Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy—Challenges and Prospectives
Abstract
:1. Introduction
2. Pathophysiology of Diabetic Cardiomyopathy
2.1. Hyperglycemia, Oxidative Stress and Inflammation
2.2. Lipotoxicity
2.3. Microvascular Dysfunction
2.4. Neurohormonal Abnormalities
2.5. Autophagy
2.6. Calcium Homeostasis
2.7. MicroRNAs (miRNAs)
3. Clinical Phenotypes
Obesity and Cardiomyopathy
4. Classical Anti-Diabetic Therapy
4.1. Metformin
4.2. Insulin
4.3. Sodium–Glucose Cotransporter-2 Inhibitors (SGLT-2i)
4.4. Dipeptidyl Peptidase-4 Inhibitors
4.5. GLP-1 Receptor Agonists (GLP-1 RAs)
4.6. Dual GIP/GLP-1 Receptor Agonists
4.7. Glitazones
4.8. Physical Exercise as Adjunct Therapy
5. Classical Anti-Heart Failure Therapy in Diabetic Patients
5.1. Angiotensin—Converting Enzyme Inhibitor (ACEI)—Angiotensin II Receptor Blocker (ARB)
5.2. Angiotensin Receptor/Neprylisin Inhibitor (ARNI)
5.3. Mineralocorticoid Receptor Antagonist (MRA)
5.4. B-Blockers
5.5. Diuretics
5.6. Myosin Inhibitors
6. Novel Therapies
6.1. Nucleotide-Binding and Oligomerization Domain-like Receptor Family Pyrin Domain-Containing 3 (NLRP3) Inflammasome
6.2. Natural Products (Herbal Medicine)
6.3. Aldose Reductase Inhibitors
6.4. Antioxidants
6.5. Mitochondrial Disorder Treatment
6.6. Autophagy Dysregulation
6.7. Flavonoids
6.8. MicroRNAs
7. Materials and Methods
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, W.S.; Kim, J. Diabetic cardiomyopathy: Where we are and where we are going. Korean J. Intern. Med. 2017, 32, 404–421. [Google Scholar] [CrossRef] [PubMed]
- Hopf, A.E.; Andresen, C.; Kötter, S.; Isić, M.; Ulrich, K.; Sahin, S.; Bongardt, S.; Röll, W.; Drove, F.; Scheerer, N.; et al. Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1. Circ. Res. 2018, 123, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, O.; Picatoste, B.; Ares-Carrasco, S.; Ramírez, E.; Egido, J.; Tuñón, J. Potential role of nuclear factor κB in diabetic cardiomyopathy. Mediat. Inflamm. 2011, 2011, 652097. [Google Scholar] [CrossRef]
- Lambadiari, V.; Dimitriadis, G.; Kadoglou, N.P.E. The impact of oral anti-diabetic medications on heart failure: Lessons learned from preclinical studies. Heart Fail. Rev. 2018, 23, 337–346. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Pocock, S.J.; Wang, D.; Pfeffer, M.A.; Yusuf, S.; McMurray, J.J.; Swedberg, K.B.; Ostergren, J.; Michelson, E.L.; Pieper, K.S.; Granger, C.B. Predictors of mortality and morbidity in patients with chronic heart failure. Eur. Heart J. 2006, 27, 65–75. [Google Scholar] [CrossRef]
- Cannata, F.; Vadala, G.; Russo, F.; Papalia, R.; Napoli, N.; Pozzilli, P. Beneficial Effects of Physical Activity in Diabetic Patients. J. Funct. Morphol. Kinesiol. 2020, 5, 70. [Google Scholar] [CrossRef]
- Huang, K.; Luo, X.; Liao, B.; Li, G.; Feng, J. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: Focus on the mechanisms. Cardiovasc. Diabetol. 2023, 22, 86. [Google Scholar] [CrossRef]
- Boudina, S.; Sena, S.; Sloan, C.; Tebbi, A.; Han, Y.H.; O’Neill, B.T.; Cooksey, R.C.; Jones, D.; Holland, W.L.; McClain, D.A.; et al. Early mitochondrial adaptations in skeletal muscle to diet-induced obesity are strain dependent and determine oxidative stress and energy expenditure but not insulin sensitivity. Endocrinology 2012, 153, 2677–2688. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, P.; Dong, C.; Zhang, J.; Wang, X.; Pei, H. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. Oxid. Med. Cell Longev. 2022, 2022, 5913374. [Google Scholar] [CrossRef]
- Kaludercic, N.; Di Lisa, F. Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Front. Cardiovasc. Med. 2020, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Mughal, R.S.; Warburton, P.; O’Regan, D.J.; Ball, S.G.; Porter, K.E. Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac fibroblasts: Effects of statins and thiazolidinediones. Cardiovasc. Res. 2007, 76, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.; Sailer, N.; Moumtzouoglou, A.; Kapelouzou, A.; Gerasimidis, T.; Kostakis, A.; Liapis, C.D. Adipokines: A novel link between adiposity and carotid plaque vulnerability. Eur. J. Clin. Investig. 2012, 42, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Mengstie, M.A.; Abebe, E.C.; Teklemariam, A.B.; Mulu, A.T.; Teshome, A.A.; Zewde, E.A.; Muche, Z.T.; Azezew, M.T. Molecular and cellular mechanisms in diabetic heart failure: Potential therapeutic targets. Front. Endocrinol. 2022, 13, 947294. [Google Scholar] [CrossRef]
- Dhar, A.; Venkadakrishnan, J.; Roy, U.; Vedam, S.; Lalwani, N.; Ramos, K.S.; Pandita, T.K.; Bhat, A. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther. Adv. Cardiovasc. Dis. 2023, 17, 17539447231210170. [Google Scholar] [CrossRef]
- Ke, J.; Pan, J.; Lin, H.; Gu, J. Diabetic cardiomyopathy: A brief summary on lipid toxicity. ESC Heart Fail. 2023, 10, 776–790. [Google Scholar] [CrossRef]
- Ma, X.M.; Geng, K.; Law, B.Y.; Wang, P.; Pu, Y.L.; Chen, Q.; Xu, H.W.; Tan, X.Z.; Jiang, Z.Z.; Xu, Y. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes. Cell Biol. Toxicol. 2023, 39, 277–299. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Li, S.; Lv, J. Endothelial Dysfunction and Diabetic Cardiomyopathy. Front. Endocrinol. 2022, 13, 851941. [Google Scholar] [CrossRef]
- Sena, C.M.; Pereira, A.M.; Seiça, R. Endothelial dysfunction—A major mediator of diabetic vascular disease. Biochim. Biophys. Acta 2013, 1832, 2216–2231. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Shah, A.K.; Tappia, P.S. Role of Oxidative Stress in Metabolic and Subcellular Abnormalities in Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2020, 21, 2413. [Google Scholar] [CrossRef]
- Arad, M.; Waldman, M.; Abraham, N.G.; Hochhauser, E. Therapeutic approaches to diabetic cardiomyopathy: Targeting the antioxidant pathway. Prostaglandins Other Lipid Mediat. 2020, 150, 106454. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.P.T.; Faria, A.O.V.; Ribeiro, T.F.S.; Simões ESilva, A.C. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life 2023, 13, 1598. [Google Scholar] [CrossRef] [PubMed]
- Quinaglia, T.; Oliveira, D.C.; Matos-Souza, J.R.; Sposito, A.C. Diabetic cardiomyopathy: Factual or factoid? Rev. Assoc. Med. Bras. (1992) 2019, 65, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.J. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat. Rev. Nephrol. 2013, 9, 459–469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Xie, Y.; Zheng, S.; He, H.; Wang, Z.; Li, X.; Jiao, S.; Liu, D.; Yang, F.; Zhao, H.; et al. Targeting autophagy in diabetic cardiomyopathy: From molecular mechanisms to pharmacotherapy. Biomed. Pharmacother. 2024, 175, 116790. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, H.; Liu, X.; Huang, X.; Huang, A.; Huang, Y. Mitophagy in Diabetic Cardiomyopathy: Roles and Mechanisms. Front. Cell Dev. Biol. 2021, 9, 750382. [Google Scholar] [CrossRef]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef]
- Al Kury, L.T. Calcium Homeostasis in Ventricular Myocytes of Diabetic Cardiomyopathy. J. Diabetes Res. 2020, 2020, 1942086. [Google Scholar] [CrossRef]
- Zhou, Q.; Lv, D.; Chen, P.; Xu, T.; Fu, S.; Li, J.; Bei, Y. MicroRNAs in diabetic cardiomyopathy and clinical perspectives. Front. Genet. 2014, 5, 185. [Google Scholar] [CrossRef]
- Li, H.; Fan, J.; Chen, C.; Wang, D.W. Subcellular microRNAs in diabetic cardiomyopathy. Ann. Transl. Med. 2020, 8, 1602. [Google Scholar] [CrossRef]
- Paolillo, S.; Marsico, F.; Prastaro, M.; Renga, F.; Esposito, L.; De Martino, F.; Di Napoli, P.; Esposito, I.; Ambrosio, A.; Ianniruberto, M.; et al. Diabetic cardiomyopathy: Definition, diagnosis, and therapeutic implications. Heart Fail. Clin. 2019, 15, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Seferović, P.M.; Paulus, W.J. Clinical diabetic cardiomyopathy: A two-faced disease with restrictive and dilated phenotypes. Eur. Heart J. 2015, 36, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.; Wang, X.; Chen, Y.; Pang, P.; Yang, Q.; Lin, J.; Deng, S.; Wu, S.; Fan, G.; et al. Diabetic cardiomyopathy: Clinical phenotype and practice. Front. Endocrinol. 2022, 13, 1032268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shou, Y.; Li, X.; Fang, Q.; Xie, A.; Zhang, Y.; Fu, X.; Wang, M.; Gong, W.; Zhang, X.; Yang, D. Progress in the treatment of diabetic cardiomyopathy, a systematic review. Pharmacol. Res. Perspect. 2024, 12, e1177. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Sadoshima, J. Cardiomyopathy in obesity, insulin resistance and diabetes. J. Physiol. 2020, 598, 2977–2993. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wu, N.N.; Wang, S.; Sowers, J.R.; Zhang, Y. Obesity cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Physiol. Rev. 2021, 101, 1745–1807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salvatore, T.; Pafundi, P.C.; Galiero, R.; Albanese, G.; Di Martino, A.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Sasso, F.C. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front. Med. 2021, 8, 695792. [Google Scholar] [CrossRef]
- Nakamura, K.; Miyoshi, T.; Yoshida, M.; Akagi, S.; Saito, Y.; Ejiri, K.; Matsuo, N.; Ichikawa, K.; Iwasaki, K.; Naito, T.; et al. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 3587. [Google Scholar] [CrossRef]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef]
- Eurich, D.T.; Weir, D.L.; Majumdar, S.R.; Tsuyuki, R.T.; Johnson, J.A.; Tjosvold, L.; Vanderloo, S.E.; McAlister, F.A. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: Systematic review of observational studies involving 34,000 patients. Circ. Heart Fail. 2013, 6, 395–402. [Google Scholar] [CrossRef]
- Marino, A.; Hausenloy, D.J.; Andreadou, I.; Horman, S.; Bertrand, L.; Beauloye, C. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic. Biol. Med. 2021, 166, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Peng, M.; Tang, X.; Xu, X.; Wu, Y.; Chen, A.F.; Yang, X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J. Cell. Mol. Med. 2022, 26, 4886–4903. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Galiero, R.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Coviello, F.; Di Martino, A.; Albanese, G.; Marfella, R.; Sardu, C.; et al. Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules 2021, 11, 1834. [Google Scholar] [CrossRef]
- Salvatore, T.; Galiero, R.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Coviello, F.; Di Martino, A.; Albanese, G.; Marfella, R.; Sardu, C.; et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ. Res. 2009, 104, 403–411. [Google Scholar]
- Kamel, A.M.; Sabry, N.; Farid, S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: A meta-analysis of randomized clinical trials. BMC Cardiovasc. Disord. 2022, 22, 405. [Google Scholar] [CrossRef]
- Kadoglou, N.P.; Kapelouzou, A.; Tsanikidis, H.; Vitta, I.; Liapis, C.D.; Sailer, N. Effects of rosiglitazone/metformin fixed-dose combination therapy and metformin monotherapy on serum vaspin, adiponectin and IL-6 levels in drug-naïve patients with type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 2011, 119, 63–68. [Google Scholar] [CrossRef]
- Crowley, M.J.; Diamantidis, C.J.; McDuffie, J.R.; Cameron, C.B.; Stanifer, J.W.; Mock, C.K.; Wang, X.; Tang, S.; Nagi, A.; Kosinski, A.S.; et al. Clinical Outcomes of Metformin Use in Populations with Chronic Kidney Disease, Congestive Heart Failure, or Chronic Liver Disease: A Systematic Review. Ann. Intern. Med. 2017, 166, 191–200. [Google Scholar] [CrossRef]
- Mavrogeni, S.I.; Bacopoulou, F.; Markousis-Mavrogenis, G.; Giannakopoulou, A.; Kariki, O.; Vartela, V.; Kolovou, G.; Charmandari, E.; Chrousos, G. Cardiovascular Magnetic Resonance as Pathophysiologic Tool in Diabetes Mellitus. Front. Endocrinol. 2021, 12, 672302. [Google Scholar] [CrossRef]
- Anson, M.; Zhao, S.S.; Essa, H.; Austin, P.; Ibarburu, G.H.; Lip, G.Y.H.; Alam, U. Metformin and SGLT2i as First-line Combination Therapy in Type 2 Diabetes: A Real-world Study with a Focus on Ethnicity. Clin. Ther. 2023, 45, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- van Baar, M.J.B.; van Ruiten, C.C.; Muskiet, M.H.A.; van Bloemendaal, L.; IJzerman, R.G.; van Raalte, D.H. SGLT2 Inhibitors in Combination Therapy: From Mechanisms to Clinical Considerations in Type 2 Diabetes Management. Diabetes Care 2018, 41, 1543–1556, Erratum in Diabetes Care 2019, 42, 2015. [Google Scholar] [CrossRef] [PubMed]
- Karamanou, M.; Protogerou, A.; Tsoucalas, G.; Androutsos, G.; Poulakou-Rebelakou, E. Milestones in the history of diabetes mellitus: The main contributors. World J. Diabetes 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H. Added Sugars Drive Insulin Resistance, Hyperinsulinemia, Hypertension, Type 2 Diabetes and Coronary Heart Disease. Mo. Med. 2022, 119, 519–523. [Google Scholar] [PubMed]
- Cong, S.; Ramachandra, C.J.A.; Mai Ja, K.M.; Yap, J.; Shim, W.; Wei, L.; Hausenloy, D.J. Mechanisms underlying diabetic cardiomyopathy: From pathophysiology to novel therapeutic targets. Cond. Med. 2020, 3, 82–97. [Google Scholar]
- Daoud Naccache, D.; Yalonetsky, S.; Bar-Yoseph, R. Acute Effects of Insulin on Cardiac Function in Patients with Diabetes Mellitus: Clinical Applicability and Feasibility. Int. J. Endocrinol. 2020, 2020, 8134548. [Google Scholar] [CrossRef]
- Klein, L.J.; Visser, F.C. The effect of insulin on the heart: Part 1: Effects on metabolism and function. Neth. Heart J. 2010, 18, 197–201. [Google Scholar] [CrossRef]
- Negishi, K. Echocardiographic feature of diabetic cardiomyopathy: Where are we now? Cardiovasc. Diagn. Ther. 2018, 8, 47–56. [Google Scholar] [CrossRef]
- Herman, M.E.; O’Keefe, J.H.; Bell, D.S.H.; Schwartz, S.S. Insulin Therapy Increases Cardiovascular Risk in Type 2 Diabetes. Prog. Cardiovasc. Dis. 2017, 60, 422–434. [Google Scholar] [CrossRef]
- Ahmad, A.; Sabbour, H. Correction to: Effectiveness and safety of the combination of sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of observational studies. Cardiovasc. Diabetol. 2024, 23, 189. [Google Scholar]
- Du, S.; Shi, H.; Xiong, L.; Wang, P.; Shi, Y. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front. Endocrinol. 2022, 13, 1011669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arow, M.; Waldman, M.; Yadin, D.; Nudelman, V.; Shainberg, A.; Abraham, N.G.; Freimark, D.; Kornowski, R.; Aravot, D.; Hochhauser, E.; et al. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc. Diabetol. 2020, 19, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Shamasi, A.A.; Elkaffash, R.; Mohamed, M.; Rayan, M.; Al-Khater, D.; Gadeau, A.P.; Ahmed, R.; Hasan, A.; Eldassouki, H.; Yalcin, H.C.; et al. Crosstalk between Sodium-Glucose Cotransporter Inhibitors and Sodium-Hydrogen Exchanger 1 and 3 in Cardiometabolic Diseases. Int. J. Mol. Sci. 2021, 22, 12677. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, Q.; Harding, P.; LaPointe, M.C. PKA, Rap1, ERK1/2, and p90RSK mediate PGE2 and EP4 signaling in neonatal ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H136–H143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vallés, P.G.; Bocanegra, V.; Gil Lorenzo, A.; Costantino, V.V. Physiological Functions and Regulation of the Na+/H+ Exchanger [NHE1] in Renal Tubule Epithelial Cells. Kidney Blood Press. Res. 2015, 40, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Naumova, A.V.; Isquith, D.; Sapp, J.; Huynh, K.A.; Tucker, I.; Balu, N.; Voronyuk, A.; Chu, B.; Ordovas, K.; et al. Dapagliflozin Reduces Systemic Inflammation in Patients with Type 2 Diabetes Without Known Heart Failure. Res. Sq. 2024, 23, 197. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, K.; Tousoulis, D. The impact of SGLT2 inhibitors on inflammation: A systematic review and meta-analysis of studies in rodents. Int. Immunopharmacol. 2022, 111, 109080. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Santos-Gallego, C.G.; Requena-Ibanez, J.A.; San Antonio, R.; Garcia-Ropero, A.; Ishikawa, K.; Watanabe, S.; Picatoste, B.; Vargas-Delgado, A.P.; Flores-Umanzor, E.J.; Sanz, J.; et al. Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/Stiffness in Nondiabetic Heart Failure: A Multimodality Study. JACC Cardiovasc. Imaging 2021, 14, 393–407. [Google Scholar] [CrossRef]
- Brown, A.J.M.; Gandy, S.; McCrimmon, R.; Houston, J.G.; Struthers, A.D.; Lang, C.C. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: The DAPA-LVH trial. Eur. Heart J. 2020, 41, 3421–3432. [Google Scholar] [CrossRef]
- Patel, R.; Wadid, M.; Makwana, B.; Kumar, A.; Khadke, S.; Bhatti, A.; Banker, A.; Husami, Z.; Labib, S.; Venesy, D.; et al. GLP-1 Receptor Agonists Among Patients with Overweight or Obesity, Diabetes, and HFpEF on SGLT2 Inhibitors. JACC Heart Fail. 2024, 12, 1814–1826. [Google Scholar] [CrossRef] [PubMed]
- Scisciola, L.; Chianese, U.; Caponigro, V.; Basilicata, M.G.; Salviati, E.; Altucci, L.; Campiglia, P.; Paolisso, G.; Barbieri, M.; Benedetti, R.; et al. Multi-omics analysis reveals attenuation of cellular stress by empagliflozin in high glucose-treated human cardiomyocytes. J. Transl. Med. 2023, 21, 662. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, J.; Xue, M.; Li, X.; Han, F.; Liu, X.; Xu, L.; Lu, Y.; Cheng, Y.; Li, T.; et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol. 2019, 18, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, N.; Zhu, Q.X.; Li, G.Z.; Wang, T.; Zhou, H. Empagliflozin ameliorates diabetic cardiomyopathy probably via activating AMPK/PGC-1alpha and inhibiting the RhoA/ROCK pathway. World J. Diabetes 2023, 14, 1862–1876. [Google Scholar] [CrossRef] [PubMed]
- Kadosaka, T.; Watanabe, M.; Natsui, H.; Koizumi, T.; Nakao, M.; Koya, T.; Hagiwara, H.; Kamada, R.; Temma, T.; Karube, F.; et al. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca(2+) handling in ventricular cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2023, 324, H341–H354. [Google Scholar] [CrossRef]
- Lo, C.W.H.; Fei, Y.; Cheung, B.M.Y. Cardiovascular Outcomes in Trials of New Antidiabetic Drug Classes. Card. Fail. Rev. 2021, 7, e04. [Google Scholar] [CrossRef]
- Saini, K.; Sharma, S.; Khan, Y. DPP-4 inhibitors for treating T2DM—Hype or hope? An analysis based on the current literature. Front. Mol. Biosci. 2023, 10, 1130625. [Google Scholar] [CrossRef]
- Udell, J.A.; Bhatt, D.L.; Braunwald, E.; Cavender, M.A.; Mosenzon, O.; Steg, P.G.; Davidson, J.A.; Nicolau, J.C.; Corbalan, R.; Hirshberg, B.; et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes and moderate or severe renal impairment: Observations from the SAVOR-TIMI 53 Trial. Diabetes Care 2015, 38, 696–705. [Google Scholar] [CrossRef]
- Sandhu, P.; Ong, J.P.; Garg, V.; Altaha, M.; Bello, O.; Singal, S.R.; Verma, S.; Yan, A.T.; Connelly, K.A. The effects of saxagliptin on cardiac structure and function using cardiac MRI (SCARF). Acta Diabetol. 2021, 58, 633–641. [Google Scholar] [CrossRef]
- Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012, 35, 1364–1379. [Google Scholar] [CrossRef]
- Patoulias, D.I.; Boulmpou, A.; Teperikidis, E.; Katsimardou, A.; Siskos, F.; Doumas, M.; Papadopoulos, C.E.; Vassilikos, V. Cardiovascular efficacy and safety of dipeptidyl peptidase-4 inhibitors: A meta-analysis of cardiovascular outcome trials. World J. Cardiol. 2021, 13, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [PubMed]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab. 2016, 24, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Bizino, M.B.; Jazet, I.M.; Westenberg, J.J.M.; van Eyk, H.J.; Paiman, E.H.M.; Smit, J.W.A.; Lamb, H.J. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: Randomized placebo-controlled trial. Cardiovasc. Diabetol. 2019, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Ida, S.; Kaneko, R.; Imataka, K.; Okubo, K.; Shirakura, Y.; Azuma, K.; Fujiwara, R.; Takahashi, H.; Murata, K. Effects of oral antidiabetic drugs and glucagon-like peptide-1 receptor agonists on left ventricular diastolic function in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. Heart Fail. Rev. 2021, 26, 1151–1158. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Huixing, L.; Di, F.; Daoquan, P. Effect of Glucagon-like Peptide-1 Receptor Agonists on Prognosis of Heart Failure and Cardiac Function: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Clin. Ther. 2023, 45, 17–30. [Google Scholar] [CrossRef]
- Rivera, F.B.; Cruz, L.L.A.; Magalong, J.V.; Ruyeras, J.M.M.J.; Aparece, J.P.; Bantayan, N.R.B.; Lara-Breitinger, K.; Gulati, M. Cardiovascular and renal outcomes of glucagon-like peptide 1 receptor agonists among patients with and without type 2 diabetes mellitus: A meta-analysis of randomized placebo-controlled trials. Am. J. Prev. Cardiol. 2024, 18, 100679. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Givertz, M.M.; Aguilar, D.; Allen, L.A.; Chan, M.; Desai, A.S.; Deswal, A.; Dickson, V.V.; Kosiborod, M.N.; Lekavich, C.L.; et al. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 2019, 140, e294–e324. [Google Scholar] [CrossRef]
- Fisman, E.Z.; Tenenbaum, A. The dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide: A novel cardiometabolic therapeutic prospect. Cardiovasc. Diabetol. 2021, 20, 225. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, D.; Longo, M.; Signoriello, S.; Maiorino, M.I.; Solerte, B.; Chiodini, P.; Esposito, K. The effect of DPP-4 inhibitors, GLP-1 receptor agonists and SGLT-2 inhibitors on cardiorenal outcomes: A network meta-analysis of 23 CVOTs. Cardiovasc. Diabetol. 2022, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Basile, P.; Guaricci, A.I.; Piazzolla, G.; Volpe, S.; Vozza, A.; Benedetto, M.; Carella, M.C.; Santoro, D.; Monitillo, F.; Baggiano, A.; et al. Improvement of Left Ventricular Global Longitudinal Strain after 6-Month Therapy with GLP-1RAs Semaglutide and Dulaglutide in Type 2 Diabetes Mellitus: A Pilot Study. J. Clin. Med. 2023, 12, 1586. [Google Scholar] [CrossRef]
- Pan, K.L.; Hsu, Y.C.; Chang, S.T.; Chung, C.M.; Lin, C.L. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools. Int. J. Mol. Sci. 2023, 24, 8604. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.; Vrabas, I.S.; Kapelouzou, A.; Angelopoulou, N. The association of physical activity with novel adipokines in patients with type 2 diabetes. Eur. J. Intern. Med. 2012, 23, 137–142. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J.V. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, L.A.; Levine, T.B. Peroxisome proliferator activator receptors (PPAR), insulin resistance, and cardiomyopathy: Friends or foes for the diabetic patient with heart failure? Cardiol. Rev. 2004, 12, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cheng, J.; Zheng, S.; Zhang, L.; Guo, X.; Zhang, J.; Xiao, X. Physical Exercise and Its Protective Effects on Diabetic Cardiomyopathy: What Is the Evidence? Front. Endocrinol. 2018, 9, 729. [Google Scholar] [CrossRef]
- Garvey, W.T.; Hardin, D.; Juhaszova, M.; Dominguez, J.H. Effects of diabetes on myocardial glucose transport system in rats: Implications for diabetic cardiomyopathy. Am. J. Physiol. 1993, 264 Pt 2, H837–H844. [Google Scholar] [CrossRef]
- Waller, A.P.; Kalyanasundaram, A.; Hayes, S.; Periasamy, M.; Lacombe, V.A. Sarcoplasmic reticulum Ca2+ ATPase pump is a major regulator of glucose transport in the healthy and diabetic heart. Biochim. Biophys. Acta 2015, 1852, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.; Bennett, H.; Bezak, E.; Perry, R.; Boyle, T. The effect of exercise on left ventricular global longitudinal strain. Eur. J. Appl. Physiol. 2022, 122, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bei, Y.; Lu, Y.; Sun, W.; Liu, Q.; Wang, Y.; Cao, Y.; Chen, P.; Xiao, J.; Kong, X. Exercise Prevents Cardiac Injury and Improves Mitochondrial Biogenesis in Advanced Diabetic Cardiomyopathy with PGC-1alpha and Akt Activation. Cell Physiol. Biochem. 2015, 35, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Jung, I. Changes in Patterns of Physical Activity and Risk of Heart Failure in Newly Diagnosed Diabetes Mellitus Patients. Diabetes Metab. J. 2022, 46, 327–336. [Google Scholar] [CrossRef]
- Liu, X. Association between physical exercise and all-cause and CVD mortality in patients with diabetes: An updated systematic review and meta-analysis. Afr. Health Sci. 2022, 22, 250–266. [Google Scholar] [CrossRef]
- Karjalainen, J.J.; Kiviniemi, A.M.; Hautala, A.J.; Piira, O.P.; Lepojärvi, E.S.; Perkiömäki, J.S.; Junttila, M.J.; Huikuri, H.V.; Tulppo, M.P. Effects of physical activity and exercise training on cardiovascular risk in coronary artery disease patients with and without type 2 diabetes. Diabetes Care 2015, 38, 706–715. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef]
- Kenny, H.C.; Abel, E.D. Heart failure in type 2 diabetes mellitus. Circ. Res. 2019, 124, 121–141. [Google Scholar] [CrossRef]
- Mascolo, A.; di Mauro, G.; Cappetta, D.; De Angelis, A.; Torella, D.; Urbanek, K.; Berrino, L.; Nicoletti, G.F.; Capuano, A.; Rossi, F. Current and future therapeutic perspective in chronic heart failure. Pharmacol. Res. 2022, 175, 106035. [Google Scholar] [CrossRef]
- Rösen, R.; Rump, A.F.; Rösen, P. The ACE-inhibitor captopril improves myocardial perfusion in spontaneously diabetic (BB) rats. Diabetologia 1995, 38, 509–517. [Google Scholar] [CrossRef]
- Yaras, N.; Bilginoglu, A.; Vassort, G.; Turan, B. Restoration of diabetes induced abnormal local Ca2+ release in cardiomyocytes by angiotensin II receptor blockade. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H912–H920. [Google Scholar] [CrossRef] [PubMed]
- Rydén, L.; Armstrong, P.W.; Cleland, J.G.F.; Horowitz, J.D.; Massie, B.M.; Packer, M.; Poole-Wilson, P.A. Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Results from the ATLAS trial. Eur. Heart J. 2000, 21, 1967–1978. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Parissis, J.; Karavidas, A.; Kanonidis, I.; Trivella, M. Assessment of acute heart failure prognosis: The promising role of prognostic models and biomarkers. Heart Fail. Rev. 2022, 27, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Sleight, P. The HOPE Study (Heart Outcomes Prevention Evaluation). J. Renin Angiotensin Aldosterone Syst. 2000, 1, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Young, J.B.; Dunlap, M.E.; Pfeffer, M.A.; Probstfield, J.L.; Cohen-Solal, A.; Dietz, R.; Granger, C.B.; Hradec, J.; Kuch, J.; McKelvie, R.S.; et al. Mortality and morbidity reduction with Candesartan in patients with chronic heart failure and left ventricular systolic dysfunction: Results of the CHARM low-left ventricular ejection fraction trials. Circulation 2004, 110, 2618–2626. [Google Scholar] [CrossRef]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S.; et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef]
- Leoncini, G.; Viazzi, F.; De Cosmo, S.; Russo, G.; Fioretto, P.; Pontremoli, R. Blood pressure reduction and RAAS inhibition in diabetic kidney disease: Therapeutic potentials and limitations. J. Nephrol. 2020, 33, 949–963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gillespie, E.L.; White, C.M.; Kardas, M.; Lindberg, M.; Coleman, C.I. The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care 2005, 28, 2261–2266. [Google Scholar] [CrossRef]
- Segura, J.; Ruilope, L.M. Obesity, essential hypertension and renin-angiotensin system. Public Health Nutr. 2007, 10, 1151–1155. [Google Scholar] [CrossRef]
- Dzau, V.J.; Colucci, W.S.; Williams, G.H.; Curfman, G.; Meggs, L.; Hollenberg, N.K. Sustained effectiveness of converting-enzyme inhibition in patients with severe congestive heart failure. N. Engl. J. Med. 1980, 302, 1373–1379. [Google Scholar] [CrossRef]
- Beldhuis, I.E.; Lam, C.S.P.; Testani, J.M.; Voors, A.A.; Van Spall, H.G.C.; Ter Maaten, J.M.; Damman, K. Evidence-based medical therapy in patients with heart failure with reduced ejection fraction and chronic kidney disease. Circulation 2022, 145, 693–712. [Google Scholar] [CrossRef]
- Ge, Q.; Zhao, L.; Ren, X.M.; Ye, P.; Hu, Z.Y. LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Exp. Biol. Med. 2019, 244, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Shi, F.; Liu, D.; Ceddia, R.P.; Gaffin, R.; Wei, W.; Fang, H.; Lewandowski, E.D.; Collins, S. Enhancing natriuretic peptide signaling in adipose tissue, but not in muscle, protects against diet-induced obesity and insulin resist ance. Sci. Signal. 2017, 10, eaam6870. [Google Scholar] [CrossRef]
- Seferovic, J.P.; Claggett, B.; Seidelmann, S.B.; Seely, E.W.; Packer, M.; Zile, M.R.; Rouleau, J.L.; Swedberg, K.; Lefkowitz, M.; Shi, V.C.; et al. Effect of Sacubitril/Valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: A post-hoc analysis from the paradigm-hf trial. Lancet Diabetes Endocrinol. 2017, 5, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ye, H.; Zhao, Y.; Wei, J.; Wang, Y.; Zhang, X.; Wang, L. Effect of sacubitril/valsartan and ACEI/ARB on glycaemia and the development of diabetes: A systematic review and meta-analysis of randomised controlled trials. BMC Med. 2022, 20, 487. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Hwang, I.C.; Choi, W.; Yoon, Y.E.; Cho, G.Y. Combined effects of ARNI and SGLT2 inhibitors in diabetic patients with heart failure with reduced ejection fraction. Sci. Rep. 2021, 11, 22342. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Ma, R. Potential effects and application prospect of angiotensin receptor-neprilysin inhibitor in diabetic kidney disease. J. Diabetes Complicat. 2022, 36, 108056. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gong, W.; He, M.; Liu, Y.; Yang, Y.; Wang, M.; Wu, M.; Guo, S.; Yu, Y.; Wang, X.; et al. Spironolactone Protects against Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats. J. Diabetes Res. 2018, 2018, 9232065. [Google Scholar] [CrossRef]
- Ramírez, E.; Klett-Mingo, M.; Ares-Carrasco, S.; Picatoste, B.; Ferrarini, A.; Rupérez, F.J.; Caro-Vadillo, A.; Barbas, C.; Egido, J.; Tuñón, J.; et al. Eplerenone attenuated cardiac steatosis, apoptosis and diastolic dysfunction in experimental type-II diabetes. Cardiovasc. Diabetol. 2013, 12, 172. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Cleland, J.G.; Girerd, N.; Bozec, E.; Rossignol, P.; Pellicori, P.; Cosmi, F.; Mariottoni, B.; Solomon, S.D.; Pitt, B.; et al. Spironolactone effect on cardiac structure and function of patients with heart failure and preserved ejection fraction: A pooled analysis of three randomized trials. Eur. J. Heart Fail. 2023, 25, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.D.; Dong, S.S.; Cai, N.Y.; Fan, M.D.; Gu, S.P.; Zheng, J.J.; Yin, H.M.; Zhou, X.H.; Wang, L.X.; Li, C.Y.; et al. Efficacy and safety of mineralocorticoid receptor antagonists for patients with heart failure and diabetes mellitus: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2016, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, M.; Chen, Y.; Xu, H.; Wu, M. Mineralocorticoid receptor antagonists and heart failure with preserved ejection fraction: Current understanding and future prospects. Heart Fail. Rev. 2025, 30, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Fu, X.; Liu, M.; An, F. Finerenone attenuates myocardial apoptosis, metabolic disturbance and myocardial fibrosis in type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2023, 15, 87. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur. Heart J. 2022, 43, 474–484, Erratum in Eur. Heart J. 2022, 43, 1989. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xue, H.; He, J.; Deng, L.; Tian, J.; Jiang, Y.; Feng, J. Therapeutic potential of finerenone for diabetic cardiomyopathy: Focus on the mechanisms. Diabetol. Metab. Syndr. 2024, 16, 232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thackeray, J.T.; Beanlands, R.S.; Dasilva, J.N. Altered sympathetic nervous system signaling in the diabetic heart: Emerging targets for molecular imaging. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 314–334. [Google Scholar]
- David, S.H.B. Advantages of a third-generation β-blocker in patients with diabetes mellitus. Am. J. Cardiol. 2004, 93 (Suppl. S1), 49–52. [Google Scholar] [CrossRef]
- Haas, S.J.; Vos, T.; Gilbert, R.E.; Krum, H. Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am. Heart J. 2003, 146, 848–853. [Google Scholar] [CrossRef]
- Silverman, D.N.; Plante, T.B.; Infeld, M.; Callas, P.W.; Juraschek, S.P.; Dougherty, G.B.; Meyer, M. Association of β-Blocker Use with Heart Failure Hospitalizations and Cardiovascular Disease Mortality Among Patients with Heart Failure with a Preserved Ejection Fraction: A Secondary Analysis of the TOPCAT Trial. JAMA Netw. Open 2019, 2, e1916598. [Google Scholar] [CrossRef]
- Palau, P.; Seller, J.; Domínguez, E.; Sastre, C.; Ramón, J.M.; de La Espriella, R.; Santas, E.; Miñana, G.; Bodí, V.; Sanchis, J.; et al. Effect of β-blocker withdrawal on functional capacity in heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 2021, 78, 2042–2056. [Google Scholar] [CrossRef]
- Peikert, A.; Bart, B.A.; Vaduganathan, M.; Claggett, B.L.; Kulac, I.J.; Kosiborod, M.N.; Desai, A.S.; Jhund, P.S.; Lam, C.S.P.; Inzucchi, S.E.; et al. Contemporary Use and Implications of Beta-Blockers in Patients with HFmrEF or HFpEF: The DELIVER Trial. J. Am. Coll. Cardiol. Heart Fail. 2024, 12, 631–644. [Google Scholar] [CrossRef]
- Nakamura, K.; Kusano, K.; Nakamura, Y.; Kakishita, M.; Ohta, K.; Nagase, S.; Yamamoto, M.; Miyaji, K.; Saito, H.; Morita, H.; et al. Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation 2002, 105, 2867–2871. [Google Scholar] [CrossRef] [PubMed]
- Popp, D.A.; Tse, T.F.; Shah, S.D.; Clutter, W.E.; Cryer, P.E. Oral propranolol and metoprolol both impair glucose recovery from insulin-induced hypoglycemia in insulin-dependent diabetes mellitus. Diabetes Care 1984, 7, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, M.H. Antihypertensive therapy and lipids: Evidence, mechanisms, and implications. Arch. Intern. Med. 1985, 145, 1102–1105. [Google Scholar] [CrossRef]
- Felker, G.M.; Lee, K.L.; Bull, D.A.; Redfield, M.M.; Stevenson, L.W.; Goldsmith, S.R.; LeWinter, M.M.; Deswal, A.; Rouleau, J.L.; Ofili, E.O.; et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 2011, 364, 797–805. [Google Scholar] [CrossRef]
- Chatur, S.; Vaduganathan, M.; Claggett, B.; Vardeny, O.; Desai, A.S.; Jhund, P.S.; de Boer, R.A.; Lam, C.S.P.; Kosiborod, M.N.; Shah, S.J.; et al. Dapagliflozin and diuretic utilization in heart failure with mildly reduced or preserved ejection fraction: The DELIVER trial. Eur. Heart J. 2023, 44, 2930–2943. [Google Scholar] [CrossRef]
- Kalinski, J.K.; Xu, B.; Boyd, R.; Tasseff, N.; Rutkowski, K.; Ospina, S.; Smedira, N.; Thamilarasan, M.; Popovic, Z.B.; Desai, M.Y. Novel Cardiac Myosin Inhibitor Therapy for Hypertrophic Cardiomyopathy in Adults: A Contemporary Review. Am. J. Cardiovasc. Drugs 2024, 24, 591–602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braunwald, E.; Saberi, S.; Abraham, T.P.; Elliott, P.M.; Olivotto, I. Mavacamten: A first-in-class myosin inhibitor for obstructive hypertrophic cardiomyopathy. Eur. Heart J. 2023, 44, 4622–4633, Erratum in Eur. Heart J. 2024, 45, 286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, X.; Pang, H.; Li, J.; Luo, S.; Huang, G.; Li, X.; Xie, Z.; Zhou, Z. The NLRP3 Inflammasome and Its Role in T1DM. Front. Immunol. 2020, 11, 1595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, R.; Fang, D.; Wang, J.; Yu, Y.; Ye, H.; Kang, P.; Li, Z.; Wang, H.; Gao, Q. ALDH2 Overexpression Alleviates High Glucose-Induced Cardiotoxicity by Inhibiting NLRP3 Inflammasome Activation. J. Diabetes Res. 2019, 2019, 4857921, Erratum in J. Diabetes Res. 2021, 2021, 9813687. [Google Scholar] [CrossRef]
- Li, X.; Kerindongo, R.P.; Preckel, B.; Kalina, J.O.; Hollmann, M.W.; Zuurbier, C.J.; Weber, N.C. Canagliflozin inhibits inflammasome activation in diabetic endothelial cells—Revealing a novel calcium-dependent anti-inflammatory effect of canagliflozin on human diabetic endothelial cells. Biomed. Pharmacother. 2023, 159, 114228. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Christodoulou, E.; Kostomitsopoulos, N.; Valsami, G. The cardiovascular-protective properties of saffron and its potential pharmaceutical applications: A critical appraisal of the literature. Phytother. Res. 2021, 35, 6735–6753. [Google Scholar] [CrossRef]
- Sun, S.; Yang, S.; An, N.; Wang, G.; Xu, Q.; Liu, J.; Mao, Y. Astragalus polysaccharides inhibits cardiomyocyte apoptosis during diabetic cardiomyopathy via the endoplasmic reticulum stress pathway. J. Ethnopharmacol. 2019, 238, 111857. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, X.; Su, C.; Wang, Q.; Li, R.; Jiao, W.; Luo, H.; Tian, Y.; Tang, J.; Li, X.; et al. Si-Miao-Yong-An decoction preserves cardiac function and regulates GLC/AMPK/NF-κB and GLC/PPARα/PGC-1α pathways in diabetic mice. Biomed. Pharmacother. 2020, 132, 110817. [Google Scholar] [CrossRef]
- Wen, H.L.; Liang, Z.S.; Zhang, R.; Yang, K. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc. Diabetol. 2013, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xue, M.; Li, C.J.; Yang, W.; Wang, S.S.; Ma, Z.J.; Zhang, X.N.; Wang, X.Y.; Zhao, R.; Chang, B.C.; et al. Protective effects of triptolide on TLR4 mediated autoimmune and inflammatory response induced myocardial fibrosis in diabetic cardiomyopathy. J. Ethnopharmacol. 2016, 193, 333–344. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, C.Y.; Zhang, X.L.; Sun, G.B.; Sun, X.B. Guan Xin Dan Shen formulation protects db/db mice against diabetic cardiomyopathy via activation of Nrf2 signaling. Mol. Med. Rep. 2021, 24, 531. [Google Scholar] [CrossRef]
- Ni, Q.; Wang, J.; Li, E.Q.; Zhao, A.B.; Yu, B.; Wang, M.; Huang, C.R. Study on the protective effect of shengmai san (see text) on the myocardium in the type 2 diabetic cardiomyopathy model rat. J. Tradit. Chin. Med. 2011, 31, 209–219. [Google Scholar] [CrossRef]
- Tian, J.; Tang, W.; Xu, M.; Zhang, C.; Zhao, P.; Cao, T.; Shan, X.; Lu, R.; Guo, W. Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder. Cell Physiol. Biochem. 2018, 50, 1726–1739. [Google Scholar] [CrossRef]
- Kim, Y.; Clifton, P. Curcumin, Cardiometabolic Health and Dementia. Int. J. Environ. Res. Public Health 2018, 15, 2093. [Google Scholar] [CrossRef]
- Soetikno, V.; Sari, F.R.; Sukumaran, V.; Lakshmanan, A.P.; Mito, S.; Harima, M.; Thandavarayan, R.A.; Suzuki, K.; Nagata, M.; Takagi, R.; et al. Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: Possible involvement of PKC-MAPK signaling pathway. Eur. J. Pharm. Sci. 2012, 47, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Pinfang, K.; Jing, Z.; Zhuoya, Y.; Shaohuan, Q.; Chao, S. Curcumin Improves Diabetic Cardiomyopathy by Inhibiting Pyroptosis through AKT/Nrf2/ARE Pathway. Mediat. Inflamm. 2023, 2023, 3906043. [Google Scholar] [CrossRef] [PubMed]
- Atale, N.; Yadav, D.; Rani, V.; Jin, J.O. Pathophysiology, Clinical Characteristics of Diabetic Cardiomyopathy: Therapeutic Potential of Natural Polyphenols. Front. Nutr. 2020, 7, 564352. [Google Scholar] [CrossRef] [PubMed]
- Laddha, A.P.; Kulkarni, Y.A. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications. Eur. J. Pharmacol. 2020, 881, 173206. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L., Jr.; Butler, J.; Del Prato, S.; Ezekowitz, J.A.; Ibrahim, N.E.; Lam, C.S.P.; Lewis, G.D.; Marwick, T.H.; Rosenstock, J.; Tang, W.H.W.; et al. Rationale and design of the Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure Trial (ARISE-HF) in patients with high-risk diabetic cardiomyopathy. Am. Heart J. 2023, 256, 25–36. [Google Scholar] [CrossRef]
- Gopal, K.; Karwi, Q.G.; Tabatabaei Dakhili, S.A.; Wagg, C.S.; Zhang, L.; Sun, Q.; Saed, C.T.; Panidarapu, S.; Perfetti, R.; Ramasamy, R.; et al. Aldose reductase inhibition alleviates diabetic cardiomyopathy and is associated with a decrease in myocardial fatty acid oxidation. Cardiovasc. Diabetol. 2023, 22, 73. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Papadopoulos, C.H.; Papadopoulos, K.G.; Karagiannis, S.; Karabinos, I.; Loizos, S.; Theodosis-Georgilas, A.; Aggeli, K.; Keramida, K.; Klettas, D.; et al. Updated knowledge and practical implementations of stress echocardiography in ischemic and non-ischemic cardiac diseases: An expert consensus of the Working Group of Echocardiography of the Hellenic Society of Cardiology. Hell. J. Cardiol. 2022, 64, 30–57. [Google Scholar] [CrossRef]
- Peng, M.L.; Fu, Y.; Wu, C.W.; Zhang, Y.; Ren, H.; Zhou, S.S. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front. Endocrinol. 2022, 13, 907757. [Google Scholar] [CrossRef]
- Huynh, K.; Bernardo, B.C.; McMullen, J.R.; Ritchie, R.H. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 2014, 142, 375–415. [Google Scholar] [CrossRef]
- De Blasio, M.J.; Huynh, K.; Qin, C.; Rosli, S.; Kiriazis, H.; Ayer, A.; Cemerlang, N.; Stocker, R.; Du, X.J.; McMullen, J.R.; et al. Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling. Free Radic. Biol. Med. 2015, 87, 137–147. [Google Scholar] [CrossRef]
- Jin, B.; Chen, Y.; Wang, J.; Chen, Y.; Zhang, M.; Huang, J.; Wang, Y. Costunolide alleviates hyperglycaemia-induced diabetic cardiomyopathy via inhibiting inflammatory responses and oxidative stress. J. Cell Mol. Med. 2023, 27, 831–845. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hu, Z.; Huang, Y.; Zhan, H. Dexmedetomidine ameliorates diabetic cardiomyopathy by inhibiting ferroptosis through the Nrf2/GPX4 pathway. J. Cardiothorac. Surg. 2023, 18, 223. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.Y.; Liu, S.Q.; Zhang, T.; Shi, W.K.; Xing, Y.; Fang, W.X.; Zhang, M.; Chen, M.Y.; Xu, S.C.; Fan, M.Q.; et al. USP28 Serves as a Key Suppressor of Mitochondrial Morphofunctional Defects and Cardiac Dysfunction in the Diabetic Heart. Circulation 2024, 149, 684–706. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Su, L.; Wu, K.; Mei, Y.; Liu, Z.; Chen, Y.; Zeng, W.; Xiao, Y.; Zhang, J.; Cai, G.; et al. USP7 promotes cardiometabolic disorders and mitochondrial homeostasis dysfunction in diabetic mice via stabilizing PGC1β. Pharmacol. Res. 2024, 205, 107235. [Google Scholar] [CrossRef]
- Wang, D.; Yin, Y.; Wang, S.; Zhao, T.; Gong, F.; Zhao, Y.; Wang, B.; Huang, Y.; Cheng, Z.; Zhu, G.; et al. FGF1ΔHBS prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression. Signal Transduct. Target. Ther. 2021, 6, 133. [Google Scholar] [CrossRef]
- Guo, P.; Hu, S.; Liu, X.; He, M.; Li, J.; Ma, T.; Huang, M.; Fang, Q.; Wang, Y. CAV3 alleviates diabetic cardiomyopathy via inhibiting NDUFA10-mediated mitochondrial dysfunction. J. Transl. Med. 2024, 22, 390. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Hu, F.; Wang, P.; Xie, Y.; Li, F.; Guo, B. Neuregulin-4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway. Cardiovasc. Diabetol. 2022, 21, 205. [Google Scholar] [CrossRef]
- Hsuan, C.F.; Teng, S.I.F.; Hsu, C.N.; Liao, D.; Chang, A.J.; Lee, H.L.; Hee, S.W.; Chang, Y.C.; Chuang, L.M. Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines 2023, 11, 662. [Google Scholar] [CrossRef]
- Varga, Z.V.; Giricz, Z.; Liaudet, L.; Haskó, G.; Ferdinandy, P.; Pacher, P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim. Biophys. Acta 2015, 1852, 232–242. [Google Scholar] [CrossRef]
- Kanamori, H.; Naruse, G.; Yoshida, A.; Minatoguchi, S.; Watanabe, T.; Kawaguchi, T.; Yamada, Y.; Mikami, A.; Kawasaki, M.; Takemura, G.; et al. Metformin Enhances Autophagy and Provides Cardioprotection in δ-Sarcoglycan Deficiency-Induced Dilated Cardiomyopathy. Circ. Heart Fail. 2019, 12, e005418. [Google Scholar] [CrossRef]
- Dewanjee, S.; Vallamkondu, J.; Kalra, R.S.; John, A.; Reddy, P.H.; Kandimalla, R. Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res. Rev. 2021, 68, 101338. [Google Scholar] [CrossRef] [PubMed]
- Sapian, S.; Taib, I.S.; Latip, J.; Katas, H.; Chin, K.Y.; Mohd Nor, N.A.; Jubaidi, F.F.; Budin, S.B. Therapeutic Approach of Flavonoid in Ameliorating Diabetic Cardiomyopathy by Targeting Mitochondrial-Induced Oxidative Stress. Int. J. Mol. Sci. 2021, 22, 11616. [Google Scholar] [CrossRef] [PubMed]
- Jubaidi, F.F.; Zainalabidin, S.; Taib, I.S.; Hamid, Z.A.; Budin, S.B. The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviation of Cardiac Oxidative Stress, Inflammation and Apoptosis. Int. J. Mol. Sci. 2021, 22, 5094. [Google Scholar] [CrossRef]
- Li, L.; Luo, W.; Qian, Y.; Zhu, W.; Qian, J.; Li, J.; Jin, Y.; Xu, X.; Liang, G. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine 2019, 59, 152774. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, R.C.; Yang, Z.H.; Sun, G.B.; Wang, M.; Ma, X.J.; Yang, L.J.; Sun, X.B. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem. Toxicol. 2014, 63, 221–232. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, Q.; Chen, Y.; Pan, R.; Kuang, S.; Liu, G.; Sun, G.; Sun, X. Myricitrin Alleviates Oxidative Stress-induced Inflammation and Apoptosis and Protects Mice against Diabetic Cardiomyopathy. Sci. Rep. 2017, 7, 44239. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, H.; Song, Z.; Ding, Y.; Tao, J.; Aa, J.; Ding, X. Icariin Attenuates Diabetic Cardiomyopathy and Downregulates Extracellular Matrix Proteins in Heart Tissue of Type 2 Diabetic Rats. Pharmacology 2020, 105, 576–585. [Google Scholar] [CrossRef]
- Abukhalil, M.H.; Althunibat, O.Y.; Aladaileh, S.H.; Al-Amarat, W.; Obeidat, H.M.; Al-Khawalde, A.A.A.; Hussein, O.E.; Alfwuaires, M.A.; Algefare, A.I.; Alanazi, K.M.; et al. Galangin attenuates diabetic cardiomyopathy through modulating oxidative stress, inflammation and apoptosis in rats. Biomed. Pharmacother. 2021, 138, 111410. [Google Scholar] [CrossRef]
- Uryash, A.; Mijares, A.; Flores, V.; Adams, J.A.; Lopez, J.R. Effects of Naringin on Cardiomyocytes From a Rodent Model of Type 2 Diabetes. Front. Pharmacol. 2021, 12, 719268. [Google Scholar] [CrossRef]
- Abdel Rhman, M.; Owira, P. The role of microRNAs in the pathophysiology, diagnosis, and treatment of diabetic cardiomyopathy. J. Pharm. Pharmacol. 2022, 74, 1663–1676. [Google Scholar] [CrossRef]
- Kambis, T.N.; Mishra, P.K. Genome Editing and Diabetic Cardiomyopathy. Adv. Exp. Med. Biol. 2023, 1396, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, P.; Dach, A.; Dyrka, K.; Pawlik, A. Pathophysiology and Advances in the Therapy of Cardiomyopathy in Patients with Diabetes Mellitus. Int. J. Mol. Sci. 2024, 25, 5027. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.F.; Ye, Y.X.; Xu, J.D.; He, Y.; Zhang, D.W.; Xia, Z.Y.; Wang, S. Long non-coding RNA KCNQ1OT1 increases the expression of PDCD4 by targeting miR-181a-5p, contributing to cardiomyocyte apoptosis in diabetic cardiomyopathy. Acta Diabetol. 2021, 58, 1251–1267. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Leng, Y.; Meng, Q.; Xue, R.; Zhao, B.; Zhan, L.; Xia, Z. Suppression of Excessive Histone Deacetylases Activity in Diabetic Hearts Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondria Apoptosis Pathway. J. Diabetes Res. 2017, 2017, 8208065. [Google Scholar] [CrossRef]
- Lee, T.I.; Kao, Y.H.; Tsai, W.C.; Chung, C.C.; Chen, Y.C.; Chen, Y.J. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy. PPAR Res. 2016, 2016, 5938740. [Google Scholar] [CrossRef]
- Chen, Y.; Du, J.; Zhao, Y.T.; Zhang, L.; Lv, G.; Zhuang, S.; Qin, G.; Zhao, T.C. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc. Diabetol. 2015, 14, 99. [Google Scholar] [CrossRef]
Medication | Mechanism of Action | Prevention of Diabetic Cardiomyopathy/Heart Failure | Improvement of Cardiac Function | Effects on Clinical Outcomes |
---|---|---|---|---|
Metformin | ↓ hepatic glucose production, ↑ insulin sensitivity, AMPK activation | ↓ incidence HF, CV events ↓ oxidative stress and inflammation | ↑ LV systolic and diastolic function, ↓ LV mass, ↓ fibrosis | ↓ HF and CV events, especially in established heart disease |
Insulin | ↑ glucose uptake in muscle and fat cells ↑ myocardial glucose uptake and anti-inflammatory cytokines ↓ risk of cardiac dysfunction and glucose toxicity | ↓ risk of hyperglycemia-induced oxidative stress and inflammation ↓ incidence of DBCM and HF ↑ myocardial function and insulin sensitivity | ←→ LV function, ←→ myocardial fibrosis (CMR) | ↓ DBCM risk, May worsen HF and CV events |
SGLT-2 Inhibitors | ↓ glucose reabsorption in kidneys ↑ glucose excretion ↓ blood pressure and intravascular volume | ↓ risk of HF and CV death, ↑ myocardial energy efficiency | ↑ systolic and diastolic function, ↓ myocardial fibrosis | ↓ MACE, mortality, and HF hospitalization |
GLP-1 Agonists | ↑ insulin secretion ↓ glucagon release and ↓ gastric emptying | ↓ risk of HF and CV death | ↑ LV diastolic function ↓ LV filling pressures | ↓ MACE and all-cause mortality |
DPP-4 Inhibitors | ↑ incretin levels to enhance insulin secretion, ↓ glucagon release | Neutral effect on HF and cardiomyopathy prevention | No significant improvement in LV function or myocardial structure in echo or CMR studies | ←→CV outcomes, ←→ HF incidence |
Dual GIP/GLP-1 Receptor Agonists | ↑ insulin production, inhibits α-cell function, ↑ β-cell proliferation, ↑ glucose and lipid metabolism | ↓ MACE ↓ myocardial fibrosis | ↑ LV function ↑ LV hypertrophy and fibrosis (preliminary studies) | ↓ CV events and HF hospitalization |
Physical Exercise | ↑ glucose uptake in muscle and fat cells, ↑ GLUT-4 expression, ↑ mitochondrial and calcium function | ↓ myocardial apoptosis, fibrosis, and microvascular dysfunction | ↑ ejection fraction, myocardial strain, ↓ fibrosis, ↑ mitochondrial function | ↓ risks of HF, MI, and overall mortality |
Medications | Mechanisms | Potential Cardio-Protective Effects |
---|---|---|
Taohuajing | ↓ ROS and MDA production | ↑ GSH-Px and SOD, ↓ pro-inflammatory cytokines, ↓ NLRP3 inflammasome activation, ↓ oxidative stress and inflammation |
NLRP3-miRNA | NLRP3 gene silencing | ↓ inflammasome activation, ↓ interstitial fibrosis, and cardiac cell apoptosis, improves LV systolic and diastolic function, reverses myocardial damage |
Rapamycin | Autophagy activation | ↓ NLRP3 inflammasome formation, ↓ inflammation, ↓ myocardial ischemia-reperfusion-induced inflammation and damage |
Canagliflozin | ↓ NLRP3 inflammasome activation | ↓ ROS production in diabetic endothelial cells, ↓ oxidative stress and inflammation in diabetic endothelial cells |
ALDH2 | ↓ harmful metabolites (4-HNE) | ↓ mitochondrial oxygen free radicals, ↓ NLRP3 inflammasome activation, protects against myocardial ischemia/reperfusion injury |
Medications | Mechanisms | Potential Cardio-Protective Effects |
---|---|---|
Natural products (herbal medicine) | ||
Tongluo Nourishing Yin Formula/Si-Miao-Yong-An Decoction | ↓ Oxidative stress, inflammation, apoptosis, and fibrosis | ↑ LV function ↓ hypertrophy, fibrosis, and inflammation |
Astragalus Polysaccharide | Inhibits ERS-related pathways Modulates glucose metabolism via GLUT-4, ↓ PPAR-α pathway | ↓ cardiac fibrosis and apoptosis, ↑ antioxidant effects→ ↑cardiac function |
Aloe-emodin Derivative | ↓ NLRP3 inflammasome-mediated pyroptosis pathway | ↓ inflammation |
Qigui Qiangxin Mixture | Activates PI3K-AKT signaling pathway | ↓ apoptosis ↑cardiac function |
Rhynchophylline | Regulates calcium homeostasis Prevents mitochondrial calcium overload, | ↑cardiac function ↓ myocardial damage |
Guan Xin Dan Shen Formulation | Activates Akt/Nrf2 signaling pathway | ↓ apoptosis, ↑ cardiac function |
Cyclovirobuxine D | Activates Nrf2 signaling ↓ oxidative stress, restores mitochondrial membrane potential ↑ antioxidant enzymes | ↑ cardiac function |
Lycium Chinese Leaf Extract | ↓ oxidative stress, inflammation, apoptosis, and fibrosis | ↑ cardiac function, restores cardiac structural integrity |
Panax Notoginseng Saponin | ↓ lipid accumulation and oxidative stress ↑ mitochondrial function | ↑ cardiac function |
Cyclocarya Paliurus Ethanol Leaf Extract | Inhibits NF-κB signaling, activates PI3K/Akt pathway | ↓ fibrosis, hypertrophy, ↑ lipid profiles and glucose levels |
Resveratrol | Regulates ERS pathways, activates AMPK/AKT cascades, ↑ Nrf2 Modulates autophagy, ↓ oxidative stress, | ↑ cardiac function, ↓ hypertrophy, apoptosis |
Puerarin | ↓ ERS-related proteins ↓ blood glucose, ↓ insulin resistance | Cardioprotective |
Astragaloside IV | Inhibits ERS-related apoptosis in cardiomyocytes | ↓ myocardial damage in DBCM |
Mangiferin | ↓ ERS markers (IRE1 and JNK) | ↓ myocardial fibrosis, ↑ cardiac function |
Ginseng Fruit Saponins/Ginsenoside Rg1 | Regulates ERS-related proteins (GRP78, CHOP) | ↓ apoptosis and fibrosis, ↑ cardiac function |
Gypenosides | ↓ ROS-mediated activation of the NLRP3 inflammasome | ↓ myocardial damage in DBCM |
Shengmai San | Activates SIRT1/AMPK/PGC-1α pathway Stabilizes mitochondrial structure | ↓ myocardial hypertrophy and diastolic dysfunction |
Curcumin | Activates AKT/Nrf2/ARE pathway ↓ ROS accumulation, ↑ mitochondrial function, activates autophagy, ↓ oxidative stress, | ↓ cardiac remodeling |
Tanshinone IIA | ↓ ERS-mediated apoptosis and fibrosis | ↓ myocardial fibrosis, ↑ cardiac function |
Triptolide | ↓ NF-κB/IL-1β and NF-κB/TNF-α pathways | ↓ myocardial fibrosis and hypertrophy, ↑ cardiac function |
Cola Nitida | Improves oxidative stress markers | ↓ ACE activity, preserves myocardial structure |
White Mulberry Root-Bark/Ginkgo Biloba Leaves | Targets ERS pathways (PERK/eIF2α and JNK) | ↓ cardiac apoptosis, fibrosis |
Ginkgo Biloba Extract | Inhibits mitochondrial permeability transition pore | ↓ oxidative stress, protects against diabetic-induced cardiac damage |
Matrine/Cryptotanshinone | Inhibits STAT3 pathway and MMP-9 expression | ↓ cardiac fibrosis |
Broccoli Sprout Extract/Garlic/Dietary Phenolic Acids | Activate Nrf2 transcription | Prevents cardiac dysfunction |
Dendrobium Officinale | ↓ NF-κB-mediated inflammation | Attenuates diabetic heart injury |
Yunpi-Huoxue-Sanjie | ↑ autophagy through FoxO1 signaling pathway | ↑ cardiac function, ↓ fibrosis |
Notoginsenoside R1 | Activates estrogen receptor α, Akt-Nrf2 signaling, inhibits TGFβ pathway ↓ oxidative stress, apoptosis, and fibrosis | ↑ cardiac function, |
Flavonoids | ||
Myricitrin | ↑ Akt pathway, modulates ERK signaling, ↑ mitochondrial function ↓ oxidative stress and apoptosis | |
Taxifolin | ↑ antioxidant enzyme activity, regulates JAK/STAT3 pathway | ↓ myocardial apoptosis, ↑ diastolic function |
Icariin | ↓ TGF-β1/Smad pathway | ↑ LV function, ↓ fibrosis |
Galangin | Modulates NF-κB and iNOS pathways | ↓ apoptosis and oxidative damage in diabetic hearts |
Wogonin | ↓ oxidative damage and inflammation via NF-κB and iNOS pathways | ↓ apoptosis and oxidative damage |
Naringin and naringenin | Regulate Nrf2, NF-κB, and NOX pathways to ↓ oxidative stress | ↓ myocardial apoptosis, ↑ cardiac function |
Hesperetin | Modulates oxidative stress pathways | ↑ cardiac function prevents fibrosis |
Cyanidin-3-glucoside and delphinidin | Regulate oxidative stress | ↑ cardiac function, prevents fibrosis |
Phloretin | Targets Keap1/Nrf2 pathway | ↓ oxidative stress |
Quercetin | Promotes nuclear translocation of Nrf2, inhibits pyroptosis | ↓ myocardial fibrosis and apoptosis |
Nobiletin, baicalein, and fortunellin | ↓ JNK and p38 MAPK pathways, ↑ antioxidant defenses via PI3K/Akt | Protects against cardiac damage |
Medications | Mechanisms | Potential Cardio-Protective Effects |
---|---|---|
Aldose reductase inhibitors | ||
AT-001 (ongoing clinical ARISE-HF trial) | Inhibits aldose reductase ↓ oxidative stress | ↑ cardiac function, diastolic function and cardiac efficiency ↓ heart failure progression, myocardial fatty acid oxidation, cardiac fibrosis, and hypertrophy |
Benzofuroxane | ↑ expression of antioxidant and protective proteins (SIRT1, MnSOD, eNOS, FOXO-1) ↑ energy consumption, ↓ oxidative stress, ↓ DNA damage, ↑ antioxidant pathways | |
SIRT1 inhibition | Improves cardiac efficiency | |
Sorbinil | ↑ autonomic nervous system function | ↑ cardiac function, resting, and maximal cardiac output |
Antioxidants—Preclinical data | ||
SOD | Antioxidant enzyme that scavenges ROS | ↓ oxidative damage, cardiac fibrosis, and hypertrophy |
Sirtuin 3 | ↑ mitochondrial function | ↓ oxidative stress damage, mitochondrial dysfunction |
Nrf2 activators | ↑ antioxidant defenses | ↓ oxidative damage, cardiac fibrosis, and hypertrophy |
Coenzyme-Q10 | ↑ mitochondrial antioxidant | ↓ LV mass and collagen deposition |
Mito-TEMPO | ↑ mitochondrial ROS scavenger | ↓ hyperglycemia-induced damage of cardiomyocytes |
Peroxiredoxin-3 | ↑ mitochondrial antioxidant | ↓ hyperglycemia-induced damage of cardiomyocytes |
N-acetyl-L-cysteine | ↑ antioxidant defense | ↓ ROS, ↓ cardiac fibrosis |
Zinc | ↑ insulin signaling | ↓ cardiac remodeling and fibrosis |
Epigallocatechin-3-gallate | ↓ oxidative stress and inflammation | Modulates autophagy pathways, protects cardiac cells |
Costunolide | ↓ oxidative stress and inflammation | |
Dexmedetomidine | ↓ oxidative stress and inflammation | |
MicroRNAs—Preclinical data | ||
miR-133a and MMP9 | ↓ oxidative stress, ↓ inflammation, and mitochondrial dysfunction | |
miR-30d | Modulates autophagy, calcium metabolism, and pyroptosis | ↓ fibrosis |
miR-21-3p | Influences autophagy and pyroptosis pathways | ↓ inflammation and fibrosis |
miR-145 | Modulates autophagy and inflammation | ↓ inflammation and fibrosis |
miR-9 | Influences autophagy, calcium metabolism, and pyroptosis | ↓ cardiac damage |
HDACIs | ↓ oxidative stress, inflammation | ↓ fibrosis |
Mitochondrial disorders treatments—Preclinical data | ||
USP28 and USP7 | ↑ PPARα stability, ↑ lipid metabolism regulation, ↑ Mfn2 for mitochondrial fusion | ↑ cardiac function |
Bmal1 overexpression | ↑ mitochondrial function, ↓ Ca2+ overload | ↓ cardiac injury |
FGF1ΔHBS | ↑ AMPK activation, ↓ mitochondrial dysfunction | ↑ cardiac function |
Caveolin 3 overexpression | ↑ mitochondrial function, ↓ oxidative stress | ↓ cardiomyocyte apoptosis |
Mesenchymal stem cells, Pioglitazone, Exendin-4, iPSCs | Target ↓ oxidative stress and ↓ fibrosis | ↑ cardiac function |
Autophagy Dysregulation—Preclinical data | ||
Neuregulin-4 | Reactivates autophagy through the ↑ AMPK/mTORC1 pathway | ↓ cardiomyocyte apoptosis, ↓ fibrosis, ↑ cardiac function |
ALDH2 activators | ↓ oxidative stress, supports autophagy | ↓oxidative damage |
ATG7 overexpression | ↑ autophagy, ↓ oxidative stress | ↑ cardiac function |
Polyphenols | Modulates autophagy pathways to ↓ oxidative stress | ↑ autophagy |
Berberine | ↓ oxidative stress, ↑ autophagy | ↑ autophagy in the heart |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattab, E.; Kyriakou, M.; Leonidou, E.; Sokratous, S.; Mouzarou, A.; Myrianthefs, M.M.; Kadoglou, N.P.E. Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy—Challenges and Prospectives. Pharmaceuticals 2025, 18, 134. https://doi.org/10.3390/ph18010134
Khattab E, Kyriakou M, Leonidou E, Sokratous S, Mouzarou A, Myrianthefs MM, Kadoglou NPE. Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy—Challenges and Prospectives. Pharmaceuticals. 2025; 18(1):134. https://doi.org/10.3390/ph18010134
Chicago/Turabian StyleKhattab, Elina, Michaelia Kyriakou, Elena Leonidou, Stefanos Sokratous, Angeliki Mouzarou, Michael M. Myrianthefs, and Nikolaos P. E. Kadoglou. 2025. "Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy—Challenges and Prospectives" Pharmaceuticals 18, no. 1: 134. https://doi.org/10.3390/ph18010134
APA StyleKhattab, E., Kyriakou, M., Leonidou, E., Sokratous, S., Mouzarou, A., Myrianthefs, M. M., & Kadoglou, N. P. E. (2025). Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy—Challenges and Prospectives. Pharmaceuticals, 18(1), 134. https://doi.org/10.3390/ph18010134