Research Progress in In Vitro Screening Techniques for Natural Antithrombotic Medicines
Abstract
:1. Introduction
2. Multi-Level Screening of Active Ingredients in Natural Antithrombotic Medicines
2.1. Molecular Level
2.2. Cellular Level
2.3. Organ Level
3. Multi-Modal Screening Technology for Active Ingredients of Natural Antithrombotic Medicines
3.1. Based on High-Throughput Screening Technology
3.2. Chip-Based Screening Technology
3.3. Molecular Biology-Based Screening Techniques
3.4. Fluorescence Sensor-Based Screening Technology
3.5. Computer Biology-Based Screening Technology
4. Limitations and Prospects of In Vitro Screening Techniques
Funding
Conflicts of Interest
References
- Ortel, T.L. Introduction to a review series on treatment of venous thrombotic disorders. Blood 2020, 135, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C. Thrombotic disorders: Seeking out better anticoagulants. Nat. Rev. Med. Discov. 2014, 13, 255. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Sun, Z.; Guo, Z.; Li, P.; Mao, Q.; Tang, Y.; Chen, H.; Peng, H.; Wang, S.; Cao, Y. The effectiveness of blood-activating and stasis-transforming traditional Chinese medicines (BAST) in lung cancer progression-a comprehensive review. J. Ethnopharmacol. 2023, 314, 116565. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tang, Y.; Guo, J. Comparative assessing the effects of angelica root and chuanxiong on the hemorheology and the blood coagulation function in acute blood stasis rats. Chin. J. Integr. Med. 2012, 32, 806–811. [Google Scholar]
- Liu, X.; Wu, S.; Chen, X.; Zhang, Y.; Li, H.; Tang, J. Research on the Blood-Activating and Stasis-Removing Effects and Mechanisms of Danshen Injection on Acute Blood Stasis Rats Based on the vWF/GPIb-IX-V Signaling Pathway. Chin. Herb. Med. 2023, 54, 1173–1183. [Google Scholar]
- Zhao, Y. Clinical Observation on the Prevention of Deep Vein Thrombosis after Hip Replacement Surgery with Qi-Supplementing and Blood-Activating Chinese Herbal Medicine Combined with Traditional Chinese Medicine Techniques. Mod. Diagn. Treat. 2017, 28, 4345–4346. [Google Scholar]
- Li, D.; Li, Y.; Yang, S.; Yu, Z.; Xing, Y.; Wu, M. Mechanism and Potential Target of Blood-Activating Chinese Botanical Medicines Combined With Anti-Platelet medicines: Prevention and Treatment of Atherosclerotic Cardiovascular Diseases. Front. Pharmacol. 2022, 3, 811422. [Google Scholar]
- Tang, S.; Li, J.; Zheng, C.; Zhang, L.; Yang, Y.; Li, Y. The Differential Improvement of Endothelial Cell Function in Rabbits with Blood Stasis by Five Blood-Activating and Stasis-Removing Prescriptions. Chin. J. Integr. Med. 2023, 43, 1214–1220. [Google Scholar]
- Tang, D.; Song, Y.; Zhao, F. The Evolution and Reconsideration of the Efficacy of Traditional Chinese Medicine: A Historical and Modern Perspective. Chin. Med. 2023, 46, 741–746. [Google Scholar]
- Li, Y.; Ren, T.; Liu, S.; Zhang, L.; Yi, H.; Li, C.; Chen, L.; Gao, H.M.; Yan, L.; Liu, X.; et al. Fingerprint analysis of dang-gui-Si-Ni decoction and its anticoagulant activity in vivo-in vitro. J. Ethnopharmacol. 2024, 325, 117890. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.; Aggarwal, P.; Iqbal, O.; Hoppensteadt, D.; Lewis, M.; Abro, S.; Tsuruta, K.; Fareed, J. Comparative Anticoagulant Effects of Recombinant Thrombomodulin, Antithrombin, and Unfractionated Heparin, Hematological Implications. Blood 2016, 128, 4974. [Google Scholar] [CrossRef]
- Engelen, M.; Van, L.; Jacquemin, M.; Vandenbriele, C.; Peerlinck, K.; Verhamme, P.; Vanassche, T. Heparin is more effective than apixaban in inhibiting in vitro contact activated coagulation. Eur. Heart J. 2020, 41 (Suppl. S2), ehaa946-3776. [Google Scholar] [CrossRef]
- Sivaraja, M.; Sizikov, S.; Sandoval, N.; Lin, K.; Igoudin, L.; Dash, S.; Xu, C.; Clemens, D.; Estiarte, A.; Shiau, T.; et al. Novel Class of Direct Thrombin Inhibitors Prevent Thrombosis by Inhibiting Fibrinogen Cleavage While Preserving Platelet Function. Blood 2016, 128, 3834. [Google Scholar] [CrossRef]
- Sairaku, A.; Morishima, N.; Matsumura, H.; Amioka, M.; Maeda, J.; Watanabe, Y.; Nakano, Y. The impact of oral direct thrombin inhibitors on activated clotting time during catheter ablation in patients with atrial fibrillation. J. Am. Coll. Cardiol. 2021, 61, 551–557. [Google Scholar]
- Hazim, A.; Ruan, G.; Khodadadi, R.; Slusser, J.; Marshall, A.; Pruthi, R. A Single-Institution Retrospective Study of Causes of Prolonged Prothrombin Time (PT) and Activated Partial Thromboplastin Time (aPTT) in the Outpatient Setting. Blood 2018, 44, 209–215. [Google Scholar]
- Meng, S.; Miao, L.; Lin, L.; Sun, M.; Peng, Q.; Zhang, Y.; Ren, J.; Liu, J. Research Ideas and Methods for the Study of the Efficacy Substance Basis of Traditional Chinese Medicine Compounds Based on Syndrome Characterization Biology. World Sci. Technol. Mod. Tradit. Chin. Med. 2023, 25, 835–842. [Google Scholar]
- Sui, N.; Wang, L.; Xie, F.; Liu, F.; Xiao, H.; Liu, M.; Yu, W. Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Mikrochim. Acta 2016, 183, 1563–1570. [Google Scholar] [CrossRef]
- Stojanovski, B.M.; Di Cera, E. Monitoring prothrombin activation in plasma through loss of Förster resonance energy transfer. J. Thromb. Haemost. 2023, 21, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Guo, X.; Zhao, H.; Zhou, G.; An, Y. Xuebijing Administration Alleviates Pulmonary Endothelial Inflammation and Coagulation Dysregulation in the Early Phase of Sepsis in Rats. J. Clin. Med. 2022, 11, 6696. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Natori, T.; Tsuda, K.; Yoshida, M.; Kamada, A.; Oi, K.; Ishigaku, Y.; Oura, K.; Narumi, S.; Yamamoto, M.; et al. Thrombin-induced platelet aggregation-effect of dabigatran using automated platelet aggregometry. Platelets 2019, 31, 360–364. [Google Scholar] [CrossRef]
- Fang, H.; Gao, B.; Zhao, Y.; Fang, X.; Bian, M.; Xia, Q. Curdione inhibits thrombin-induced platelet aggregation via regulating the AMP-activated protein kinase-vinculin/talin-integrin αIIbβ3 sign pathway. Phytomedicine 2019, 8, 152859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Hou, Y.; Sun, C.; Pu, Y.; Sun, Y.; Zhang, Y.; Shen, Y.; Zhou, Q. Baicalin Protects against Thrombin-Induced Cell Injury in Human Umbilical Vein Endothelial Cells. Biomed. Res. Int. 2019, 8, 2187306. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhu, W.; Nowicki, M.; Zhou, X.; Khademhosseini, A.; Zhang, L. Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D bioprinting: Integrating regional bioactive factors into architectural design. Adv. Healthc. Mater. 2016, 5, 2174–2181. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.P.; Siller, R.; Tanaka, Y.; Chollet, M.; Morena-Barrio, M.; Xiang, Y.; Patterson, B.; Andersen, E.; Bravo-Pérez, C.; Kempf, H.; et al. Scalable production of tissue-like vascularized liver organoids from human PSCs. Exp. Mol. Med. 2023, 55, 2005. [Google Scholar] [CrossRef]
- Wang, J.; Song, M.; Hu, C. Portable, Self-Powered, and Light-Addressable Photoelectrochemical Sensing Platforms Using pH Meter Readouts for High-Throughput Screening of Thrombin Inhibitor medicines. Anal. Chem. 2018, 90, 9366–9373. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.; Diamond, S.L. Blood coagulation kinetics: High throughput method for real-time reaction monitoring. Thromb. Haemost. 2004, 92, 874–882. [Google Scholar] [CrossRef]
- Pla-Tolós, J.; Moliner-Martínez, Y.; Molins-Legua, C.; Campíns-Falcó, P. Solid glucose biosensor integrated in a multi-well microplate coupled to a camera-based detector: Application to the multiple analysis of human serum samples. Sens. Actuators B Chem. 2017, 258, 331–341. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Yin, S.; Cai, L.; Yang, Y.; Liu, W.; Hu, Y.; Chen, H.; Yang, F. Screening of blood-activating active components from Danshen–Honghua herbal pair by spectrum-effect relationship analysis. Phytomedicine 2018, 15, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, X.; Li, J.; Evans, O.; Wang, H.; Yang, X.; He, J.; Gao, X.; Chang, Y. Thrombin-based discovery strategy of bioactive-chemical quality marker combination for pollen of Typha orientalis by metabolomics coupled with chemometrics. Phytomedicine 2020, 15, 153246. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Li, Q.; Lei, H.; Long, H.; Zhou, Y. Study on the Efficacy Component Group of Polygonum cuspidatum I—Spectroscopic Efficiency Analysis of the Prolongation of Coagulation Time. J. Tradit. Chin. Med. 2011, 26, 737–739. [Google Scholar]
- Lv, D.; Xiao, S.; Luo, C.; Li, Q.; Qu, Y.; Cui, X. Quality Analysis of Sanqi New-Type Decoctions Based on Efficacy Components and Pharmacodynamic Evaluation. J. Yunnan Agric. Univ. 2022, 37, 638–647. [Google Scholar]
- Imaduwage, K.; Lakbub, J.; Go, E.; Desaire, H. Rapid LC-MS Based High-Throughput Screening Method, Affording No False Positives or False Negatives, Identifies a New Inhibitor for Carbonic Anhydrase. Sci. Rep. 2017, 7, 10324. [Google Scholar] [CrossRef] [PubMed]
- Hecko, S.; Schiefer, A.; Badenhorst, C.; Fink, M.; Mihovilovic, M.; Bornscheuer, U.; Rudroff, F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023, 123, 2832–2901. [Google Scholar] [CrossRef]
- Morgan, D.; Garg, M.; Tergaonkar, V.; Tan, S.; Sethi, G. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188449. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, H.; Liu, Y.; Li, X.; Xu, B.; Li, L.; Jin, W. HTR1A Inhibits the Progression of Triple-Negative Breast Cancer via TGF-β Canonical and Noncanonical Pathways. Adv. Sci. 2022, 9, e2105672. [Google Scholar] [CrossRef] [PubMed]
- Pinho, D.; Carvalho, V.; Gonçalves, I.; Teixeira, S.; Lima, R. Visualization and Measurements of Blood Cells Flowing in Microfluidic Systems and Blood Rheology: A Personalized Medicine Perspective. J. Pers. Med. 2020, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, P.S.; Manz, A. Lab-on-a-chip: Microfluidics in medicine discovery. Nat. Rev. Med. Discov. 2006, 5, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.; Lee, S.Y.; Yang, J.; Hwang, S. Yoomin Ahn Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. BioChip J. 2016, 11, 109–115. [Google Scholar] [CrossRef]
- Wang, X.N.; Song, Y.; Tang, W.; Li, P.; Li, B. Integration of fluorescence and MALDI imaging for microfluidic chip-based screening of potential thrombin inhibitors from natural products. Biosens. Bioelectron. 2023, 237, 115527. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, C.; Wang, P.; Liu, Y.; Wang, L.; Pi, Q.; Gong, Z.; Yang, X.; Mak, M.; Wu, Y. Indoor nanoscale particulate matter-induced coagulation abnormality based on a human 3D microvascular model on a microfluidic chip. J. Nanobiotechnol. 2019, 17, 20. [Google Scholar] [CrossRef] [PubMed]
- Barkhordari, A.; Behzad-Behbahani, A.; Jajarmi, V.; Bandehpour, M.; Rafiei-Dehbidi, G.; Safari, F.; Mahboudi, F.; Kazemi, B. Direct Cloning, Expression and Purification of Human Activated Thrombin in Prokaryotic System and CD Analysis Report of Produced Thrombin: Molecular Characterization of Recombinant Thrombin. Int. J. Pept. Res. Ther. 2020, 26, 2661–2673. [Google Scholar] [CrossRef]
- Gyurina, K.; Kárai, B.; Ujfalusi, A.; Hevessy, Z.; Barna, G.; Jáksó, P.; Pálfi-Mészáros, G.; Póliska, S.; Scholtz, B.; Kappelmayer, J.; et al. Coagulation FXIII-a Protein Expression Defines Three Novel Sub-Populations in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia Characterized by Distinct Gene Expression Signatures. Blood 2019, 9, 1063. [Google Scholar]
- Wang, Y.; Tang, H.; Huang, L.; Pan, L.; Yang, L.; Yang, H.; Mu, F.; Yang, M. Self-play reinforcement learning guides protein engineering. Nat. Mach. Intell. 2023, 5, 845–860. [Google Scholar] [CrossRef]
- Swystun, L.L.; Lillicrap, D. Gene Therapy for Coagulation Disorders. Circ. Res. 2016, 118, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Zahn, L.M. Gene expression at fine scale. Science 2019, 363, 1411–1412. [Google Scholar]
- Csobán-Szabó, Z.; Fésüs, L.; Király, R. Protein-peptide based assay for the characterization of human blood coagulation factor XIII-A isopeptidase activity. Anal. Biochem. 2020, 600, 113699. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sun, W.; Pan, X.; Hou, X.; Wang, S.; Zhang, J. Establishment of thrombin affinity column (TAC)-HPLC-MS/MS method for screening direct thrombin inhibitors from Radix Salviae miltiorrhiae. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1139, 121894. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Huang, L.; Zhang, Y.; Jiang, Y.; Huang, Q. Research on Coumarin Compounds in Ruta graveolens. J. Hunan Univ. Chin. Med. 2024, 44, 395–400. [Google Scholar]
- Prince, R.; Bologna, L.; Manetti, M.; Melchiorre, D.; Rosa, I.; Dewarrat, N.; Suardi, S.; Amini, P.; Fernández, J.; Burnier, A.; et al. Targeting anticoagulant protein S to improve hemostasis in hemophilia. Blood 2018, 131, 1360–1371. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, F.; Zhao, L.; Wang, C.; Wang, H.; Tian, M.; Qin, J.; Duan, Y.; He, X. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens. Bioelectron. 2013, 47, 265–270. [Google Scholar] [CrossRef]
- Mani, R.J.; Dye, R.; Snider, T.; Wang, S.; Clinkenbeard, K. Bi-cell surface plasmon resonance detection of aptamer mediated thrombin capture in serum. Biosens. Bioelectron. 2011, 26, 4832–4836. [Google Scholar] [CrossRef]
- Tang, Q.; Su, X.; Loh, K.P. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. J. Colloid. Interface Sci. 2007, 315, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, L.; Zhu, X.; Wang, Y.; Yang, H.; Wang, Z. A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Adv. Healthc. Mater. 2020, 9, e2000364. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, B.; Sun, K.; Yin, G.; Wang, P.; Yu, X.A.; Tian, J. An aggregation-induced emission sensor combined with UHPLC-Q-TOF/MS for fast identification of anticoagulant active ingredients from traditional Chinese medicine. Anal. Chim. Acta 2023, 1279, 341799. [Google Scholar] [CrossRef] [PubMed]
- Tomita, S.; Sugai, H.; Mimura, M.; Ishihara, S.; Shiraki, K.; Kurita, R. Optical Fingerprints of Proteases and Their Inhibited Complexes Provided by Differential Cross-Reactivity of Fluorophore-Labeled Single-Stranded DNA. ACS Appl. Mater. Interfaces 2019, 11, 47428–47436. [Google Scholar] [CrossRef]
- Zeng, Z.; Christodoulides, A.; Alves, N.J. Real-time tracking of fibrinolysis under constant wall shear and various pulsatile flows in an in-vitro thrombolysis model. Bioeng. Transl. Med. 2023, 8, e10511. [Google Scholar] [CrossRef]
- Zhang, Y.; Raymo, F.M. Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods Appl. Fluoresc. 2020, 8, 032002. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, R.; Danylchuk, D.I.; Benaissa, H.; Broch, F.; Vauchelles, R.; Gautier, A.; Klymchenko, A.S. Genetic Targeting of Solvatochromic Dyes for Probing Nanoscale Environments of Proteins in Organelles. Anal. Chem. 2023, 95, 8512–8521. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, C.; Russo, K.; Musumeci, D.; Morvan, F.; Meyer, A.; Vasseur, J.J.; Paduano, L.; Montesarchio, D. Fluorescent Thrombin Binding Aptamer-Tagged Nanoparticles for an Efficient and Reversible Control of Thrombin Activity. ACS Appl. Mater. Interfaces 2017, 9, 35574–35587. [Google Scholar] [CrossRef]
- Oleas, A.C.M.; Mendez, M.A. Computer Aided Design of Aptamer for Prothrombin Detection in Blood. Biophys. J. 2015, 108, 483a. [Google Scholar] [CrossRef]
- Van, L.; Ba-Alawi, W.; Branchard, E.; Cruickshank, J.; Schormann, W.; Longo, J.; Silvester, J.; Gross, P.L.; Andrews, D.W.; Cescon, D.W.; et al. Computational pharmacogenomic screen identifies medicines that potentiate the anti-breast cancer activity of statins. Nat. Commun. 2022, 13, 6323. [Google Scholar]
- Villoutreix, B.O. Combining bioinformatics, chemoinformatics and experimental approaches to design chemical probes: Applications in the field of blood coagulation. Ann. Pharm. Fr. 2016, 74, 253–266. [Google Scholar] [CrossRef]
- Jamil, M.A.; Singh, S.; El-Maarri, O.; Oldenburg, J.; Biswas, A. Exploring Diverse Coagulation Factor XIII Subunit Expression Datasets: A Bioinformatic Analysis. Int. J. Mol. Sci. 2022, 23, 4725. [Google Scholar] [CrossRef]
- Boulaamane, Y.; Molina Panadero, I.; Hmadcha, A.; Atalaya Rey, C.; Baammi, S.; El Allali, A.; Maurady, A.; Smani, Y. Antibiotic discovery with artificial intelligence for the treatment of Acinetobacter baumannii infections. mSystems 2024, 9, e32524. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2020, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhatt, R.; Bhikadiya, C.; Bi, C.; Biester, A.; Biswas, P.; Bittrich, S.; Blaumann, S.; Brown, R.; Chao, H.; et al. Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank. Nucleic Acids Res. 2025, 53, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, H.; Han, L.; Mervin, L.H.; Hosseini-Gerami, L.; Li, P.; Wright, P.; Trapotsi, M.; Liu, K.; Fan, T.; et al. In silico prediction and biological assessment of novel angiogenesis modulators from traditional Chinese medicine. Front. Pharmacol. 2023, 14, 1116081. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, R.; Ipe, J.; Kassab, K.; Kanuri, S.; Gao, H.; Liu, Y.; Skaar, T. P741Next generation miRNA sequencing and changes in coagulation measured by thrombelastography (TEG) in patients with cardiovascular disease. Eur. Heart J. 2019, 40 (Suppl. S1), ehz747-0344. [Google Scholar] [CrossRef]
- Kolaja, K. Medicine discovery: Computer model predicts side effects. Nature 2012, 486, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Merchan, E.C. The current role of artificial intelligence in hemophilia. Expert Rev. Hematol. 2022, 15, 927–931. [Google Scholar] [CrossRef]
- Goto, S.; Pieper, K.; Bassand, J.; Camm, A.; Fitzmaurice, D.; Goldhaber, S.; Haas, S.; Parkhomenko, A.; Oto, A.; Misselwitz, F.; et al. New artificial intelligence prediction model using serial prothrombin time international normalized ratio measurements in atrial fibrillation patients on vitamin K antagonists: GARFIELD-AF. Eur. Heart J. Cardiovasc. Pharmacother. 2019, 6, 301–309. [Google Scholar] [CrossRef]
- Morales, A.H.; Hero, J.; Ledesma, A.E.; Martínez, M.; Navarro, M.; Gómez, M.; Romero, C. Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization. Int. J. Biol. Macromol. 2023, 253, 126615. [Google Scholar] [CrossRef]
- Van den Besselaar, A.; Chantarangkul, V.; Angeloni, F.; Binder, N.; Byrne, M.; Dauer, R.; Gudmundsdottir, B.R.; Jespersen, J.; Kitchen, S.; Legnani, C.; et al. International collaborative study for the calibration of proposed International Standards for thromboplastin, rabbit, plain, and for thromboplastin, recombinant, human, plain. J. Thromb. Haemost. 2017, 16, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Liu, Y.; Li, S.; Li, X.; Yang, W. PINK1-PRKN mediated mitophagy: Differences between in vitro and in vivo models. Autophagy 2022, 19, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Liu, T.; Peng, H.; Liu, J.; Ding, L.; Fang, Y. Film-based fluorescent sensors: From sensing materials to hardware structures. Sci. Bull. 2023, 68, 546–548. [Google Scholar] [CrossRef] [PubMed]
- Taubenschmid-Stowers, J.; Orthofer, M.; Laemmerer, A.; Krauditsch, C.; Rózsová, M.; Studer, C.; Lötsch, D.; Gojo, J.; Gabler, L.; Dyczynski, M.; et al. A whole-genome scan for Artemisinin cytotoxicity reveals a novel therapy for human brain tumors. EMBO Mol. Med. 2023, 15, e16959. [Google Scholar] [CrossRef]
- Mačianskienė, R.; Zigmantaitė, V.; Andriulė, I.; Pangonytė, D.; Sadauskienė, I.; Arandarčikaitė, O.; Stankevičius, A.; Grigas, J.; Pautienius, A.; Treinys, R.A.; et al. cute and Sub-Chronic Intraperitoneal Toxicity Studies of the Elsholtzia ciliata Herbal Extract in Balb/c Mice. Pharmaceutics 2023, 15, 2417. [Google Scholar] [CrossRef]
- Long, A.T.; Kenne, E.; Jung, R.; Fuchs, T.A.; Renné, T. Contact system revisited: An interface between inflammation, coagulation, and innate immunity. J. Thromb. Haemost. 2016, 14, 427–437. [Google Scholar] [CrossRef]
- Agbani, E.O.; Poole, A.W. Procoagulant platelets: Generation, function, and therapeutic targeting in thrombosis. Blood 2017, 16, 2171–2179. [Google Scholar] [CrossRef]
- Siddiqui, F.; Tafur, A.; Hoppensteadt, D.; Walenga, J.; Jeske, W.; Bontekoe, E.; Kouta, A.; Fareed, J. Andexanet alpha Differentially Neutralizes the Anticoagulant, Antiprotease and Thrombin Generation Inhibitory Effects of Unfractionated Heparin, Enoxaparin and Fondaparinux. Blood 2019, 134, 1158. [Google Scholar] [CrossRef]
- Helten, C.; Dannenberg, L.; Mourikis, P.; Naguib, D.; Poehl, M.; M’pembele, R.; Ayhan, A.; Zako, S.; Knoop, B.; Hohlfeld, T. P4556Thrombin generation and platelet function in patients on RAAS inhibitors. Eur. Heart J. 2019, 40 (Suppl. S1), ehz745-0947. [Google Scholar] [CrossRef]
- Zhang, W.; Pei, J.; Lai, L. Computational Multitarget medicine Design. J. Chem. Inf. Model. 2017, 27, 403–412. [Google Scholar] [CrossRef] [PubMed]
Limitations | Solution | |
---|---|---|
Experimental Condition Variations | Adjusting temperature, pH, and ionic strength can greatly impact enzyme activity [72] | Minimize adjustments to temperature, pH, and ionic strength |
Individual Variations in Biological Materials | Biological materials from different donors may cause inconsistent screening results [73] | Use donors from the same source as much as possible |
Simplicity of the Model | Some in vitro models may not fully replicate biological complexity [74] | Complex designs and high tech demands optimize models for biological relevance |
Other Factors | Reagent batch variations, operator proficiency, and equipment precision | Use same reagent batch, enhance operator proficiency, and use high-precision equipment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, L.; Li, L.; Yan, Y.; Zhang, H. Research Progress in In Vitro Screening Techniques for Natural Antithrombotic Medicines. Pharmaceuticals 2025, 18, 137. https://doi.org/10.3390/ph18020137
Liu X, Chen L, Li L, Yan Y, Zhang H. Research Progress in In Vitro Screening Techniques for Natural Antithrombotic Medicines. Pharmaceuticals. 2025; 18(2):137. https://doi.org/10.3390/ph18020137
Chicago/Turabian StyleLiu, Xinyang, Lu Chen, Lin Li, Yiqi Yan, and Han Zhang. 2025. "Research Progress in In Vitro Screening Techniques for Natural Antithrombotic Medicines" Pharmaceuticals 18, no. 2: 137. https://doi.org/10.3390/ph18020137
APA StyleLiu, X., Chen, L., Li, L., Yan, Y., & Zhang, H. (2025). Research Progress in In Vitro Screening Techniques for Natural Antithrombotic Medicines. Pharmaceuticals, 18(2), 137. https://doi.org/10.3390/ph18020137