Synthesis, Anticancer Screening, and In Silico Evaluations of Thieno[2,3-c]pyridine Derivatives as Hsp90 Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Anticancer Evaluation
2.2.1. MTT Assay
2.2.2. Determination of IC50
2.2.3. Apoptosis Evaluation
2.2.4. Cell Cycle Analysis
2.3. Molecular Modeling Studies
2.3.1. Molecular Docking
2.3.2. ADME Prediction
2.4. Structure–Activity Relationship (SAR) Study
3. Materials and Methods
3.1. General Information
3.2. Synthesis of Compounds 3 and 4
3.3. General Synthetic Protocol of Diethyl 2-(substituted)acetamido)-4,7-dihydrothieno[2,3-c]pyridine-3,6(5H)-dicarboxylate 6(a–k)
3.3.1. Diethyl 2-(2-piperidin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c] pyridine-3,6(5H)-dicarboxylate (6a)
3.3.2. Diethyl 2-(2-(4-methylpiperidin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c]pyridine-3,6-(5H)-dicarboxylate (6b)
3.3.3. Diethyl 2-(2-(piperazin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c]pyridine-3,6(5H)-dicarboxylate (6c)
3.3.4. Diethyl 2-(2-(4-methylpiperazin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c]pyridine-3,6-(5H)-dicarboxylate (6d)
3.3.5. Diethyl 2-(2-(4-ethylpiperazin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c]pyridine-3,6(5H)-dicarboxylate (6e)
3.3.6. Diethyl 2-(2-(4-(tert-butoxycarbonyl)piperazin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c]-pyridine-3,6(5H)-dicarboxylate (6f)
3.3.7. Diethyl 2-(2-(4-(2-methoxyphenyl)piperazin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c]-pyridine-3,6(5H)-dicarboxylate (6g)
3.3.8. Diethyl 2-(2-morpholinoacetamido)-4,7-dihydrothieno[2,3-c]pyridine-3,6(5H)-di-carboxylate (6h)
3.3.9. Diethyl 2-(2-thiomorpholinoacetamido)-4,7-dihydrothieno[2,3-c]pyridine-3,6(5H)-dicarboxylate (6i)
3.3.10. Diethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c]-pyridine-3,6(5H)-dicarboxylate (6j)
3.3.11. Diethyl 2-(2-(4-(pyrimidin-2-yl)piperazin-1-yl)acetamido)-4,7-dihydrothieno[2,3-c]-pyridine-3,6(5H)-dicarboxylate (6k)
3.4. Anticancer Evaluation
3.4.1. Cell Culture
3.4.2. MTT Assay
3.4.3. Apoptosis Evaluation by Annexin V/PI Staining
3.4.4. Cell Cycle Analysis
3.5. Molecular Modeling Studies
3.5.1. Molecular Docking Protocol
Protein Preparation
Grid Generation
Ligand Preparation
Docking Simulation
Binding Mode Analysis
3.5.2. Drug-Likeliness and ADME Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Guzzinati, S.; Toffolutti, F.; Francisci, S.; De Paoli, A.; Giudici, F.; De Angelis, R.; Demuru, E.; Botta, L.; Tavilla, A.; Gatta, G.; et al. Patients with Cancer Who Will Be Cured and Projections of Complete Prevalence in Italy from 2018 to 2030. ESMO Open 2024, 9, 103635. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Kim, Y.H. Cancer Prevention from the Perspective of Global Cancer Burden Patterns. J. Thorac. Dis. 2017, 9, 448–451. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Global Cancer Facts & Figures, 5th ed.; American Cancer Society, Inc.: Atlanta, GA, USA, 2024. [Google Scholar]
- Sanders, J.J.; Temin, S.; Ghoshal, A.; Alesi, E.R.; Ali, Z.V.; Chauhan, C.; Cleary, J.F.; Epstein, A.S.; Firn, J.I.; Jones, J.A.; et al. Palliative Care for Patients with Cancer: ASCO Guideline Update. J. Clin. Oncol. 2024, 42, 2336–2357. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.Y. Exploring Treatment Options in Cancer: Tumor Treatment Strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Chandra, R.A.; Keane, F.K.; Voncken, F.E.M.; Thomas, C.R. Contemporary Radiotherapy: Present and Future. Lancet 2021, 398, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Jaffray, D.A.; Knaul, F.; Baumann, M.; Gospodarowicz, M. Harnessing Progress in Radiotherapy for Global Cancer Control. Nat. Cancer 2023, 4, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, J. Therapeutic Antibodies for Precise Cancer Immunotherapy: Current and Future Perspectives. Med. Rev. 2022, 2, 555–569. [Google Scholar] [CrossRef]
- Hamdan, F.; Cerullo, V. Cancer Immunotherapies: A Hope for the Uncurable? Front. Mol. Med. 2023, 3, 1–21. [Google Scholar] [CrossRef]
- Støer, N.C.; Vangen, S.; Singh, D.; Fortner, R.T.; Hofvind, S.; Ursin, G.; Botteri, E. Menopausal Hormone Therapy and Breast Cancer Risk: A Population-Based Cohort Study of 1.3 Million Women in Norway. Br. J. Cancer 2024, 131, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.; Staffurth, J. Hormonal Therapy for Cancer. Medicine 2020, 48, 103–107. [Google Scholar] [CrossRef]
- Saunders, A.C.; Mutebi, M.; Rao, T.S. A Review of the Current State of Global Surgical Oncology and the Role of Surgeons Who Treat Cancer: Our Profession’s Imperative to Act Upon a Worldwide Crisis in Evolution. Ann. Surg. Oncol. 2023, 30, 3197–3205. [Google Scholar] [CrossRef] [PubMed]
- Cheifetz, R.; McKevitt, E. Advances in the Surgical Treatment of Breast Cancer. Curr. Oncol. 2023, 30, 9584–9586. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef]
- Mollaei, M.; Hassan, Z.M.; Khorshidi, F.; Langroudi, L. Chemotherapeutic Drugs: Cell Death- and Resistance-Related Signaling Pathways. Are They Really as Smart as the Tumor Cells? Transl. Oncol. 2021, 14, 101056. [Google Scholar] [CrossRef] [PubMed]
- Rajora, A.K.; Ravishankar, D.; Zhang, H.; Rosenholm, J.M. Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics 2020, 12, 592. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.; Memarsadeghi, O.; Davarpanah, A.; Arti, A.; Nayernia, K.; Behnam, B. Overcoming Chemotherapy Resistance in Metastatic Cancer: A Comprehensive Review. Biomedicines 2024, 12, 183. [Google Scholar] [CrossRef]
- D’Orazi, G.; Cirone, M. Cancer Chemotherapy: Combination with Inhibitors (Volume I). Cancers 2024, 16, 607. [Google Scholar] [CrossRef] [PubMed]
- James, N.; Owusu, E.; Rivera, G.; Bandyopadhyay, D. Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action. Int. J. Mol. Sci. 2024, 25, 6285. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.N.; Luo, Y. HSP90 Inhibitors and Cancer: Prospects for Use in Targeted Therapies (Review). Oncol. Rep. 2022, 49, 6. [Google Scholar] [CrossRef]
- Hoter, A.; El-Sabban, M.E.; Naim, H.Y. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int. J. Mol. Sci. 2018, 19, 2560. [Google Scholar] [CrossRef] [PubMed]
- Pearl, L.H. Review: The HSP90 Molecular Chaperone—An Enigmatic ATPase. Biopolymers 2016, 105, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Butler, L.M.; Ferraldeschi, R.; Armstrong, H.K.; Centenera, M.M.; Workman, P. Maximizing the Therapeutic Potential of HSP90 Inhibitors. Mol. Cancer Res. 2015, 13, 1445–1451. [Google Scholar] [CrossRef]
- Park, H.K.; Yoon, N.G.; Lee, J.E.; Hu, S.; Yoon, S.; Kim, S.Y.; Hong, J.H.; Nam, D.; Chae, Y.C.; Park, J.B.; et al. Unleashing the Full Potential of Hsp90 Inhibitors as Cancer Therapeutics through Simultaneous Inactivation of Hsp90, Grp94, and TRAP1. Exp. Mol. Med. 2020, 52, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Picard, D. Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance. Biomolecules 2022, 12, 1166. [Google Scholar] [CrossRef]
- Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of Hsp90 in Cancer. Int. J. Mol. Sci. 2021, 22, 10317. [Google Scholar] [CrossRef] [PubMed]
- Zarguan, I.; Ghoul, S.; Belayachi, L.; Benjouad, A. Plant-Based HSP90 Inhibitors in Breast Cancer Models: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 5468. [Google Scholar] [CrossRef]
- Liu, J.; Shu, H.; Xia, Q.; You, Q.; Wang, L. Recent Developments of HSP90 Inhibitors: An Updated Patent Review (2020–Present). Expert. Opin. Ther. Pat. 2024, 34, 1–15. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; You, Q.D.; Xu, X.L. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions. J. Med. Chem. 2020, 63, 1798–1822. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.; Joshi, A.; Sato, N.; Lee, S.; Lee, M.J.; Trepel, J.B.; Neckers, L. An Update on the Status of HSP90 Inhibitors in Cancer Clinical Trials. Cell Stress. Chaperones 2024, 29, 519–539. [Google Scholar] [CrossRef]
- Jhaveri, K.; Taldone, T.; Modi, S.; Chiosis, G. Advances in the Clinical Development of Heat Shock Protein 90 (Hsp90) Inhibitors in Cancers. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 742–755. [Google Scholar] [CrossRef] [PubMed]
- Mavrova, A.T.; Dimov, S.; Yancheva, D.; Rangelov, M.; Wesselinova, D.; Tsenov, J.A. Synthesis, Anticancer Activity and Photostability of Novel 3-Ethyl-2-Mercapto-Thieno [2,3-d]Pyrimidin-4(3H)-Ones. Eur. J. Med. Chem. 2016, 123, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Pimitespib: First Approval. Drugs 2022, 82, 1413–1418. [Google Scholar] [CrossRef]
- Doi, T.; Yamamoto, N.; Ohkubo, S. Pimitespib for the Treatment of Advanced Gastrointestinal Stromal Tumors and Other Tumors. Futur. Oncol. 2024, 20, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.M.; Zadsirjan, V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv. 2020, 10, 44247–44311. [Google Scholar] [CrossRef] [PubMed]
- Balakumar, C.; Ramesh, M.; Tham, C.L.; Khathi, S.P.; Kozielski, F.; Srinivasulu, C.; Hampannavar, G.A.; Sayyad, N.; Soliman, M.E.; Karpoormath, R. Ligand- and Structure-Based in Silico Studies to Identify Kinesin Spindle Protein (KSP) Inhibitors as Potential Anticancer Agents. J. Biomol. Struct. Dyn. 2018, 36, 3687–3704. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-X.; Zheng, R.-L.; Zhou, T.; He, H.-Y.; Liu, J.-Y.; Zheng, Y.; Tong, A.-P.; Xiang, M.-L.; Song, X.-R.; Yang, S.-Y.; et al. Novel Thienopyridine Derivatives as Specific Anti-Hepatocellular Carcinoma (HCC) Agents: Synthesis, Preliminary Structure—Activity Relationships, and in Vitro Biological Evaluation. Bioorg. Med. Chem. Lett. 2010, 20, 6282–6285. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.M.; Kamel, M.M.; Mohamed, L.W.; Faggal, S.I.; Galal, M.A. Synthesis and Biological Evaluation of Thiophene Derivatives as Acetylcholinesterase Inhibitors. Molecules 2012, 17, 7217–7231. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Liu, J.; Zhou, T.; Lei, M.; Chen, J.; Wang, X.; Zhang, Y.; Shen, X.; Hu, L. Discovery and Structure-Activity Relationships Study of Thieno[2,3-b]Pyridine Analogues as Hepatic Gluconeogenesis Inhibitors. Eur. J. Med. Chem. 2018, 152, 307–317. [Google Scholar] [CrossRef]
- Testa, L.; Biondi Zoccai, G.G.L.; Valgimigli, M.; Latini, R.A.; Pizzocri, S.; Lanotte, S.; Laudisa, M.L.; Brambilla, N.; Ward, M.R.; Figtree, G.A.; et al. Current Concepts on Antiplatelet Therapy: Focus on the Novel Thienopyridine and Non-Thienopyridine Agents. Adv. Hematol. 2010, 2010, 595934. [Google Scholar] [CrossRef] [PubMed]
- Kam, P.C.A.; Nethery, C.M. The Thienopyridine Derivatives (Platelet Adenosine Diphosphate Receptor Antagonists), Pharmacology and Clinical Developments. Anaesthesia 2003, 58, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Bernlochner, I.; Sibbing, D. Thienopyridines and Other ADP-Receptor Antagonists. In Antiplatet Agents; Gresele, P., Born, G.V.R., Patrono, C., Page, C.P., Eds.; Handbook of Experimental Pharmacology Series; Springer: Berlin/Heidelberg, Germany, 2012; Volume 210, pp. 165–198. [Google Scholar] [CrossRef]
- Mekky, A.E.M.; Sanad, S.M.H.; Said, A.Y.; Elneairy, M.A.A. Synthesis, cytotoxicity, in-vitro antibacterial screening and in-silico study of novel thieno[2,3-b]pyridines as potential pim-1 inhibitors. Synth. Commun. 2020, 50, 2376–2389. [Google Scholar] [CrossRef]
- Nankervis, J.L.; Feil, S.C.; Hancock, N.C.; Zheng, Z.; Ng, H.-L.; Morton, C.J.; Holien, J.K.; Ho, P.W.M.; Frazzetto, M.M.; Jennings, I.G.; et al. Thiophene Inhibitors of PDE4: Crystal Structures Show a Second Binding Mode at the Catalytic Domain of PDE4D2. Bioorg. Med. Chem. Lett. 2011, 21, 7089–7093. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Geary, T.G.; Davis, J.P.; Bowman, J.W. Anthelmintic and Insecticidal Thiophene Derivatives. Patent WO2003101979A1, 11 December 2003. [Google Scholar]
- Shaw, R.; Tewari, R.; Yadav, M.; Pandey, E.; Tripathi, K.; Rani, J.; Althagafi, I.; Pratap, R. Recent advancements in the synthesis of fused thienopyridines and their therapeutic applications. Eur. J. Med. Chem. Rep. 2024, 12, 100185. [Google Scholar] [CrossRef]
- Chandrasekaran, B.; Deb, P.K.; Kachler, S.; Akkinepalli, R.R.; Mailavaram, R.; Klotz, K.N. Synthesis and Adenosine Receptors Binding Studies of New Fluorinated Analogues of Pyrido[2,3-d]Pyrimidines and Quinazolines. Med. Chem. Res. 2018, 27, 756–767. [Google Scholar] [CrossRef]
- Massey, A.J.; Schoepfer, J.; Braugh, P.A.; Brueggen, J.; Chène, P.; Drysdale, M.J.; Pfaar, U.; Radimerski, T.; Ruetz, S.; Schweitzer, A.; et al. Preclinical Antitumor Activity of the Orally Available Heat Shock Protein 90 Inhibitor NVP-BEP800. Mol. Cancer Ther. 2010, 9, 906–919. [Google Scholar] [CrossRef]
- Mateev, E.; Kondeva-Burdina, M.; Georgieva, M.; Mateeva, A.; Valkova, I.; Tzankova, V.; Zlatkov, A. Synthesis, Biological Evaluation, Molecular Docking and ADME Studies of Novel Pyrrole-Based Schiff Bases as Dual Acting MAO/AChE Inhibitors. Sci. Pharm. 2024, 92, 18. [Google Scholar] [CrossRef]
- Ukrainets, I.V.; Burian, A.A.; Baumer, V.N.; Shishkina, S.V.; Sidorenko, L.V.; Tugaibei, I.A.; Voloshchuk, N.I.; Bondarenko, P.S. Synthesis, Crystal Structure, and Biological Activity of Ethyl 4-Methyl-2,2-Dioxo-1h-2λ6,1-Benzothiazine-3-Carboxylate Polymorphic Forms. Sci. Pharm. 2018, 86, 21. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Mahdi, F.; Penfornis, P.; Akins, N.S.; Hossain, M.I.; Kim, S.J.; Sulochana, S.P.; Adam, A.T.; Tran, T.D.; Tan, C.; et al. Synthesis and biological evaluation of tert-butyl ester and ethyl ester prodrugs of L-γ-methyleneglutamic acid amides for cancer. Bioorg. Med. Chem. 2023, 78, 117137. [Google Scholar] [CrossRef]
- Brown, D.A.; Mishra, M.; Zhang, S.; Biswas, S.; Parrington, I.; Antonio, T.; Reith, M.E.A.; Dutta, A.K. Investigation of Various N-Heterocyclic Substituted Piperazine Versions of 5/7-{[2-(4-Aryl-Piperazin-1-Yl)-Ethyl]-Propyl-Amino}-5,6,7,8-Tetrahydro-Naphthalen-2-Ol: Effect on Affinity and Selectivity for Dopamine D3 Receptor. Bioorg. Med. Chem. 2009, 17, 3923–3933. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Noreen, S.; Asim, S.; Liaqat, Z.; Shaheen, M.; Ibrahim, H. A Comprehensive Review on the Synthesis of Substituted Piperazine and Its Novel Bio-Medicinal Applications. Chem. Inorg. Mater. 2024, 2, 100041. [Google Scholar] [CrossRef]
- Filipova, A.; Marek, J.; Havelek, R.; Pejchal, J.; Jelicova, M.; Cizkova, J.; Majorosova, M.; Muckova, L.; Kucera, T.; Prchal, L.; et al. Substituted Piperazines as Novel Potential Radioprotective Agents. Molecules 2020, 25, 532. [Google Scholar] [CrossRef]
- Patel, N.B.; Purohit, A.C.; Rajani, D.P.; Moo-Puc, R.; Rivera, G. New 2-Benzylsulfanyl-Nicotinic Acid Based 1,3,4-Oxadiazoles: Their Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2013, 62, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, M.; Khorsandi, Z.; Keshavarzipour, F.; Iravani, S.; Sadeghi-Aliabadi, H.; Varma, R.S. Heterocyclic Compounds as Hsp90 Inhibitors: A Perspective on Anticancer Applications. Pharmaceutics 2022, 14, 2220. [Google Scholar] [CrossRef] [PubMed]
- Adepu, R.; Sunke, R.; Meda, C.L.T.; Rambabu, D.; Krishna, G.R.; Reddy, C.M.; Deora, G.S.; Parsa, K.V.L.; Pal, M. Facile Assembly of Two 6-Membered Fused N-Heterocyclic Rings: A Rapid Access to Novel Small Molecules via Cu-Mediated Reaction. Chem. Commun. 2013, 49, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Jia, Q.; Zhang, Z. Applications of Amide Isosteres in Medicinal Chemistry. Bioorg. Med. Chem. Lett. 2019, 29, 2535–2550. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Carmona, A.V.; Tiwari, A.K.; Trippier, P.C. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J. Med. Chem. 2020, 63, 12290–12358. [Google Scholar] [CrossRef]
- Wharton, T.; Crawshay-Williams, F.; Schober, T.; Floto, R.A.; Spring, D.R. Unlocking Amides: A General Method for the Self-Immolative Release of Amide-Containing Molecules. Angew. Chem. Int. Ed. 2024, 63, e202402267. [Google Scholar] [CrossRef]
- Karunanidhi, S.; Chandrasekaran, B.; Karpoormath, R.; Patel, H.M.; Kayamba, F.B.; Reddy Merugu, S.; Kumar, V.; Dhawan, S.; Kushwaha, B.; Cleopus Mahlalela, M. Novel Thiomorpholine Tethered Isatin Hydrazones as Potential Inhibitors of Resistant Mycobacterium Tuberculosis. Bioorg. Chem. 2021, 115, 105133. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Kim, T.H.; Kwak, J.; Seo, S.H.; Ko, M.K.; Lim, E.J.; Min, S.-J.; Cho, Y.S.; Keum, G.; Baek, D.-J.; et al. Discovery and Biological Evaluation of Tetrahydrothieno[2,3-c]Pyridine Derivatives as Selective Metabotropic Glutamate Receptor 1 Antagonists for the Potential Treatment of Neuropathic Pain. Eur. J. Med. Chem. 2015, 97, 245–258. [Google Scholar] [CrossRef]
- Kang, Y.; Taldone, T.; Patel, H.J.; Patel, P.D.; Rodina, A.; Gozman, A.; Maharaj, R.; Clement, C.C.; Patel, M.R.; Brodsky, J.L.; et al. Heat Shock Protein 70 Inhibitors. 1. 2,5′-Thiodipyrimidine and 5-(Phenylthio)Pyrimidine Acrylamides as Irreversible Binders to an Allosteric Site on Heat Shock Protein 70. J. Med. Chem. 2014, 57, 1188–1207. [Google Scholar] [CrossRef] [PubMed]
- Kuhnert, M.; Köster, H.; Bartholomäus, R.; Park, A.Y.; Shahim, A.; Heine, A.; Steuber, H.; Klebe, G.; Diederich, W.E. Tracing Binding Modes in Hit-to-Lead Optimization: Chameleon-like Poses of Aspartic Protease Inhibitors. Angew. Chem. Int. Ed. 2015, 54, 2849–2853. [Google Scholar] [CrossRef]
- Nallangi, R.; Samala, G.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D. Development of Antimycobacterial Tetrahydrothieno[2,3-c]Pyridine-3- Carboxamides and Hexahydrocycloocta[b]Thiophene-3-Carboxamides: Molecular Modification from Known Antimycobacterial Lead. Eur. J. Med. Chem. 2014, 76, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Gewald, K. Heterocyclen Aus CH-Aciden Nitrilen, VII. 2-Amino-Thiophene Aus α-Oxo-Mercaptanen Und Methylenaktiven Nitrilen. Chem. Ber. 1965, 98, 3571–3577. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef]
- Hmedat, A.N.; Morejón, M.C.; Rivera, D.G.; Pantelić, N.; Wessjohann, L.A.; Kaluđerović, G.N. In Vitro Anticancer Studies of a Small Library of Cyclic Lipopeptides against the Human Cervix Adenocarcinoma HeLa Cells. J. Serbian Chem. Soc. 2024, 89, 471–484. [Google Scholar] [CrossRef]
- Salmaso, V.; Moro, S. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef]
- Brough, P.A.; Barril, X.; Borgognoni, J.; Chene, P.; Davies, N.G.M.; Davis, B.; Drysdale, M.J.; Dymock, B.; Eccles, S.A.; Garcia-Echeverria, C.; et al. Combining Hit Identification Strategies: Fragment-Based and in Silico Approaches to Orally Active 2-Aminothieno[2,3-d]Pyrimidine Inhibitors of the Hsp90 Molecular Chaperone. J. Med. Chem. 2009, 52, 4794–4809. [Google Scholar] [CrossRef]
- Mahalingam, D.; Swords, R.; Carew, J.S.; Nawrocki, S.T.; Bhalla, K.; Giles, F.J. Targeting HSP90 for Cancer Therapy. Br. J. Cancer 2009, 100, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, S.; Neckers, L. Extracellular Heat Shock Protein 90: A Role for a Molecular Chaperone in Cell Motility and Cancer Metastasis. Cancer Sci. 2007, 98, 1536–1539. [Google Scholar] [CrossRef]
- Dagan-Wiener, A.; Nissim, I.; Ben Abu, N.; Borgonovo, G.; Bassoli, A.; Niv, M.Y. Bitter or Not? BitterPredict, a Tool for Predicting Taste from Chemical Structure. Sci. Rep. 2017, 7, 12074. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.J.; Sproston, J.L.; Barton, P.; Riley, R.J. Estimating Human ADME Properties, Pharmacokinetic Parameters and Likely Clinical Dose in Drug Discovery. Expert. Opin. Drug Discov. 2019, 14, 1313–1327. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hou, T.; He, X.; Man, V.H.; Wang, J. Development and Test of Highly Accurate Endpoint Free Energy Methods. 2: Prediction of Logarithm of n-Octanol–Water Partition Coefficient (LogP) for Druglike Molecules Using MM-PBSA Method. J. Comput. Chem. 2023, 44, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.A.; Abdallah, H.M.; Sindi, I.A.; Ibrahim, S.R.M.; Alzain, A.A. Unveiling the Potential of Phytochemicals to Inhibit Nuclear Receptor Binding SET Domain Protein 2 for Cancer: Pharmacophore Screening, Molecular Docking, ADME Properties, and Molecular Dynamics Simulation Investigations. PLoS ONE 2024, 19, e0308913. [Google Scholar] [CrossRef]
- Jorgensen, W.; Duffy, E. Prediction of Drug Solubility from Structure. Adv. Drug Deliv. Rev. 2002, 54, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, Y.; Takaku, H.; Yamada, R.; Akase, C.; Abe, Y.; Sekiguchi, Y.; Murayama, N.; Shimizu, M.; Kitajima, M.; Shono, F.; et al. Determination and Prediction of Permeability across Intestinal Epithelial Cell Monolayer of a Diverse Range of Industrial Chemicals/Drugs for Estimation of Oral Absorption as a Putative Marker of Hepatotoxicity. Toxicol. Rep. 2020, 7, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure—Activity Relationship (QSAR) with the Abraham Descriptors. J. Pharm. Sci. 2001, 90, 749–784. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Yu, M.S.; Kazmi, S.R.; Oh, S.Y.; Rhee, K.H.; Bae, M.A.; Lee, B.H.; Shin, D.S.; Oh, K.S.; Ceong, H.; et al. Computational Determination of HERG-Related Cardiotoxicity of Drug Candidates. BMC Bioinform. 2019, 20, 250. [Google Scholar] [CrossRef] [PubMed]
- Bittermann, K.; Goss, K.U. Predicting Apparent Passive Permeability of Caco-2 and MDCK Cell-Monolayers: A Mechanistic Model. PLoS ONE 2017, 12, e0190319. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Waters, N.J. Pharmacokinetic and Pharmacodynamic Considerations for Drugs Binding to Alpha-1-Acid Glycoprotein. Pharm. Res. 2019, 36, 30. [Google Scholar] [CrossRef] [PubMed]
- Rasras, A.J.; Jaradat, D.M.M.; Chandrasekaran, B.; Hamadneh, L.; Younes, E.A.; Nuwar, M.A.; Khazaleh, N.; Mahli, A.; Al Zubi, M.S. Evaluation of Anticancer Activity of Some New Hybrids of 1,3,4-Oxadiazole Tethered Cinnamamides. J. Mol. Struct. 2025, 1322, 140438. [Google Scholar] [CrossRef]
- Giardina, S.F.; Werner, D.S.; Pingle, M.; Feinberg, P.B.; Foreman, K.W.; Bergstrom, D.E.; Arnold, L.D.; Barany, F. Novel, Self-Assembling Dimeric Inhibitors of Human β Tryptase. J. Med. Chem. 2020, 63, 3004–3027. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.J.; Foloppe, N. Drug-like Bioactive Structures and Conformational Coverage with the Ligprep/Confgen Suite: Comparison to Programs MOE and Catalyst. J. Chem. Inf. Model. 2010, 50, 822–839. [Google Scholar] [CrossRef] [PubMed]
- Ntie-Kang, F. An in Silico Evaluation of the ADMET Profile of the StreptomeDB Database. SpringerPlus 2013, 2, 353. [Google Scholar] [CrossRef]
- Malik, N.; Dhiman, P.; Khatkar, A. In Silico Design and Synthesis of Targeted Rutin Derivatives as Xanthine Oxidase Inhibitors. BMC Chem. 2019, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Sereno, M.; Brunello, A.; Chiappori, A.; Barriuso, J.; Casado, E.; Belda, C.; Castro, J.; Feliu, J.; González-Barón, M. Cardiac Toxicity: Old and New Issues in Anti-Cancer Drugs. Clin. Transl. Oncol. 2008, 10, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Villoutreix, B.O.; Taboureau, O. Computational Investigations of HERG Channel Blockers: New Insights and Current Predictive Models. Adv. Drug Deliv. Rev. 2015, 86, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, D.; Maltseva, D.; Knyazev, E.; Nikulin, S.; Poloznikov, A.; Shilin, S.; Baranova, A.; Tsypina, I.; Tonevitsky, A. Towards Embedding Caco-2 Model of Gut Interface in a Microfluidic Device to Enable Multi-Organ Models for Systems Biology. BMC Syst. Biol. 2019, 13, 9. [Google Scholar] [CrossRef]
- Volpe, D.A. Variability in Caco-2 and MDCK Cell-Based Intestinal Permeability Assays. J. Pharm. Sci. 2008, 97, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Huth, F.; Domange, N.; Poller, B.; Vapurcuyan, A.; Durrwell, A.; Hanna, I.D.; Faller, B. Predicting oral absorption for compounds outside the rule of five property space. J. Pharm. Sci. 2021, 110, 2562–2569. [Google Scholar] [CrossRef] [PubMed]
- Ebert, A.; Dahley, C.; Goss, K.U. Pitfalls in Evaluating Permeability Experiments with Caco-2/MDCK Cell Monolayers. Eur. J. Pharm. Sci. 2024, 194, 106699. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Ulenberg, S.; Kapica, H.; Kawczak, P.; Belka, M.; Bączek, T. Drug Affinity to Human Serum Albumin Prediction by Retention of Cetyltrimethylammonium Bromide Pseudostationary Phase in Micellar Electrokinetic Chromatography and Chemically Advanced Template Search Descriptors. J. Pharm. Biomed. Anal. 2020, 188, 113423. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.A.; Kurrasch, D.M.; Nichols, D.E. The Role of Lipophilicity in Determining Binding Affinity and Functional Activity for 5-HT2A Receptor Ligands. Bioorg. Med. Chem. 2008, 16, 4661–4669. [Google Scholar] [CrossRef]
- Fagerholm, U.; Hellberg, S.; Spjuth, O. Advances in Predictions of Oral Bioavailability of Candidate Drugs in Man with New Machine Learning Methodology. Molecules 2021, 26, 2572. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yan, Y.; Dai, S.; Shao, D.; Yi, S.; Wang, J.; Li, J.; Yan, J. Research on Prediction of Human Oral Bioavailability of Drugs Based on Improved Deep Forest. J. Mol. Graph. Model. 2024, 133, 108851. [Google Scholar] [CrossRef]
MCF7 | T47D | HSC3 | RKO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compd | 1 µM | 10 µM | 100 µM | 1 µM | 10 µM | 100 µM | 1 µM | 10 µM | 100 µM | 1 µM | 10 µM | 100 µM |
6a | 2.96 | 39.45 | 91.56 | 9.31 | 38.58 | 88.08 | 4.26 | 59.78 | 92.60 | 5.71 | 53.03 | 93.51 |
6b | 2.74 | 29.71 | 83.16 | 7.79 | 24.36 | 81.96 | 4.06 | 37.96 | 79.44 | 10.71 | 39.34 | 94.10 |
6c | 0 | 22.09 | 81.00 | 3.70 | 28.11 | 80.79 | 6.71 | 30.03 | 83.44 | 17.10 | 30.87 | 93.59 |
6d | 1.42 | 3.7 | 79.32 | 0 | 2.54 | 82.08 | 0 | 0 | 83.89 | 0 | 0 | 94.38 |
6e | 4.67 | 11.71 | 74.21 | 5.23 | 3.12 | 79.44 | 3.26 | 5.51 | 75.78 | 6.17 | 7.24 | 90.11 |
6f | 7.34 | 10.02 | 39.02 | 7.62 | 16.21 | 34.09 | 0 | 16.78 | 45.78 | 6.11 | 17.21 | 47.58 |
6g | 3.4 | 6.36 | 57.33 | 0 | 14.24 | 59.89 | 0 | 15.93 | 56.87 | 0.53 | 14.61 | 68.42 |
6h | 0 | 20.30 | 77.18 | 0 | 17.78 | 78.17 | 0 | 9.88 | 77.89 | 8.76 | 19.07 | 93.32 |
6i | 1.53 | 39.11 | 95.33 | 1.90 | 35.29 | 83.92 | 14.84 | 62.32 | 94.04 | 5.17 | 55.41 | 92.53 |
6j | 0 | 16.19 | 76.48 | 0 | 1.19 | 75.96 | 0 | 29.87 | 86.38 | 0 | 17.28 | 96.78 |
6k | 0 | 12.18 | 80.04 | 0 | 10.09 | 76.46 | 0 | 11.34 | 86.17 | 0 | 22.17 | 96.14 |
Cisplatin | 11.23 | 57.32 | 97.41 | 29.09 | 89.65 | 98.20 | 29.33 | 84.74 | 97.87 | 46.06 | 92.77 | 95.04 |
aIC50 (µM) ± SE | |||||
---|---|---|---|---|---|
Compd | MCF7 | T47D | HSC3 | RKO | PDL |
6a | 73.7 ± 4.3 | 97.2 ± 4.4 | 14.5 ± 4.3 | 24.4 ± 7.2 | >100 |
6i | 16.4 ± 0.2 | 11.7 ± 1.1 | 10.8 ± 3.9 | 12.4 ± 1.9 | >100 |
Cisplatin | 5.8 ± 0.9 | 2.6 ± 0.6 | 2.7 ± 0.2 | 1.7 ± 0.4 | 15.5 ± 2.1 |
Compd | Docking Score | Glide evdW | Glide Ecoul | Glide Energy | Glide Einternal | Glide Emodel |
---|---|---|---|---|---|---|
6a | −5.133 | −40.891 | −10.09 | −50.981 | 16.653 | −56.89 |
6b | −3.724 | −42.288 | −5.152 | −47.44 | 6.655 | −55.943 |
6c | −5.092 | −38.387 | −10.613 | −49.0 | 6.527 | −54.486 |
6d | −5.398 | −42.21 | −9.038 | −51.248 | 2.874 | −68.58 |
6e | −5.189 | −45.566 | −9.931 | −55.497 | 9.044 | −66.233 |
6f | −4.009 | −43.921 | −7.194 | −51.114 | 8.275 | −59.976 |
6g | −6.292 | −36.7 | −11.626 | −48.325 | 14.758 | −61.394 |
6h | −4.047 | −48.142 | −2.372 | −50.514 | 10.241 | −65.055 |
6i | −4.69 | −42.366 | −4.124 | −46.489 | 1.121 | −64.456 |
6j | −6.273 | −46.694 | −8.691 | −55.385 | 5.184 | −71.452 |
6k | −5.238 | −49.733 | −8.657 | −58.39 | 6.355 | −71.405 |
Compd | Drug Likeliness (Lipinski’s Rule of Five) | In Silico ADME Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Molecular Weight | QPlogP O/W a | H-Bond Donor | H-Bond Acceptor | Violation of Lipinski’s Rule | QPlogS b | QPlogHERG c | QPPCaco d | QPPMDCK e | QPlogKhsa f | % Human Oral Absorption g | |
6a | 423.526 | 3.205 | 0 | 8.0 | 0 | −4.96 | −6.19 | 137.743 | 94.068 | 0.271 | 84.1 |
6b | 437.553 | 3.563 | 0 | 8.0 | 0 | −5.469 | −6.252 | 142.802 | 97.685 | 0.426 | 83.3 |
6c | 424.514 | 1.844 | 1 | 9.5 | 0 | −3.569 | −6.905 | 18.448 | 11.595 | 0.16 | 60.2 |
6d | 438.541 | 1.913 | 0 | 10.0 | 0 | −3.08 | −6.965 | 33.921 | 23.224 | 0.147 | 65.8 |
6e | 452.568 | 2.234 | 0 | 10.0 | 0 | −3.203 | −7.154 | 34.69 | 23.758 | 0.069 | 67.6 |
6f | 524.631 | 3.693 | 0 | 10.5 | 2 | −6.246 | −6.69 | 74.061 | 48.807 | 0.41 | 56.1 |
6g | 530.638 | 4.451 | 0 | 9.75 | 1 | −6.392 | −7.231 | 131.915 | 89.786 | 0.574 | 77.2 |
6h | 425.499 | 2.067 | 0 | 9.7 | 0 | −3.459 | −5.959 | 145.669 | 101.112 | 0.325 | 77.8 |
6i | 441.559 | 3.184 | 0 | 8.5 | 0 | −4.963 | −7.294 | 144.377 | 183.654 | 0.1 | 84.5 |
6j | 518.584 | 2.796 | 0 | 11.5 | 2 | −5.082 | −7.308 | 66.205 | 35.572 | 0.075 | 48.7 |
6k | 502.587 | 3/259 | 0 | 10.5 | 2 | −5.411 | −7.183 | 94.288 | 63.348 | 0.163 | 55.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasekaran, B.; Bayan, M.F.; Hmedat, A.; Al-Jaidi, B.A.; Al-Tawalbeh, D.M.; Abuarqoub, D.; Rasras, A.J.; Jaradat, D.M.M.; Dakkah, A.N.; Hourani, W.; et al. Synthesis, Anticancer Screening, and In Silico Evaluations of Thieno[2,3-c]pyridine Derivatives as Hsp90 Inhibitors. Pharmaceuticals 2025, 18, 153. https://doi.org/10.3390/ph18020153
Chandrasekaran B, Bayan MF, Hmedat A, Al-Jaidi BA, Al-Tawalbeh DM, Abuarqoub D, Rasras AJ, Jaradat DMM, Dakkah AN, Hourani W, et al. Synthesis, Anticancer Screening, and In Silico Evaluations of Thieno[2,3-c]pyridine Derivatives as Hsp90 Inhibitors. Pharmaceuticals. 2025; 18(2):153. https://doi.org/10.3390/ph18020153
Chicago/Turabian StyleChandrasekaran, Balakumar, Mohammad F. Bayan, Ali Hmedat, Bilal A. Al-Jaidi, Deniz M. Al-Tawalbeh, Duaa Abuarqoub, Anas J. Rasras, Da’san M. M. Jaradat, Abdel Naser Dakkah, Wafa Hourani, and et al. 2025. "Synthesis, Anticancer Screening, and In Silico Evaluations of Thieno[2,3-c]pyridine Derivatives as Hsp90 Inhibitors" Pharmaceuticals 18, no. 2: 153. https://doi.org/10.3390/ph18020153
APA StyleChandrasekaran, B., Bayan, M. F., Hmedat, A., Al-Jaidi, B. A., Al-Tawalbeh, D. M., Abuarqoub, D., Rasras, A. J., Jaradat, D. M. M., Dakkah, A. N., Hourani, W., & Karpoormath, R. (2025). Synthesis, Anticancer Screening, and In Silico Evaluations of Thieno[2,3-c]pyridine Derivatives as Hsp90 Inhibitors. Pharmaceuticals, 18(2), 153. https://doi.org/10.3390/ph18020153