Minimal Residual Disease Significance in Multiple Myeloma Patients Treated with Anti-CD38 Monoclonal Antibodies
Abstract
:1. Introduction
2. MRD Techniques and Applications
2.1. The Role of NGS and NGF in MM MRD Evaluation
2.2. MRD Initial Experience in Clinical Trials
2.3. MRD and Trials with Anti-CD38 Monoclonal Antibodies
2.3.1. Transplant-Eligible (TE) MM Patients
2.3.2. Transplant-Ineligible (TIE) MM Patients
2.3.3. Consolidation/Maintenance After ASCT
2.3.4. Relapsed MM Patients
3. Discussion and Future Directions in MRD for MM
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASCT | autologous stem cell transplantation |
CR | complete response |
CTCs | circulating tumor cells |
Dara-KRd | daratumumab, carfilzomib, lenalidomide, dexamethasone |
Dara-Pd | daratumumab, pomalidomide, dexamethasone |
Dara-Rd | daratumumab, lenalidomide, dexamethasone |
Dara-Vd | daratumumab, bortezomib, dexamethasone |
Dara-VMP | daratumumab, bortezomib, melphalan, prednisone |
Dara-VRd | daratumumab, bortezomib, lenalidomide, dexamethasone |
Dara-VTd | daratumumab, bortezomib, thalidomide, dexamethasone |
HRCAs | high-risk cytogenetic abnormalities |
Kd | carfilzomib, dexamethasone |
KRd | carfilzomib, lenalidomide, dexamethasone |
IMID | immunomodulatory drug |
IMWG | International Myeloma Working Group |
Isa-Kd | isatuximab, carfilzomib, dexamethasone |
Isa-KR | isatuximab, carfilzomib, lenalidomide |
Isa-KRd | isatuximab, carfilzomib, lenalidomide, dexamethasone |
Isa-Pd | isatuximab, pomalidomide, dexamethasone |
Isa-VRd | isatuximab, bortezomib, lenalidomide, dexamethasone |
Ixa-Rd | ixazomib, lenalidomide, dexamethasone |
MFC | multiparametric flow cytometry |
MM | multiple myeloma |
MoA | monoclonal antibody |
MRD | minimal residual disease |
MS | mass spectrometry |
NDMM | newly diagnosed multiple myeloma |
NGF | next-generation flow |
NGS | next-generation sequencing |
OS | overall survival |
PCs | plasma cells |
Pd | pomalidomide, dexamethasone |
PI | proteasome inhibitor |
PFS | progression-free survival |
PR | partial response |
Rd | lenalidomide, dexamethasone |
RRMM | relapsed–refractory multiple myeloma |
sCR | stringent complete response |
TIE | transplantation-ineligible |
TE | transplantation-eligible |
Vd | bortezomib, dexamethasone |
VGPR | very good partial response |
VMP | bortezomib, melphalan, prednisone |
VRd | bortezomib, lenalidomide, dexamethasone |
VTd | bortezomib, thalidomide, dexamethasone |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Avet-Loiseau, H. Role of Genetics in Prognostication in Myeloma. Best. Prac. Res. Clin. Haematol. 2007, 20, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Le Beau, M.M. Fluorescence in Situ Hybridization: Uses and Limitations. Semin. Hematol. 2000, 37, 320–333. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Leung, N.; Bridoux, F.; Batuman, V.; Chaidos, A.; Cockwell, P.; D’Agati, V.D.; Dispenzieri, A.; Fervenza, F.C.; Fermand, J.P.; Gibbs, S.; et al. The Evaluation of Monoclonal Gammopathy of Renal Significance: A Consensus Report of the International Kidney and Monoclonal Gammopathy Research Group. Nat. Rev. Nephrol. 2019, 15, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Guarnieri, A.; Zamagni, E.; Zakharova, E.; Coriu, D.; Bittrich, M.; Pika, T.; Tovar, N.; Schutz, N.; Ciofini, S.; et al. Monoclonal Gammopathy of Renal Significance (MGRS): Real-World Data on Outcomes and Prognostic Factors. Am. J. Hematol. 2022, 97, 877–884. [Google Scholar] [CrossRef]
- Cencini, E.; Fabbri, A.; Sicuranza, A.; Gozzetti, A.; Bocchia, M. The Role of Tumor-Associated Macrophages in Hematologic Malignancies. Cancers 2021, 13, 3597. [Google Scholar] [CrossRef]
- Ocio, E.M.; Richardson, P.G.; Rajkumar, S.V.; Palumbo, A.; Mateos, M.V.; Orlowski, R.; Kumar, S.; Usmani, S.; Roodman, D.; Niesvizky, R.; et al. New Drugs and Novel Mechanisms of Action in Multiple Myeloma in 2013: A Report from the International Myeloma Working Group (IMWG). Leukemia 2014, 28, 525–542. [Google Scholar] [CrossRef]
- Cavo, M.; Pantani, L.; Petrucci, M.T.; Patriarca, F.; Zamagni, E.; Donnarumma, D.; Crippa, C.; Boccadoro, M.; Perrone, G.; Falcone, A.; et al. Bortezomib-Thalidomide-Dexamethasone Is Superior to Thalidomide-Dexamethasone as Consolidation Therapy after Autologous Hematopoietic Stem Cell Transplantation in Patients with Newly Diagnosed Multiple Myeloma. Blood 2012, 120, 9–19. [Google Scholar] [CrossRef]
- Ludwig, H.; Durie, B.G.M.; McCarthy, P.; Palumbo, A.; San Miguel, J.; Barlogie, B.; Morgan, G.; Sonneveld, P.; Spencer, A.; Andersen, K.C.; et al. IMWG Consensus on Maintenance Therapy in Multiple Myeloma. Blood 2012, 119, 3003–3015. [Google Scholar] [CrossRef]
- Attal, M.; Lauwers-Cances, V.; Marit, G.; Caillot, D.; Moreau, P.; Facon, T.; Stoppa, A.M.; Hulin, C.; Benboubker, L.; Garderet, L.; et al. Lenalidomide Maintenance after Stem-Cell Transplantation for Multiple Myeloma. N. Engl. J. Med. 2012, 366, 1782–1791. [Google Scholar] [CrossRef]
- Kumar, S.K.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Pandey, S.; Kapoor, P.; Dingli, D.; Hayman, S.R.; Leung, N.; et al. Continued Improvement in Survival in Multiple Myeloma: Changes in Early Mortality and Outcomes in Older Patients. Leukemia 2014, 28, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Zeldenrust, S.R.; Dingli, D.; Russell, S.J.; Lust, J.A.; et al. Improved Survival in Multiple Myeloma and the Impact of Novel Therapies. Blood 2008, 111, 2516–2520. [Google Scholar] [CrossRef] [PubMed]
- Azam, L.; Delamore, I.W. Combination Therapy For Myelomatosis. Br. Med. J. 1974, 4, 560–564. [Google Scholar] [CrossRef]
- Attal, M.; Harousseau, J.-L.; Stoppa, A.-M.; Sotto, J.-J.; Fuzibet, J.-G.; Rossi, J.-F.; Casassus, P.; Maisonneuve, H.; Facon, T.; Ifrah, N.; et al. A Prospective, Randomized Trial of Autologous Bone Marrow Transplantation and Chemotherapy in Multiple Myeloma. Intergroupe Français Du Myélome. N. Engl. J. Med. 1996, 335, 91–97. [Google Scholar] [CrossRef]
- Gregory, W.M.; Richards, M.A.; Malpas, J.S. Combination Chemotherapy versus Melphalan and Prednisolone in the Treatment of Multiple Myeloma: An Overview of Published Trials. J. Clin. Oncol. 1992, 10, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, F.; Avvisati, G.; Amadori, S.; Boccadoro, M.; Gernone, A.; Lauta, V.M.; Marmont, F.; Petrucci, M.T.; Tribalto, M.; Vegna, M.L.; et al. Maintenance Treatment with Recombinant Interferon Alfa-2b in Patients with Multiple Myeloma Responding to Conventional Induction Chemotherapy. N. Engl. J. Med. 1990, 322, 1430–1434. [Google Scholar] [CrossRef]
- Cavo, M.; Benni, M.; Ronconi, S.; Fiacchini, M.; Gozzetti, A.; Zamagni, E.; Cellini, C.; Tosi, P.; Baccarani, M.; Tura, S. Melphalan-Prednisone versus Alternating Combination VAD/MP or VND/MP as Primary Therapy for Multiple Myeloma: Final Analysis of a Randomized Clinical Study. Haematologica 2002, 87, 934–942. [Google Scholar] [PubMed]
- Hideshima, T.; Chauhan, D.; Shima, Y.; Raje, N.; Davies, F.E.; Tai, Y.T.; Treon, S.P.; Lin, B.; Schlossman, R.L.; Richardson, P.; et al. Thalidomide and Its Analogs Overcome Drug Resistance of Human Multiple Myeloma Cells to Conventional Therapy. Blood 2000, 96, 2943–2950. [Google Scholar] [CrossRef]
- Singhal, S.; Mehta, J.; Desikan, R.; Ayers, D.; Roberson, P.; Eddlemon, P.; Munshi, N.; Anaissie, E.; Wilson, C.; Dhodapkar, M.; et al. Antitumor Activity of Thalidomide in Refractory Multiple Myeloma. N. Engl. J. Med. 1999, 341, 1565–1571. [Google Scholar] [CrossRef]
- Hideshima, T.; Chauhan, D.; Richardson, P.; Mitsiades, C.; Mitsiades, N.; Hayashi, T.; Munshi, N.; Dang, L.; Castro, A.; Palombella, V.; et al. NF-ΚB as a Therapeutic Target in Multiple Myeloma. J. Biol. Chem. 2002, 277, 16639–16647. [Google Scholar] [CrossRef]
- Richardson, P.G.; Hideshima, T.; Anderson, K.C. Bortezomib (PS-341): A Novel, First-in-Class Proteasome Inhibitor for the Treatment of Multiple Myeloma and Other Cancers. Cancer Control 2003, 10, 361–369. [Google Scholar] [CrossRef]
- Hideshima, T.; Richardson, P.; Chauhan, D.; Palombella, V.J.; Elliott, P.J.; Adams, J.; Anderson, K.C. The Proteasome Inhibitor PS-341 Inhibits Growth, Induces Apoptosis, and Overcomes Drug Resistance in Human Multiple Myeloma Cells. Cancer Res. 2001, 61, 3071–3076. [Google Scholar] [PubMed]
- Richardson, P.G.; Blood, E.; Mitsiades, C.S.; Jagannath, S.; Zeldenrust, S.R.; Alsina, M.; Schlossman, R.L.; Rajkumar, S.V.; Desikan, K.R.; Hideshima, T.; et al. A Randomized Phase 2 Study of Lenalidomide Therapy for Patients with Relapsed or Relapsed and Refractory Multiple Myeloma. Blood 2006, 108, 3458–3464. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Middleton, R.E.; Sun, H.; Naniong, M.V.; Ott, C.J.; Mitsiades, C.S.; Wong, K.K.; Bradner, J.E.; Kaelin, W.G. The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins. Science 2014, 343, 305–309. [Google Scholar] [CrossRef]
- Krönke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; et al. Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science 2014, 343, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Falco, P.; Falcone, A.; Benevolo, G.; Canepa, L.; Gay, F.; Larocca, A.; Magarotto, V.; Gozzetti, A.; Luraschi, A.; et al. Melphalan, Prednisone, and Lenalidomide for Newly Diagnosed Myeloma: Kinetics of Neutropenia and Thrombocytopenia and Time-to-Event Results. Clin. Lymphoma Myeloma 2009, 9, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.J.; Chen, Q.; Voorhees, P.M.; Strader, J.S.; Shenk, K.D.; Sun, C.M.; Demo, S.D.; Bennett, M.K.; Van Leeuwen, F.W.B.; Chanan-Khan, A.A.; et al. Potent Activity of Carfilzomib, a Novel, Irreversible Inhibitor of the Ubiquitin-Proteasome Pathway, against Preclinical Models of Multiple Myeloma. Blood 2007, 110, 3281–3290. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Goldschmidt, H.; Niesvizky, R.; Joshua, D.; Chng, W.J.; Oriol, A.; Orlowski, R.Z.; Ludwig, H.; Facon, T.; Hajek, R.; et al. Carfilzomib or Bortezomib in Relapsed or Refractory Multiple Myeloma (ENDEAVOR): An Interim Overall Survival Analysis of an Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2017, 18, 1327–1337. [Google Scholar] [CrossRef]
- Kumar, S.K.; Bensinger, W.I.; Zimmerman, T.M.; Reeder, C.B.; Berenson, J.R.; Berg, D.; Hui, A.M.; Gupta, N.; Di Bacco, A.; Yu, J.; et al. Phase 1 Study of Weekly Dosing with the Investigational Oral Proteasome Inhibitor Ixazomib in Relapsed/Refractory Multiple Myeloma. Blood 2014, 124, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Ciofini, S.; Simoncelli, M.; Santoni, A.; Pacelli, P.; Raspadori, D.; Bocchia, M. Anti CD38 Monoclonal Antibodies for Multiple Myeloma Treatment. Hum. Vaccin. Immunother. 2022, 18, 2052658. [Google Scholar] [CrossRef]
- Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.-V.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef]
- Markham, A. Belantamab Mafodotin: First Approval. Drugs 2020, 80, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab Mafodotin for Relapsed or Refractory Multiple Myeloma (DREAMM-2): A Two-Arm, Randomised, Open-Label, Phase 2 Study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Strickland, S.; Glenn, M.; Charpentier, E.; Guillemin, H.; Hsu, K.; Mikhael, J. Phase I Trial of Isatuximab Monotherapy in the Treatment of Refractory Multiple Myeloma. Blood Cancer J. 2019, 9, 41. [Google Scholar] [CrossRef]
- Gozzetti, A.; Bocchia, M. Steps towards a Multiple Myeloma Cure? J. Pers. Med. 2022, 12, 1451. [Google Scholar] [CrossRef] [PubMed]
- Callander, N.; Silbermann, R.; Kaufman, J.L.; Godby, K.N.; Laubach, J.P.; Schmidt, T.M.; Sborov, D.W.; Medvedova, E.; Reeves, B.; Dhakal, B.; et al. Analysis of Transplant-Eligible Patients (Pts) Who Received Frontline Daratumumab (DARA)-Based Quadruplet Therapy for the Treatment of Newly Diagnosed Multiple Myeloma (NDMM) with High-Risk Cytogenetic Abnormalities (HRCA) in the Griffin and Master Studies. Blood 2022, 140, 10144–10147. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. A High-Risk, Double-Hit, Group of Newly Diagnosed Myeloma Identified by Genomic Analysis. Leukemia 2019, 33, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Touzeau, C.; Perrot, A.; Hulin, C.; Manier, S.; Macro, M.; Chretien, M.L.; Karlin, L.; Escoffre, M.; Jacquet, C.; Tiab, M.; et al. Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone with Tandem Transplant for High-Risk Newly Diagnosed Myeloma. Blood 2024, 143, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
- Bergsagel, P.L.; Mateos, M.V.; Gutierrez, N.C.; Rajkumar, S.V.; San Miguel, J.F. Improving Overall Survival and Overcoming Adverse Prognosis in the Treatment of Cytogenetically High-Risk Multiple Myeloma. Blood 2013, 121, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Spicka, I.; Moreau, P.; Martin, T.G.; Facon, T.; Martinez, G.; Oriol, A.; Koh, Y.; Lim, A.; Mikala, G.; Rosiñol, L.; et al. Isatuximab plus Carfilzomib and Dexamethasone in Relapsed Multiple Myeloma Patients with High-Risk Cytogenetics: IKEMA Subgroup Analysis. Eur. J. Haematol. 2022, 109, 504–512. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Heuck, C.; Mitchell, A.; Szymonifka, J.; Nair, B.; Hoering, A.; Alsayed, Y.; Waheed, S.; Haider, S.; Restrepo, A.; et al. Extramedullary Disease Portends Poor Prognosis in Multiple Myeloma and Is Over-Represented in High-Risk Disease Even in the Era of Novel Agents. Haematologica 2012, 97, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Cerase, A.; Lotti, F.; Rossi, D.; Palumbo, A.; Petrucci, M.T.; Patriarca, F.; Nozzoli, C.; Cavo, M.; Offidani, M.; et al. Extramedullary Intracranial Localization of Multiple Myeloma and Treatment with Novel Agents: A Retrospective Survey of 50 Patients. Cancer 2012, 118, 1574–1584. [Google Scholar] [CrossRef]
- Gozzetti, A.; Cerase, A. Novel Agents in CNS Myeloma Treatment. Cent. Nerv. Syst. Agents Med. Chem. 2014, 14, 23–27. [Google Scholar] [CrossRef]
- Jurczyszyn, A.; Olszewska-Szopa, M.; Hungria, V.; Crusoe, E.; Pika, T.; Delforge, M.; Leleu, X.; Rasche, L.; Nooka, A.K.; Druzd-Sitek, A.; et al. Cutaneous Involvement in Multiple Myeloma: A Multi-Institutional Retrospective Study of 53 Patients. Leuk. Lymphoma 2016, 57, 2071–2076. [Google Scholar] [CrossRef]
- Zanwar, S.; Ho, M.; Lin, Y.; Kapoor, P.; Binder, M.; Buadi, F.K.; Dispenzieri, A.; Dingli, D.; Fonder, A.; Gertz, M.A.; et al. Natural History, Predictors of Development of Extramedullary Disease, and Treatment Outcomes for Patients with Extramedullary Multiple Myeloma. Am. J. Hematol. 2023, 98, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.; Perez, C.; Zabaleta, A.; Manrique, I.; Alignani, D.; Ajona, D.; Blanco, L.; Lasa, M.; Maiso, P.; Rodriguez, I.; et al. The Mechanism of Action of the Anti-CD38 Monoclonal Antibody Isatuximab in Multiple Myeloma. Clin. Cancer Res. 2019, 25, 3176–3187. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.C.J.; Janmaat, M.L.; Mutis, T.; Lammerts van Bueren, J.J.; Ahmadi, T.; Sasser, A.K.; Lokhorst, H.M.; Parren, P.W.H.I. Monoclonal Antibodies Targeting CD38 in Hematological Malignancies and Beyond. Immunol. Rev. 2016, 270, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Avet-Loiseau, H.; San-Miguel, J.; Casneuf, T.; Iida, S.; Lonial, S.; Usmani, S.Z.; Spencer, A.; Moreau, P.; Plesner, T.; Weisel, K.; et al. Evaluation of Sustained Minimal Residual Disease Negativity With Daratumumab-Combination Regimens in Relapsed and/or Refractory Multiple Myeloma: Analysis of POLLUX and CASTOR. J. Clin. Oncol. 2021, 39, 1139–1149. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Daratumumab, Lenalidomide, Bortezomib, and Dexamethasone for Transplant-Eligible Newly Diagnosed Multiple Myeloma: The GRIFFIN Trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Beksaç, M.; Špička, I.; Mikhael, J. Isatuximab for the Treatment of Relapsed/Refractory Multiple Myeloma. Expert. Opin. Biol. Ther. 2020, 20, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, J.; Richardson, P.; Usmani, S.Z.; Raje, N.; Bensinger, W.; Karanes, C.; Campana, F.; Kanagavel, D.; Dubin, F.; Liu, Q.; et al. A Phase 1b Study of Isatuximab plus Pomalidomide/Dexamethasone in Relapsed/Refractory Multiple Myeloma. Blood 2019, 134, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Attal, M.; Campana, F.; Le-Guennec, S.; Hui, A.M.; Risse, M.L.; Corzo, K.; Anderson, K.C. Isatuximab plus Pomalidomide/Dexamethasone versus Pomalidomide/Dexamethasone in Relapsed/Refractory Multiple Myeloma: ICARIA Phase III Study Design. Future Oncol. 2018, 14, 1035–1047. [Google Scholar] [CrossRef]
- Moreau, P.; Dimopoulos, M.A.; Yong, K.; Mikhael, J.; Risse, M.L.; Asset, G.; Martin, T. Isatuximab plus Carfilzomib/Dexamethasone versus Carfilzomib/Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma: IKEMA Phase III Study Design. Future Oncol. 2020, 16, 4347–4358. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Raspadori, D.; Bacchiarri, F.; Sicuranza, A.; Pacelli, P.; Ferrigno, I.; Tocci, D.; Bocchia, M. Minimal Residual Disease in Multiple Myeloma: State of the Art and Applications in Clinical Practice. J. Pers. Med. 2020, 10, 120. [Google Scholar] [CrossRef]
- Anderson, K.C.; Auclair, D.; Adam, S.J.; Agarwal, A.; Anderson, M.; Avet-Loiseau, H.; Bustoros, M.; Chapman, J.; Connors, D.E.; Dash, A.; et al. Minimal Residual Disease in Myeloma: Application for Clinical Care and New Drug Registration. Clin. Cancer Res. 2021, 27, 5195–5212. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, H. Clinical value of measurable residual disease testing for multiple myeloma and implementation in Japan. Int. J. Hematol. 2020, 111, 519–529. [Google Scholar] [CrossRef]
- Kalina, T.; Flores-Montero, J.; Van Der Velden, V.H.J.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow Standardization of Flow Cytometer Instrument Settings and Immunophenotyping Protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, J.J.M.; Lhermitte, L.; Böttcher, S.; Almeida, J.; Van Der Velden, V.H.J.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lécrevisse, Q.; Lucio, P.; et al. EuroFlow Antibody Panels for Standardized N-Dimensional Flow Cytometric Immunophenotyping of Normal, Reactive and Malignant Leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef] [PubMed]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; Van Der Velden, V.H.J.; Pérez-Morán, J.J.; Vidriales, M.B.; García-Sanz, R.; et al. Next Generation Flow for Highly Sensitive and Standardized Detection of Minimal Residual Disease in Multiple Myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
- Arroz, M.; Came, N.; Lin, P.; Chen, W.; Yuan, C.; Lagoo, A.; Monreal, M.; de Tute, R.; Vergilio, J.A.; Rawstron, A.C.; et al. Consensus Guidelines on Plasma Cell Myeloma Minimal Residual Disease Analysis and Reporting. Cytom. B Clin. Cytom. 2016, 90, 31–39. [Google Scholar] [CrossRef]
- Yao, Q.; Bai, Y.; Orfao, A.; Chim, C.S. Standardized Minimal Residual Disease Detection by Next-Generation Sequencing in Multiple Myeloma. Front. Oncol. 2019, 9, 449. [Google Scholar] [CrossRef] [PubMed]
- Della Starza, I.; Nunes, V.; Cavalli, M.; De Novi, L.A.; Ilari, C.; Apicella, V.; Vitale, A.; Testi, A.M.; Del Giudice, I.; Chiaretti, S.; et al. Comparative Analysis between RQ-PCR and Digital-Droplet-PCR of Immunoglobulin/T-Cell Receptor Gene Rearrangements to Monitor Minimal Residual Disease in Acute Lymphoblastic Leukaemia. Br. J. Haematol. 2016, 174, 541–549. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Corre, J.; Robillard, N.; Hulin, C.; Chretien, M.L.; Dejoie, T.; Maheo, S.; Stoppa, A.M.; Pegourie, B.; et al. Minimal Residual Disease Negativity Using Deep Sequencing Is a Major Prognostic Factor in Multiple Myeloma. Blood 2018, 132, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Lahuerta, J.J.; Paiva, B.; Vidriales, M.B.; Cordón, L.; Cedena, M.T.; Puig, N.; Martinez-Lopez, J.; Rosiñol, L.; Gutierrez, N.C.; Martín-Ramos, M.L.; et al. Depth of Response in Multiple Myeloma: A Pooled Analysis of Three PETHEMA/GEM Clinical Trials. J. Clin. Oncol. 2017, 35, 2900–2910. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; et al. Association of Minimal Residual Disease with Superior Survival Outcomes in Patients with Multiple Myeloma: A Meta-Analysis. JAMA Oncol. 2017, 3, 28–35. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Cazaubiel, T.; Facon, T.; Caillot, D.; Clement-Filliatre, L.; Macro, M.; Decaux, O.; Belhadj, K.; Mohty, M.; et al. Early Versus Late Autologous Stem Cell Transplant in Newly Diagnosed Multiple Myeloma: Long-Term Follow-up Analysis of the IFM 2009 Trial. Blood 2020, 136, 39. [Google Scholar] [CrossRef]
- Avet Loiseau, H.; Sonneveld, P.; Moreau, P.; Offner, F.; van der Velden, V.H.J.; Caillot, D.; Hulin, C.; Arnulf, B.; Corre, J.; Mohty, M.; et al. Daratumumab (DARA) with Bortezomib, Thalidomide, and Dexamethasone (VTd) in Transplant-Eligible Patients (Pts) with Newly Diagnosed Multiple Myeloma (NDMM): Analysis of Minimal Residual Disease (MRD) Negativity in Cassiopeia Part 1 and Part 2. Blood 2021, 138, 82. [Google Scholar] [CrossRef]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Phase 3 Randomized Study of Daratumumab (DARA) + Bortezomib, Lenalidomide, and Dexamethasone (VRd) Versus Vrd Alone in Patients (Pts) with Newly Diagnosed Multiple Myeloma (NDMM) Who Are Eligible for Autologous Stem Cell Transplantation (ASCT): Primary Results of the Perseus Trial. Blood 2023, 142 (Suppl. S2), LBA-1. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma (MASTER): Final Report of the Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2023, 10, e890–e901. [Google Scholar] [CrossRef]
- Bhutani, M.; Robinson, M.; Foureau, D.; Atrash, S.; Paul, B.A.; Guo, F.; Grayson, J.; Ivanina-Foureau, A.; Pineda-Roman, M.; Varga, C.; et al. MRD-driven phase 2 study of daratumumab, carfilzomib, lenalidomide and dexamethasone in newly diagnosed multiple myeloma. Blood Adv. 2024. [Google Scholar] [CrossRef] [PubMed]
- Mai, E.K.; Bertsch, U.; Pozek, E.; Fenk, R.; Besemer, B.; Hanoun, C.; Schroers, R.; von Metzler, I.; Hänel, M.; Mann, C.; et al. Isatuximab, Lenalidomide, Bortezomib, and Dexamethasone Induction Therapy for Transplant-Eligible Newly Diagnosed Multiple Myeloma: Final Part 1 Analysis of the GMMG-HD7 Trial. J. Clin. Oncol. 2024, JCO-2402266. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Moreau, P.; Bahlis, N.J.; Facon, T.; Plesner, T.; Orlowski, R.Z.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) Alone in Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of the Phase 3 Maia Study. Blood 2022, 140 (Suppl. 1), 10150–10153. [Google Scholar] [CrossRef]
- Mateos, M.V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall Survival with Daratumumab, Bortezomib, Melphalan, and Prednisone in Newly Diagnosed Multiple Myeloma (ALCYONE): A Randomised, Open-Label, Phase 3 Trial. Lancet 2020, 395, 132–141. [Google Scholar] [CrossRef]
- Leypoldt, L.B.; Tichy, D.; Besemer, B.; Hänel, M.; Raab, M.S.; Mann, C.; Munder, M.; Reinhardt, H.C.; Nogai, A.; Görner, M.; et al. Isatuximab, Carfilzomib, Lenalidomide, and Dexamethasone for the Treatment of High-Risk Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2024, 42, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Leleu, X.; Hulin, C.; Lambert, J.; Bobin, A.; Perrot, A.; Karlin, L.; Roussel, M.; Montes, L.; Cherel, B.; Chalopin, T.; et al. Isatuximab, lenalidomide, dexamethasone and bortezomib in transplant-ineligible multiple myeloma: The randomized phase 3 BENEFIT trial. Nat. Med. 2024, 30, 2235–2241. [Google Scholar] [CrossRef]
- Facon, T.; Dimopoulos, M.A.; Leleu, X.P.; Beksac, M.; Pour, L.; Hájek, R.; Liu, Z.; Minarik, J.; Moreau, P.; Romejko-Jarosinska, J.; et al. Isatuximab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 391, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Badros, A.Z.; Foster, L.; Anderson, L.D.; Chaulagain, C.P.; Pettijohn, E.M.; Cowan, A.J.; Costello, C.L.; Larson, S.; Sborov, D.W.; Shain, K.H.; et al. Daratumumab with Lenalidomide as Maintenance after Transplant in Newly Diagnosed Multiple Myeloma: The AURIGA Study. Blood 2025, 145, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Raspadori, D.; Pacelli, P.; Antonioli, E.; Bestoso, E.; Ciofini, S.; Bacchiarri, F.; Buda, G.; Tocci, D.; Cafarelli, C.; et al. Minimal Residual Disease (MRD) at 10–6 Measured by Next Generation Flow (NGF) during Daratumumab Consolidation Therapy: Analysis at 18 Months Follow up of DART4MM Study (Daratumumab Treatment For Multiple Myeloma Eradication). Blood 2020, 136 (Suppl. 1), 7–8. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; San-Miguel, J.; Belch, A.; White, D.; Benboubker, L.; Cook, G.; Leiba, M.; Morton, J.; Joy Ho, P.; Kim, K.; et al. Daratumumab plus Lenalidomide and Dexamethasone versus Lenalidomide and Dexamethasone in Relapsed or Refractory Multiple Myeloma: Updated Analysis of POLLUX. Haematologica 2018, 103, 2088–2096. [Google Scholar] [CrossRef]
- Palumbo, A.; Chanan-Khan, A.A.A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.T.M.; Mateos, M.-V.; Mark, T.M.; et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Quach, H.; Mateos, M.V.; Landgren, O.; Leleu, X.; Siegel, D.; Weisel, K.; Shu, X.; Li, C.; Dimopoulos, M. Final analysis of carfilzomib, dexamethasone, and daratumumab vs carfilzomib and dexamethasone in the CANDOR study. Blood Adv. 2023, 7, 3739–3748. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Terpos, E.; Boccadoro, M.; Delimpasi, S.; Beksac, M.; Katodritou, E.; Moreau, P.; Baldini, L.; Symeonidis, A.; Bila, J.; et al. Daratumumab plus Pomalidomide and Dexamethasone versus Pomalidomide and Dexamethasone Alone in Previously Treated Multiple Myeloma (APOLLO): An Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2021, 22, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Perrot, A.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S.Y.; et al. Isatuximab plus Pomalidomide and Low-Dose Dexamethasone versus Pomalidomide and Low-Dose Dexamethasone in Patients with Relapsed and Refractory Multiple Myeloma (ICARIA-MM): Follow-up Analysis of a Randomised, Phase 3 Study. Lancet Oncol. 2022, 23, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Perrot, A.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S.; et al. Isatuximab Plus Pomalidomide/Low-Dose Dexamethasone Versus Pomalidomide/Low-Dose Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma (ICARIA-MM): Characterization of Subsequent Antimyeloma Therapies. Blood 2022, 140 (Suppl. 1), 608–610. [Google Scholar] [CrossRef]
- Moreau, P.; Dimopoulos, M.A.; Mikhael, J.; Yong, K.; Capra, M.; Facon, T.; Hajek, R.; Špička, I.; Baker, R.; Kim, K.; et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): A multicentre, open-label, randomised phase 3 trial. Lancet 2021, 397, 2361–2371. [Google Scholar] [CrossRef]
- Cavo, M.; San-Miguel, J.; Usmani, S.Z.; Weisel, K.; Dimopoulos, M.A.; Avet-Loiseau, H.; Paiva, B.; Bahlis, N.J.; Plesner, T.; Hungria, V.; et al. Prognostic Value of Minimal Residual Disease Negativity in Myeloma: Combined Analysis of POLLUX, CASTOR, ALCYONE, and MAIA. Blood 2022, 139, 835–844. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P.; et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel, J.; Avet-Loiseau, H.; Paiva, B.; Kumar, S.; Dimopoulos, M.A.; Facon, T.; Mateos, M.V.; Touzeau, C.; Jakubowiak, A.; Usmani, S.Z.; et al. Sustained Minimal Residual Disease Negativity in Newly Diagnosed Multiple Myeloma and the Impact of Daratumumab in MAIA and ALCYONE. Blood 2022, 139, 492–501. [Google Scholar] [CrossRef]
- Terpos, E.; Dimopoulos, M.A. Myeloma Bone Disease: Pathophysiology and Management. Ann. Oncol. 2005, 16, 1223–1231. [Google Scholar] [CrossRef]
- Terpos, E.; Morgan, G.; Dimopoulos, M.A.; Drake, M.T.; Lentzsch, S.; Raje, N.; Sezer, O.; García-Sanz, R.; Shimizu, K.; Turesson, I.; et al. International Myeloma Working Group Recommendations for the Treatment of Multiple Myeloma-Related Bone Disease. J. Clin. Oncol. 2013, 31, 2347–2357. [Google Scholar] [CrossRef] [PubMed]
- Durie, B.G.M.; Waxman, A.D.; D’Agnolo, A.; Williams, C.M. Whole-Body 18F-FDG Pet Identifies High-Risk Myeloma. J. Nucl. Med. 2002, 43, 1457–1463. [Google Scholar] [PubMed]
- Schirrmeister, H.; Bommer, M.; Buck, A.; Müller, S.; Messer, P.; Bunjes, D.; Döhner, H.; Bergmann, L.; Reske, S. Initial Results in the Assessment of Multiple Myeloma Using 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 361–366. [Google Scholar] [CrossRef]
- Zamagni, E.; Patriarca, F.; Nanni, C.; Zannetti, B.; Englaro, E.; Pezzi, A.; Tacchetti, P.; Buttignol, S.; Perrone, G.; Brioli, A.; et al. Prognostic Relevance of 18-F FDG PET/CT in Newly Diagnosed Multiple Myeloma Patients Treated with up-Front Autologous Transplantation. Blood 2011, 118, 5989–5995. [Google Scholar] [CrossRef]
- Ulaner, G.A.; Sobol, N.B.; O’Donoghue, J.A.; Kirov, A.S.; Riedl, C.C.; Min, R.; Smith, E.; Carter, L.M.; Lyashchenko, S.K.; Lewis, J.S.; et al. CD38-Targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human Imaging. Radiology 2020, 295, 606–615. [Google Scholar] [CrossRef]
- Cavo, M.; Terpos, E.; Nanni, C.; Moreau, P.; Lentzsch, S.; Zweegman, S.; Hillengass, J.; Engelhardt, M.; Usmani, S.Z.; Vesole, D.H.; et al. Role of 18F-FDG PET/CT in the Diagnosis and Management of Multiple Myeloma and Other Plasma Cell Disorders: A Consensus Statement by the International Myeloma Working Group. Lancet Oncol. 2017, 18, e206–e217. [Google Scholar] [CrossRef]
- Kraeber-Bodéré, F.; Zweegman, S.; Perrot, A.; Hulin, C.; Caillot, D.; Facon, T.; Leleu, X.; Belhadj, K.; Itti, E.; Karlin, L.; et al. Prognostic Value of Positron Emission Tomography/Computed Tomography in Transplant-Eligible Newly Diagnosed Multiple Myeloma Patients from CASSIOPEIA: The CASSIOPET Study. Haematologica 2023, 108, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Serra, E.R.; et al. International Myeloma Working Group Consensus Recommendations on Imaging in Monoclonal Plasma Cell Disorders. Lancet Oncol. 2019, 20, e302–e312. [Google Scholar] [CrossRef] [PubMed]
- Kubicki, T.; Derman, B.A.; Dytfeld, D.; Jakubowiak, A.J. Measurable Residual Disease in Peripheral Blood in Myeloma: Dream or Reality. Curr. Opin. Oncol. 2023, 35, 574–580. [Google Scholar] [CrossRef]
- Garcés, J.J.; San-Miguel, J.; Paiva, B. Biological Characterization and Clinical Relevance of Circulating Tumor Cells: Opening the Pandora’s Box of Multiple Myeloma. Cancers 2022, 14, 1430. [Google Scholar] [CrossRef]
- Sanoja-Flores, L.; Flores-Montero, J.; Puig, N.; Contreras-Sanfeliciano, T.; Pontes, R.; Corral-Mateos, A.; García-Sánchez, O.; Díez-Campelo, M.; de Magalhães, R.J.P.; García-Martín, L.; et al. Blood Monitoring of Circulating Tumor Plasma Cells by next Generation Flow in Multiple Myeloma after Therapy. Blood 2019, 134, 2218–2222. [Google Scholar] [CrossRef] [PubMed]
- Mithraprabhu, S.; Reynolds, J.; Quach, H.; Horvath, N.; Kerridge, I.; Khong, T.; Durie, B.G.M.; Spencer, A. Circulating Tumor DNA and Bone Marrow Minimal Residual Disease Negativity Confers Superior Outcome for Multiple Myeloma Patients. Haematologica 2024, 109, 974–978. [Google Scholar] [CrossRef]
- Guan, L.; Su, W.; Zhong, J.; Qiu, L. M-Protein Detection by Mass Spectrometry for Minimal Residual Disease in Multiple Myeloma. Clin. Chim. Acta 2024, 552, 117623. [Google Scholar] [CrossRef]
- Mai, E.K.; Huhn, S.; Miah, K.; Poos, A.M.; Scheid, C.; Weisel, K.C.; Bertsch, U.; Munder, M.; Berlanga, O.; Hose, D.; et al. Implications and Prognostic Impact of Mass Spectrometry in Patients with Newly-Diagnosed Multiple Myeloma. Blood Cancer J. 2023, 13, 1. [Google Scholar] [CrossRef]
- Fan, H.; Wang, B.; Shi, L.; Pan, N.; Yan, W.; Xu, J.; Gong, L.; Li, L.; Liu, Y.; Du, C.; et al. Monitoring Minimal Residual Disease in Patients with Multiple Myeloma by Targeted Tracking Serum M-Protein Using Mass Spectrometry (EasyM). Clin. Cancer Res. 2024, 30, 1131–1142. [Google Scholar] [CrossRef]
- Puig, N.; Agullo, C.; Contreras, T.; Paiva, B.; Cedena, M.T.; Rosiñol, L.; Garcia-Sanz, R.; Martinez-Lopez, J.; Rocafiguera, A.O.; Blanchard, M.-J.; et al. Analysis of Peripheral Blood and Bone Marrow Residual Disease Dynamics during Intensive Treatment and Maintenance in Patients with Multiple Myeloma Included in the GEM12MENOS65 and GEM14MAIN Clinical Trials. Blood 2023, 142 (Suppl. 1), 3324. [Google Scholar] [CrossRef]
- Guerrero, C.; Puig, N.; Cedena, M.T.; Calasanz, M.J.; Gutierrez, N.C.; Fernandez, M.; Oriol, A.; Ríos-Tamayo, R.; Hernandez, M.T.; Martínez-Martínez, R.; et al. Predictors of Unsustained Measurable Residual Disease Negativity in Transplant-Eligible Patients with Multiple Myeloma. Blood 2024, 143, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Meseha, M.; Hoffman, J.; Kazandjian, D.; Landgren, O.; Diamond, B. Minimal Residual Disease-Adapted Therapy in Multiple Myeloma: Current Evidence and Opinions. Curr. Oncol. Rep. 2024, 26, 679–690. [Google Scholar] [CrossRef] [PubMed]
Trial | Population | Treatment Scheme | MRD Technique and Sensitivity | MRD Timepoint Assessment | MRD Negativity | MRD Negativity in Patients Achieving ≥ CR |
---|---|---|---|---|---|---|
CASSIOPEIA [69] | NDMM TE | VTd vs. Dara-VTd | NGF 10−5 | 100 days after ASCT | 44% vs. 64% | 20% vs. 34% |
PERSEUS [70] | NDMM TE | VRd vs. Dara-VRd, then lenalidomide vs. daratumumab and lenalidomide | NGS 10−5 and 10−6 | After consolidation in >VGPR, then at 12–18–24–36 months | 75.2% vs. 47.5% | NA |
GRIFFIN [51] | NDMM TE | VRd vs. Dara-VRd | NGS 10−5 | Once CR or sCR is achieved, at end of induction and consolidation, then after 12 and 24 months of maintenance | 20.4% vs. 51% | 32.2% vs. 62% |
MASTER [71] | NDMM TE | Dara-KRd, then lenalidomide if MRD+ | NGS 10−5 | After induction, 60–80 days after ASCT, after cycles 6 and 10, then after 6 and 18 months | 42% after induction; 81% after consolidation | NA |
LCI-HEM-MYE-KRdD-001 [72] | NDMM TE or TIE | Dara-KRd, then lenalidomide/observation (A: MRD−), ASCT (B: MRD+ TE), or KRd (C: MRD+ TIE) | NGS and NGF 10−5 and 10−6 | After induction in ≥VGPR, then
| 59% after induction (NGS 10−5); (B) 62.5% after ASCT (NGS 10−5); (C) 0% (NGS 10−5) | NA |
GMMG-HD7 [73] | NDMM TE | VRd vs. Isa-VRd, then lenalidomide or isatuximab and lenalidomide | NGF 10−5 | After induction and ASCT, then every 12 months until end of maintenance | 47.7% vs. 66.2% (after ASCT) | 25.8% vs. 38.1% (after ASCT) |
MAIA [74] | NDMM TIE | Rd vs. Dara-Rd | NGS 10−5 | Once CR or sCR is achieved, then 12, 18, 24, and 30 months after first dose | 10% vs. 31% | 34% vs. 58.2% |
ALCYONE [75] | NDMM TIE | VMP vs. Dara-VMP | NGS 10−5 | Once CR or sCR is achieved, then 12, 18, 24 and 30 months after first dose | 7% vs. 28.3% | 27.8% vs. 58.8% |
GMMG-CONCEPT [76] | NDMM TE or TIE | Isa-KRd, then Isa-KR | NGF 10−5 | After consolidation, then every 6 months | 81.8% TE 69.2% TIE | NA |
BENEFIT [77] | NDMM TIE | Isa-Rd vs. Isa-VRd | NGS 10−5 and 10−6 | At 12 and 18 months | 26% vs. 53% (18 months; cut-off 10−5) | 17% vs. 37% (18 months; cut-off 10−5) |
IMROZ [78] | NDMM TIE | VRd vs. Isa-VRd | NGS 10−5 | At 6, 12, 18, 24, and 36 months in ≥VGPR | 44% vs. 58% | 40.9% vs. 55.5% |
AURIGA [79] | NDMM TE | Lenalidomide vs. daratumumab and lenalidomide in ≥VGPR/MRD+ | NGS 10−5 and 10−6 | At 12, 18, 24, and 36 months | 18.8% vs. 50.5% (12 months; cut-off 10−5) | NA |
DART4MM [80] | NDMM TE or TIE | Daratumumab in ≥VGPR/MRD+ | NGF 10−6 | 0–6–12–18–24 months | 30% MRD conversion | NA |
POLLUX [81] | RRMM | Rd vs. Dara-Rd | NGS 10−5 | Once CR or sCR is achieved, 3 and 6 months following, then every 12 months | 6.7% vs. 32.2% | 29.2% vs. 57.4% |
CASTOR [82] | RRMM | Vd vs. Dara-Vd | NGS 10−5 | Once CR or sCR is achieved, on cycles 9 and 15, then every 12 months | 1.6% vs. 15.1% | 17.4% vs. 52.8% |
CANDOR [83] | RRMM | Kd vs. Dara-Kd | NGS 10−5 | At 12 months and at any time | 9.1% vs. 27.9% | 7.8% vs. 21.8% |
APOLLO [84] | RRMM | Pd vs. Dara-Pd | NGS 10−5 | At time of suspected CR or sCR; at 6, 12, 18, and 24 months; and every 12 months after achieving CR or sCR, until PD | 2% vs. 9% | NA |
ICARIA-MM [85,86] | RRMM | Pd vs. Isa-Pd | NGS 10−5 | Once CR or sCR is achieved and 3 months later in case of MRD+ | 0 vs. 5% | NA |
IKEMA [87] | RRMM | Kd vs. Isa-Kd | NGS 10−5 | On day 1 of every cycle and when treatment stopped | 13% vs. 30% | 11% vs. 20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caroni, F.; Sammartano, V.; Pacelli, P.; Sicuranza, A.; Malchiodi, M.; Dragomir, A.; Ciofini, S.; Raspadori, D.; Bocchia, M.; Gozzetti, A. Minimal Residual Disease Significance in Multiple Myeloma Patients Treated with Anti-CD38 Monoclonal Antibodies. Pharmaceuticals 2025, 18, 159. https://doi.org/10.3390/ph18020159
Caroni F, Sammartano V, Pacelli P, Sicuranza A, Malchiodi M, Dragomir A, Ciofini S, Raspadori D, Bocchia M, Gozzetti A. Minimal Residual Disease Significance in Multiple Myeloma Patients Treated with Anti-CD38 Monoclonal Antibodies. Pharmaceuticals. 2025; 18(2):159. https://doi.org/10.3390/ph18020159
Chicago/Turabian StyleCaroni, Federico, Vincenzo Sammartano, Paola Pacelli, Anna Sicuranza, Margherita Malchiodi, Andreea Dragomir, Sara Ciofini, Donatella Raspadori, Monica Bocchia, and Alessandro Gozzetti. 2025. "Minimal Residual Disease Significance in Multiple Myeloma Patients Treated with Anti-CD38 Monoclonal Antibodies" Pharmaceuticals 18, no. 2: 159. https://doi.org/10.3390/ph18020159
APA StyleCaroni, F., Sammartano, V., Pacelli, P., Sicuranza, A., Malchiodi, M., Dragomir, A., Ciofini, S., Raspadori, D., Bocchia, M., & Gozzetti, A. (2025). Minimal Residual Disease Significance in Multiple Myeloma Patients Treated with Anti-CD38 Monoclonal Antibodies. Pharmaceuticals, 18(2), 159. https://doi.org/10.3390/ph18020159