154,142 | 13.5% | 15.0% | 14.9% | 85.4% | 84.7% | 85% | 98.9% | 99.8% | 99.9% |
Duration of the Peak (Minutes) | ||
---|---|---|
Set-Up | Peak 1 | Peak 2 |
A | 7.0 ± 2.7 | 13.8 ± 7.5 |
B | 9.2 ± 2.0 | 25.0 ± 4.5 |
C | 5.0 ± 0.0 | 6.3 ± 2.5 |
D | 5.0 ± 0.0 | 15.8 ± 2.0 |
E | 6.0 ± 2.2 | 10.0 ± 0.0 |
G | - | 36.3 ± 2.5 |
H | 10.0 ± 0.0 | 500 ± 6.1 |
Product | Pharmaceutical Company | Dose/Initial Concentration | Batch Number | Batch Expiry Date (Month/Year) |
---|---|---|---|---|
Vancomycin | Mylan (Morgantown, WV, USA) | 1 g | B2407 B2422 | 06/2022 09/2022 |
Sandoz (Vienna, Austria) | 1 g | C0421 D0337 | 12/2023 07/2024 | |
Piperacillin/tazobactam | Panpharma (Beignon, France) | 4 g/500 mg | 306725 306767 | 12/2023 02/2024 |
Mylan | 4 g/500 mg | 18Y0758 18Y1943 | 10/2025 01/2026 | |
Saline solution for injection | Baxter (Thetford, UK) | 0.9% | 21A23T4A 22F18T3B | 12/2022 05/2025 |
Drug or Injectable Product | Set-Up(s) | Reconstitution/Dilution Volume (0.9% Saline) | Container | Concentration (mg/mL) | Infusion Flow Rate (mL/h) |
---|---|---|---|---|---|
Vancomycin | A, B, C, D, E, G, H | 48 mL q.s. | Syringe | 20.8 | 4 |
F | 168 mL q.s. | Infusion bag | 5.95 | 14 | |
Piperacillin/tazobactam | A, B, C, D, E, F, G, H | 50 mL q.s. | Syringe | 80/10 | 12.5 |
0.9% saline solution | A, B, C, D, E, G, H | 250 mL q.s. | Infusion bag | - | 10 |
F | - | - | - | - |
Set-Ups | Length of Tubing | Internal Diameter | Common Volume |
---|---|---|---|
A, F (200 large Ø) | 200 cm | 2.5 mm | 9.82 mL |
B (50 large Ø) | 50 cm | 2.5 mm | 2.45 mL |
C (200 small Ø) | 50 cm | 1 mm | 1.66 mL |
D (50 small Ø) | 50 cm | 1 mm | 0.42 mL |
E (multilumen) | - | - | 0.06 mL |
G, H | 50 cm | 2.5 mm | 2.45 mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Négrier, L.; Décaudin, B.; Treizebré, A.; Guilbert, M.; Odou, P.; Martin Mena, A. Evaluation of the Impact of Infusion Set Design on the Particulate Load Induced by Vancomycin–Piperacillin/Tazobactam Incompatibility. Pharmaceuticals 2024, 17, 1222. https://doi.org/10.3390/ph17091222
Négrier L, Décaudin B, Treizebré A, Guilbert M, Odou P, Martin Mena A. Evaluation of the Impact of Infusion Set Design on the Particulate Load Induced by Vancomycin–Piperacillin/Tazobactam Incompatibility. Pharmaceuticals. 2024; 17(9):1222. https://doi.org/10.3390/ph17091222
Chicago/Turabian StyleNégrier, Laura, Bertrand Décaudin, Anthony Treizebré, Marie Guilbert, Pascal Odou, and Anthony Martin Mena. 2024. "Evaluation of the Impact of Infusion Set Design on the Particulate Load Induced by Vancomycin–Piperacillin/Tazobactam Incompatibility" Pharmaceuticals 17, no. 9: 1222. https://doi.org/10.3390/ph17091222
APA StyleNégrier, L., Décaudin, B., Treizebré, A., Guilbert, M., Odou, P., & Martin Mena, A. (2024). Evaluation of the Impact of Infusion Set Design on the Particulate Load Induced by Vancomycin–Piperacillin/Tazobactam Incompatibility. Pharmaceuticals, 17(9), 1222. https://doi.org/10.3390/ph17091222