Examining Prenylated Xanthones as Potential Inhibitors Against Ketohexokinase C Isoform for the Treatment of Fructose-Driven Metabolic Disorders: An Integrated Computational Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Target Selection and Validation
2.2. Molecular Docking
2.3. Binding Free Energy Calculations and MM–GBSA Breakdown Analysis
2.4. ADMET Profiling
2.5. Molecular Dynamics (MD) Simulations
2.6. Quantum Mechanical Calculations
3. Material and Methods
3.1. Target Selection and Validation
3.2. Molecular Docking
3.3. Binding Free Energy Calculations
3.4. ADMET Profiling
3.5. Molecular Dynamics Simulations
3.6. Quantum Mechanical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giussani, M.; Lieti, G.; Orlando, A.; Parati, G.; Genovesi, S. Fructose Intake, Hypertension and Cardiometabolic Risk Factors in Children and Adolescents: From Pathophysiology to Clinical Aspects. A Narrative Review. Front. Med. 2022, 9, 792949. [Google Scholar] [CrossRef]
- Basciano, H.; Federico, L.; Adeli, K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab. 2005, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Sievenpiper, J.L. Controversies about sugars: Results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur. J. Nutr. 2016, 55, 25–43. [Google Scholar] [CrossRef]
- Bernstein, A.M.; de Koning, L.; Flint, A.J.; Rexrode, K.M.; Willett, W.C. Soda consumption and the risk of stroke in men and women. Am. J. Clin. Nutr. 2012, 95, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Alturki, M.S. Exploring Marine-Derived Compounds: In Silico Discovery of Selective Ketohexokinase (KHK) Inhibitors for Metabolic Disease Therapy. Mar. Drugs 2024, 22, 455. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.A.; Liu, W.; Perez, S.; Xing, G.; Sonnenberg, G.; Kou, K.; Blatnik, M.; Allen, R.; Weng, Y.; Vera, N.B.; et al. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol. Metab. 2021, 48, 101196. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A. WHO recommends reducing intake of’free sugars’ by adults and children. Natl. Med. J. India 2015, 28, 165. [Google Scholar] [PubMed]
- Vos, M.B. Nutrition, nonalcoholic fatty liver disease and the microbiome: Recent progress in the field. Curr. Opin. Lipidol. 2014, 25, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, M.R.; Söderlund, S.; Bogl, L.; Hakkarainen, A.; Matikainen, N.; Pietiläinen, K.; Räsänen, S.; Lundbom, N.; Björnson, E.; Eliasson, B. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J. Intern. Med. 2017, 282, 187–201. [Google Scholar] [CrossRef]
- Swarbrick, M.M.; Stanhope, K.L.; Elliott, S.S.; Graham, J.L.; Krauss, R.M.; Christiansen, M.P.; Griffen, S.C.; Keim, N.L.; Havel, P.J. Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women. Br. J. Nutr. 2008, 100, 947–952. [Google Scholar] [CrossRef]
- Lustig, R.H.; Mulligan, K.; Noworolski, S.M.; Tai, V.W.; Wen, M.J.; Erkin-Cakmak, A.; Gugliucci, A.; Schwarz, J.M. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity 2016, 24, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.-M.; Noworolski, S.M.; Erkin-Cakmak, A.; Korn, N.J.; Wen, M.J.; Tai, V.W.; Jones, G.M.; Palii, S.P.; Velasco-Alin, M.; Pan, K. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology 2017, 153, 743–752. [Google Scholar] [CrossRef]
- Gugliucci, A.; Lustig, R.H.; Caccavello, R.; Erkin-Cakmak, A.; Noworolski, S.M.; Tai, V.W.; Wen, M.J.; Mulligan, K.; Schwarz, J.-M. Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome. Atherosclerosis 2016, 253, 171–177. [Google Scholar] [CrossRef]
- Ishimoto, T.; Lanaspa, M.A.; Le, M.T.; Garcia, G.E.; Diggle, C.P.; MacLean, P.S.; Jackman, M.R.; Asipu, A.; Roncal-Jimenez, C.A.; Kosugi, T. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 4320–4325. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.C.; Villanueva, A.J.; Fadl, S.; Al Adem, K.; Cinviz, Z.N.; Nedyalkova, L.; Cardoso, T.H.; Andrade, M.E.; Saksena, N.K.; Sensoy, O. Residues in the fructose-binding pocket are required for ketohexokinase-A activity. J. Biol. Chem. 2024, 300, 107538. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.A.; Jones, C.T.; Xu, Y.; Fenaux, M.; Halcomb, R.L. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J. Med. Chem. 2020, 63, 5031–5073. [Google Scholar] [CrossRef]
- Diggle, C.P.; Shires, M.; Leitch, D.; Brooke, D.; Carr, I.M.; Markham, A.F.; Hayward, B.E.; Asipu, A.; Bonthron, D.T. Ketohexokinase: Expression and localization of the principal fructose-metabolizing enzyme. J. Histochem. Cytochem. 2009, 57, 763–774. [Google Scholar] [CrossRef]
- Ishimoto, T.; Lanaspa, M.A.; Rivard, C.J.; Roncal-Jimenez, C.A.; Orlicky, D.J.; Cicerchi, C.; McMahan, R.H.; Abdelmalek, M.F.; Rosen, H.R.; Jackman, M.R. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 2013, 58, 1632–1643. [Google Scholar] [CrossRef]
- Huard, K.; Ahn, K.; Amor, P.; Beebe, D.A.; Borzilleri, K.A.; Chrunyk, B.A.; Coffey, S.B.; Cong, Y.; Conn, E.L.; Culp, J.S.; et al. Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK). J. Med. Chem. 2017, 60, 7835–7849. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, J.; Lin, X.; Zhang, Z.; Hu, T.; Huo, S.; Li, Y. Discovery of a Novel Ketohexokinase Inhibitor with Improved Drug Distribution in Target Tissue for the Treatment of Fructose Metabolic Disease. J. Med. Chem. 2023, 66, 13501–13515. [Google Scholar] [CrossRef] [PubMed]
- Durham, T. 2, 6-Diamino Pyridine Compounds. Patent WO2020051058 A, 22 September 2020. [Google Scholar]
- Durham, T.B.; Hao, J.; Spinazze, P.; Stack, D.R.; Toth, J.L.; Massey, S.; Mbofana, C.T.; Johnston, R.D.; Lineswala, J.P.; Wrobleski, A.; et al. Identification of LY3522348: A Highly Selective and Orally Efficacious Ketohexokinase Inhibitor. J. Med. Chem. 2023, 66, 15960–15976. [Google Scholar] [CrossRef] [PubMed]
- Heine, N.; Weber, A.; Pautsch, A.; Gottschling, D.; Uphues, I.; Bauer, M.; Ebenhoch, R.; Magarkar, A.; Nosse, B.; Kley, J.T. Discovery of BI-9787, a potent zwitterionic ketohexokinase inhibitor with oral bioavailability. Bioorg Med. Chem. Lett. 2024, 112, 129930. [Google Scholar] [CrossRef]
- Le, M.T.; Lanaspa, M.A.; Cicerchi, C.M.; Rana, J.; Scholten, J.D.; Hunter, B.L.; Rivard, C.J.; Randolph, R.K.; Johnson, R.J. Bioactivity-Guided Identification of Botanical Inhibitors of Ketohexokinase. PLoS ONE 2016, 11, e0157458. [Google Scholar] [CrossRef] [PubMed]
- Maryanoff, B.E.; O’Neill, J.C.; McComsey, D.F.; Yabut, S.C.; Luci, D.K.; Jordan, A.D., Jr.; Masucci, J.A.; Jones, W.J.; Abad, M.C.; Gibbs, A.C.; et al. Inhibitors of Ketohexokinase: Discovery of Pyrimidinopyrimidines with Specific Substitution that Complements the ATP-Binding Site. ACS Med. Chem. Lett. 2011, 2, 538–543. [Google Scholar] [CrossRef]
- Dzobo, K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. In Comprehensive Pharmacology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 408–422. [Google Scholar]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences, T.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.Y.; Whiteman, M.; Jenner, A.; Peng, Z.F.; Halliwell, B. Mechanism of cell death induced by an antioxidant extract of Cratoxylum cochinchinense (YCT) in Jurkat T cells: The role of reactive oxygen species and calcium. Free Radic. Biol. Med. 2004, 36, 1588–1611. [Google Scholar] [CrossRef] [PubMed]
- Martínez Sánchez, G.; Rodríguez, H.M.A.; Giuliani, A.; Núñez Sellés, A.J.; Pons Rodríguez, N.; Fernández, O.S.L.; Re, L. Protective effect of Mangifera indica L. extract (Vimang®) on the injury associated with hepatic ischaemia reperfusion. Phytother. Res. 2003, 17, 197–201. [Google Scholar] [CrossRef]
- Madan, B.; Singh, I.; Kumar, A.; Prasad, A.K.; Raj, H.G.; Parmar, V.S.; Ghosh, B. Xanthones as inhibitors of microsomal lipid peroxidation and TNF-α induced ICAM-1 expression on human umbilical vein endothelial cells (HUVECs). Bioorg Med. Chem. 2002, 10, 3431–3436. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.-W.; Jung, H.-A.; Chai, H.; Keller, W.J.; Kinghorn, A.D. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry 2008, 69, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Ignatushchenko, M.V.; Winter, R.W.; Riscoe, M. Xanthones as antimalarial agents: Stage specificity. Am. J. Trop. Med. Hyg. 2000, 62, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, Y.; Iinuma, M.; Piyasena, K.; Dharmaratne, H. Antibacterial activity of α-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine 2005, 12, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Elsaman, T.; Mohamed, M.S.; Eltayib, E.M.; Abdalla, A.E.; Mohamed, M.A. Xanthone: A Promising Antimycobacterial Scaffold. Med. Chem. 2021, 17, 310–331. [Google Scholar] [CrossRef] [PubMed]
- Sudta, P.; Jiarawapi, P.; Suksamrarn, A.; Hongmanee, P.; Suksamrarn, S. Potent activity against multidrug-resistant Mycobacterium tuberculosis of α-mangostin analogs. Chem. Pharm. Bull. 2013, 61, 194–203. [Google Scholar] [CrossRef]
- Roney, M.; Mohd Aluwi, M.F.F. The importance of in-silico studies in drug discovery. Intell. Pharm. 2024, 2, 578–579. [Google Scholar] [CrossRef]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of Open Natural Products database. J. Cheminform. 2021, 13, 2. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Tran, V.A.; Thi Vo, T.-T.; Nguyen, M.-N.T.; Duy Dat, N.; Doan, V.-D.; Nguyen, T.-Q.; Vu, Q.H.; Le, V.T.; Tong, T.D.; Maneiro, M. Novel α-Mangostin Derivatives from Mangosteen (Garcinia mangostana L.) Peel Extract with Antioxidant and Anticancer Potential. J. Med. Chem. 2021, 2021, 9985604. [Google Scholar] [CrossRef]
- Chi, X.Q.; Hou, B.; Yang, L.; Zi, C.T.; Lv, Y.F.; Li, J.Y.; Ren, F.C.; Yuan, M.Y.; Hu, J.M.; Zhou, J. Design, synthesis and cholinesterase inhibitory activity of alpha-mangostin derivatives. Nat. Prod. Res. 2020, 34, 1380–1388. [Google Scholar] [CrossRef]
- Tocmo, R.; Le, B.; Heun, A.; van Pijkeren, J.P.; Parkin, K.; Johnson, J.J. Prenylated xanthones from mangosteen (Garcinia mangostana) activate the AhR and Nrf2 pathways and protect intestinal barrier integrity in HT-29 cells. Free Radic. Biol. Med. 2021, 163, 102–115. [Google Scholar] [CrossRef]
- Le, T.T.; Pandey, R.P.; Gurung, R.B.; Dhakal, D.; Sohng, J.K. Efficient enzymatic systems for synthesis of novel alpha-mangostin glycosides exhibiting antibacterial activity against Gram-positive bacteria. Appl. Microbiol. Biotechnol. 2014, 98, 8527–8538. [Google Scholar] [CrossRef]
- Andres-Hernando, A.; Orlicky, D.J.; Kuwabara, M.; Ishimoto, T.; Nakagawa, T.; Johnson, R.J.; Lanaspa, M.A. Deletion of fructokinase in the liver or in the intestine reveals differential effects on sugar-induced metabolic dysfunction. Cell Metab. 2020, 32, 117–127.e113. [Google Scholar] [CrossRef] [PubMed]
- Brymora, A.; Flisiński, M.; Johnson, R.J.; Goszka, G.; Stefańska, A.; Manitius, J. Low-fructose diet lowers blood pressure and inflammation in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2012, 27, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, E.L.; Saborano, R.; Northall, E.; Matsuda, K.; Ogino, H.; Yashiro, H.; Pickens, J.; Feaver, R.E.; Cole, B.K.; Hoang, S.A. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. JHEP Rep. 2021, 3, 100217. [Google Scholar] [CrossRef]
- Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Lozada, L.G.S. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the National Kidney Foundation. Am. J. Kidney Dis. 2018, 71, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.; Rathor, L.S.; Dwivedi, S.D.; Shah, K.; Chauhan, N.S.; Singh, M.R.; Singh, D. A review on molecular docking as an interpretative tool for molecular targets in disease management. Assay. Drug Dev. Technol. 2024, 22, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem. 2021, 60, 273–343. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Elsaman, T.; Mohamed, M.S.; Eltayib, E.M. Computational investigations of flavonoids as ALDH isoform inhibitors for treatment of cancer. SAR QSAR Environ. Res. 2024, 35, 837–875. [Google Scholar] [CrossRef]
- Badiali, C.; Petruccelli, V.; Brasili, E.; Pasqua, G. Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens. Plants 2023, 12, 694. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front. Chem. 2020, 8, 726. [Google Scholar] [CrossRef]
- Madden, J.C. In silico approaches for predicting ADME properties. In Recent Advances in QSAR Studies: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 283–304. [Google Scholar]
- Jung, W.; Goo, S.; Hwang, T.; Lee, H.; Kim, Y.K.; Chae, J.W.; Yun, H.Y.; Jung, S. Absorption Distribution Metabolism Excretion and Toxicity Property Prediction Utilizing a Pre-Trained Natural Language Processing Model and Its Applications in Early-Stage Drug Development. Pharmaceuticals 2024, 17, 382. [Google Scholar] [CrossRef]
- Ntie-Kang, F.; Lifongo, L.L.; Mbah, J.A.; Owono Owono, L.C.; Megnassan, E.; Mbaze, L.M.a.; Judson, P.N.; Sippl, W.; Efange, S.M. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. Silico Pharmacol. 2013, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus 2013, 2, 353. [Google Scholar] [CrossRef] [PubMed]
- Butnarasu, C.; Garbero, O.V.; Petrini, P.; Visai, L.; Visentin, S. Permeability Assessment of a High-Throughput Mucosal Platform. Pharmaceutics 2023, 15, 380. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, S.; Doerksen, R.J. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr. Med. Chem. 2009, 16, 21–41. [Google Scholar] [CrossRef]
- Asano, D.; Takakusa, H.; Nakai, D. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs. Pharmaceutics 2023, 16, 47. [Google Scholar] [CrossRef]
- Wanat, K.; Zydek, G.; Hekner, A.; Brzezinska, E. In silico Plasma Protein Binding Studies of Selected Group of Drugs Using TLC and HPLC Retention Data. Pharmaceuticals 2021, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, J.; Zhao, Q. Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism. Comput. Biol. Med. 2023, 153, 106464. [Google Scholar] [CrossRef]
- Masimirembwa, C.M.; Bredberg, U.; Andersson, T.B. Metabolic stability for drug discovery and development: Pharmacokinetic and biochemical challenges. Clin. Pharmacokinet. 2003, 42, 515–528. [Google Scholar] [CrossRef]
- Merz, K.M., Jr. Using quantum mechanical approaches to study biological systems. Acc. Chem. Res. 2014, 47, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Ginex, T.; Vazquez, J.; Estarellas, C.; Luque, F.J. Quantum mechanical-based strategies in drug discovery: Finding the pace to new challenges in drug design. Curr. Opin. Struct. Biol. 2024, 87, 102870. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.-G.; Nichols, J.A.; Dixon, D.A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195. [Google Scholar] [CrossRef]
- Lefi, N.; Kazachenko, A.S.; Raja, M.; Issaoui, N.; Kazachenko, A.S. Molecular Structure, Spectral Analysis, Molecular Docking and Physicochemical Studies of 3-Bromo-2-hydroxypyridine Monomer and Dimer as Bromodomain Inhibitors. Molecules 2023, 28, 2669. [Google Scholar] [CrossRef] [PubMed]
- Kumer, A.; Chakma, U.; Rana, M.M.; Chandro, A.; Akash, S.; Elseehy, M.M.; Albogami, S.; El-Shehawi, A.M. Investigation of the New Inhibitors by Sulfadiazine and Modified Derivatives of alpha-D-glucopyranoside for White Spot Syndrome Virus Disease of Shrimp by In Silico: Quantum Calculations, Molecular Docking, ADMET and Molecular Dynamics Study. Molecules 2022, 27, 3694. [Google Scholar] [CrossRef] [PubMed]
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef] [PubMed]
- LigPrep; 2023-1; Schrödinger, LLC: New York, NY, USA, 2023.
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop prediction. Proteins Struct. Funct. Bioinf. 2004, 55, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 2002, 320, 597–608. [Google Scholar] [CrossRef]
- Ioakimidis, L.; Thoukydidis, L.; Mirza, A.; Naeem, S.; Reynisson, J. Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR Comb. Sci. 2008, 27, 445–456. [Google Scholar] [CrossRef]
- Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013, 113, 2110–2142. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 84-es. [Google Scholar]
- Maestro; 2023-1; Schrödinger, LLC: New York, NY, USA, 2023.
- Elsaman, T.; Ahmad, I.; Eltayib, E.M.; Suliman Mohamed, M.; Yusuf, O.; Saeed, M.; Patel, H.; Mohamed, M.A. Flavonostilbenes natural hybrids from Rhamnoneuron balansae as potential antitumors targeting ALDH1A1: Molecular docking, ADMET, MM-GBSA calculations and molecular dynamics studies. J. Biomol. Struct. Dyn. 2024, 42, 3249–3266. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; VandeVondele, J.; Kuo, I.-F.W.; Sebastiani, D.; Siepmann, J.I.; Hutter, J.; Mundy, C.J. Isobaric–isothermal molecular dynamics simulations utilizing density functional theory: An assessment of the structure and density of water at near-ambient conditions. J. Phys. Chem. B 2009, 113, 11959–11964. [Google Scholar] [CrossRef] [PubMed]
- Bouback, T.A.; Pokhrel, S.; Albeshri, A.; Aljohani, A.M.; Samad, A.; Alam, R.; Hossen, M.S.; Al-Ghamdi, K.; Talukder, M.E.K.; Ahammad, F.; et al. Pharmacophore-Based Virtual Screening, Quantum Mechanics Calculations, and Molecular Dynamics Simulation Approaches Identified Potential Natural Antiviral Drug Candidates against MERS-CoV S1-NTD. Molecules 2021, 26, 4961. [Google Scholar] [CrossRef] [PubMed]
NO | PubChem ID | Docking Score (kcal/mol) | Binding Energy (kcal/mol) | Interactions | |
---|---|---|---|---|---|
H-Bond | Water Bridge | ||||
Co-crystal ligand | −9.371 | −63.37 | Glu227 (2.21 Å) | Ala226 (2.15 and 2.19 Å) Phe245 (2.05 and 1.91 Å) Cys282 (2.05 and 1.78 Å) | |
LY-3522348 | −8.409 | −45.36 | Glu227 (1.91 Å) Thr253 (2.16 Å) | Phe245 (1.88 and 1.91 Å) Cys282 (1.88 and 1.78 Å) | |
γ-Mangostin | −7.644 | −38.58 | Ala226 (1.80 Å) | Asp27(1.63 and 2.01 Å) Phe245 (2.57 and 1.91 Å) Cys282 (2.57 and 1.78 Å) | |
α-Mangostin | −5.992 | −37.34 | Glu173 (1.95 Å) | Lys193 (2.17 and 2.43 Å) Ala226 (2.06 and 2.19 Å) | |
1 | 163184041 | −10.791 | −49.45 | Ala226 (1.89 Å) | Asp27 (2.05 and 2.02 Å) Asp27 (1.57 and 2.02 Å) Phe245 (2.28 and 1.91 Å) Cys282 (2.28 and 1.78 Å) |
2 | – | −10.447 | −40.44 | Asn107 (2.31 Å) Glu227 (2.22 Å) Glu227 (2.15 Å) Glu29 (2.42 Å) Glu29 (2.17 Å) Asp194 (2.56 Å) Asp194 (2.69 Å) | Lys193 (1.98 and 2.43 Å) |
3 | 129847812 | −9.904 | −54.11 | Glu173 (2.11 Å) Arg108 (2.47 Å) | Phe245 (2.07 and 1.91 Å) Cys282 (2.07 and 1.78 Å) Asp27 (2.49 and 2.02 Å) Lys193 (2.27 and 2.43 Å) |
4 | 11302345 | −9.767 | −37.36 | Ala226 (1.88 Å) | Asp27 (1.75 and 2.02 Å) Ala226 (1.63 and 2.19 Å) Phe245 (2.31 and 1.91 Å) Cys282 (2.31 and 1.78 Å) |
5 | 11530321 | −9.626 | −49.86 | – | Asp27 (2.33 and 2.02 Å) Phe245 (1.97 and 1.91 Å) Cys282 (1.97 and 1.78 Å) |
6 | 11772726 | −9.444 | −44.47 | Asp27 (2.16 Å) | Lys193 (2.29 and 2.43 Å) Glu227 (1.83 and 2.01 Å) Phe245 (2.19 and 1.91 Å) Cys282 (2.19 and 1.78 Å) |
7 | 129844441 | −9.411 | −55.13 | Glu173 (1.94 Å) | Asp27 (2.32 and 2.02 Å) Lys193 (2.14 and 2.43 Å) Ala226 (1.96 and 2.19 Å) Phe245 (1.99 and 1.91 Å) Cys282 (1.99 and 1.78 Å) |
8 | 5495931 | −9.380 | −61.30 | Asp194 (2.48 Å) | Lys193 (1.77 and 2.43 Å) Phe245 (2.22 and 1.91 Å) Cys282 (2.22 and 1.78 Å) |
9 | 5464633 | −8.999 | −53.01 | – | Ala226 (1.83 and 2.19 Å) Phe245 (1.73 and 1.91 Å) Cys282 (1.73 and 1.78 Å) |
10 | 15293189 | −8.992 | −45.08 | Glu173 (2.19 Å) Gly255 (2.26 Å) | Ala226 (2.78 and 2.19 Å) |
11 | 5281633 | −8.991 | −45.02 | – | Asp27 (2.31 and 2.02 Å) Ala226 (2.28 and 2.19 Å) Ala226 (2.08 and 2.19 Å) Phe245 (1.95 and 1.91 Å) Cys282 (1.95 and 1.78 Å) |
12 | 10092134 | −8.978 | −43.11 | – | Asp27 (1.72 and 2.02 Å) Ala226 (2.32 and 2.19 Å) |
13 | 10001484 | −8.233 | −59.13 | – | Lys193 (2.65 and 2.43 Å) Phe245 (2.12 and 1.91 Å) Cys282 (2.12 and 1.78 Å) |
14 | 10245099 | −8.231 | −44.84 | Asp27 (2.09 Å) | Asp27 (1.92 and 2.02 Å) Phe245 (1.77 and 1.91 Å) Cys282 (1.77 and 1.78 Å) |
15 | 162856452 | −8.093 | −45.51 | Thr253 (2.76 Å) | Ala226 (1.85 and 2.19 Å) Phe245 (1.94 and 1.91 Å) Cys282 (1.94 and 1.78 Å) |
16 | 132988553 | −8.012 | −42.75 | – | Asp27 (1.80 and 2.02 Å) Ala226 (2.05 and 2.19 Å) Ala226 (2.33 and 2.19 Å) |
Compounds | Docking Score (kcal/mol) | Binding Free Energy (kcal/mol) |
---|---|---|
1 | −9.395 | −22.74 |
2 | −7.402 | −32.06 |
3 | −8.810 | −44.39 |
4 | −7.704 | −37.87 |
5 | −8.894 | −51.83 |
KHK-C Complex | Apo | Co-Crystal Ligand | LY-3522348 | γ-Mangostin | Hit 7 | Hit 8 | Hit 9 | Hit 13 | Hit 15 |
---|---|---|---|---|---|---|---|---|---|
PL-RMSD (Å) | |||||||||
Average | 2.9 | 4.4 | 2.9 | 2.9 | 2.6 | 2.7 | 3.6 | 3.4 | 4.2 |
Maximum | 4.8 | 6.8 | 4.6 | 4.8 | 4.2 | 4.9 | 5.1 | 4.9 | 6.3 |
Minimum | 1.3 | 1.3 | 1.3 | 1.2 | 1.1 | 1.3 | 1.3 | 1.6 | 1.3 |
P-RMSF (Å) | |||||||||
Average | 1.6 | 2.1 | 1.6 | 1.5 | 1.6 | 1.4 | 1.5 | 1.6 | 1.7 |
Maximum | 5.5 | 13.7 | 14.3 | 9.5 | 8.9 | 11.2 | 12.3 | 8.0 | 7.8 |
Minimum | 0.6 | 0.7 | 0.6 | 0.6 | 0.5 | 0.5 | 0.6 | 0.6 | 0.5 |
H-bond contacts | |||||||||
Average | - | 0.5 | 1.1 | 2.7 | - | 0.5 | - | - | - |
Maximum | - | 3.0 | 3.0 | 4.0 | - | 3.0 | - | - | - |
Minimum | - | 0.0 | 0.0 | 0.0 | - | 0.0 | - | - | - |
Hydrophobic contacts | |||||||||
Average | - | 0.5 | 0.8 | 1.2 | - | 2.0 | - | - | - |
Maximum | - | 3.0 | 4.0 | 5.0 | - | 6.0 | - | - | - |
Minimum | - | 0.0 | 0.0 | 0.0 | - | 0.0 | - | - | - |
Water bridge contacts | |||||||||
Average | - | 2.7 | 1.8 | 0.8 | - | 1.2 | - | - | - |
Maximum | - | 7.0 | 7.0 | 7.0 | - | 6.0 | - | - | - |
Minimum | - | 0.0 | 0.0 | 0.0 | - | 0.0 | - | - | - |
Property | Solvation Energy kcal/mol | HOMO (eV) | LUMO (eV) | HLG | Electron Affinity (eV) | Ionization Potential (eV) | Chemical Hardness (eV) | Chemical Softness (eV−1) | Electronegativity (eV) | Global Electrophilicity Index (eV) |
---|---|---|---|---|---|---|---|---|---|---|
Hit 8 | −17.80 | −6.02 | −1.62 | 4.4 | 1.62 | 6.02 | 2.2 | 0.45 | −3.82 | 3.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsaman, T.; Mohamed, M.A. Examining Prenylated Xanthones as Potential Inhibitors Against Ketohexokinase C Isoform for the Treatment of Fructose-Driven Metabolic Disorders: An Integrated Computational Approach. Pharmaceuticals 2025, 18, 126. https://doi.org/10.3390/ph18010126
Elsaman T, Mohamed MA. Examining Prenylated Xanthones as Potential Inhibitors Against Ketohexokinase C Isoform for the Treatment of Fructose-Driven Metabolic Disorders: An Integrated Computational Approach. Pharmaceuticals. 2025; 18(1):126. https://doi.org/10.3390/ph18010126
Chicago/Turabian StyleElsaman, Tilal, and Magdi Awadalla Mohamed. 2025. "Examining Prenylated Xanthones as Potential Inhibitors Against Ketohexokinase C Isoform for the Treatment of Fructose-Driven Metabolic Disorders: An Integrated Computational Approach" Pharmaceuticals 18, no. 1: 126. https://doi.org/10.3390/ph18010126
APA StyleElsaman, T., & Mohamed, M. A. (2025). Examining Prenylated Xanthones as Potential Inhibitors Against Ketohexokinase C Isoform for the Treatment of Fructose-Driven Metabolic Disorders: An Integrated Computational Approach. Pharmaceuticals, 18(1), 126. https://doi.org/10.3390/ph18010126