Bioconjugation of Podophyllotoxin and Nanosystems: Approaches for Boosting Its Biopharmaceutical and Antitumoral Profile
Abstract
:1. Introduction
2. Results
2.1. Podophyllotoxin Polymer-Based Drug Carriers
2.2. Podophyllotoxin Micelles
2.3. Podophyllotoxin-Liposome Systems
2.4. Other Podophyllotoxin Nanosystems
3. Discussion
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Mattiuzzi, C.; Lippi, G. Current Cancer Epidemiology. J. Epidemiol. Glob. Health 2019, 9, 217–222. [Google Scholar] [CrossRef]
- WHOs Cancer. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 5 November 2024).
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Panda, M.; Bijesh, B.K. Cell Signaling and Cancer: A Mechanistic Insight into Drug Resistance. Mol. Biol. Rep. 2019, 46, 5645–5659. [Google Scholar] [CrossRef]
- Khan, T.; Gurav, P. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-Cancer Drugs. Front. Pharmacol. 2018, 8, 1002. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Shen, L. Molecular Targeted Therapy of Cancer: The Progress and Future Prospect. Front. Lab. Med. 2017, 1, 69–75. [Google Scholar] [CrossRef]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular Targeted Therapy: Treating Cancer with Specificity. Eur. J. Pharmacol. 2018, 834, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of Small Molecule Cancer Drugs: Successes, Challenges and Opportunities. Mol. Oncol. 2012, 6, 155–176. [Google Scholar] [CrossRef]
- Min, H.Y.; Lee, H.Y. Molecular Targeted Therapy for Anticancer Treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef]
- Choudhury, H.; Maheshwari, R.; Pandey, M.; Tekade, M.; Gorain, B.; Tekade, R.K. Advanced Nanoscale Carrier-Based Approaches to Overcome Biopharmaceutical Issues Associated with Anticancer Drug ‘Etoposide’. Mater. Sci. Eng. C 2020, 106, 110275. [Google Scholar] [CrossRef]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer Nanomedicine: Progress, Challenges and Opportunities. Nat. Rev. Cancer 2016, 17, 20–37. [Google Scholar] [CrossRef]
- Winnicka, A.; Brzeszczyńska, J.; Saluk, J.; Wigner-Jeziorska, P. Nanomedicine in Bladder Cancer Therapy. Int. J. Mol. Sci. 2024, 25, 10388. [Google Scholar] [CrossRef] [PubMed]
- Girigoswami, K.; Pallavi, P.; Girigoswami, A. Intricate Subcellular Journey of Nanoparticles to the Enigmatic Domains of Endoplasmic Reticulum. Drug Deliv. 2023, 30, 2284684. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural Product-Based Nanoformulations for Cancer Therapy: Opportunities and Challenges. Semin. Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef]
- Li, Z.; Tan, S.; Li, S.; Shen, Q.; Wang, K. Cancer Drug Delivery in the Nano Era: An Overview and Perspectives (Review). Oncol. Rep. 2017, 38, 611–624. [Google Scholar] [CrossRef]
- Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for Cancer-Targeted Drug Delivery. J. Drug Target. 2016, 24, 179–191. [Google Scholar] [CrossRef]
- Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as Carriers for Drug Delivery in Cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Paterson, I.; Anderson, E.A. The Renaissance of Natural Products as Drug Candidates. Science 2005, 310, 451–453. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Reker, D.; Scheider, P.; Scheider, G. Counting on Natural Products for Drug Desing. Nat. Chem. 2016, 8, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Henkel, T.; Brunne, R.M.; Müller, H.; Reichel, F. Statistical Investigation into the Structural Complementarity of Natural Products and Synthetic Compounds. Angew. Chem. Int. Ed 1999, 38, 643–647. [Google Scholar] [CrossRef]
- Newman, D.J. Natural Products and Drug Discovery. Natl. Sci. Rev. 2022, 9, nwac206. [Google Scholar] [CrossRef]
- Canel, C.; Moraes, R.M.; Dayan, F.E.; Ferreira, D. Molecules of Interest: Podophyllotoxin. Phytochemistry 2000, 54, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Gohar, U.F.; Jamshed, I.; Mushtaq, A.; Mukhtar, H.; Zia-UI-Haq, M.; Ionut Toma, S.; Manea, R.; Moga, M.; Popovici, B. Podophyllotoxin: History, Recent Advances and Future Prospects. Biomolecules 2021, 11, 603. [Google Scholar] [CrossRef]
- Zhao, W.; Cong, Y.; Li, H.M.; Li, S.; Shen, Y.; Qi, Q.; Zhang, Y.; Li, Y.Z.; Tang, Y.J. Challenges and Potential for Improving the Druggability of Podophyllotoxin-Derived Drugs in Cancer Chemotherapy. Nat. Prod. Rep. 2021, 38, 470–488. [Google Scholar] [CrossRef]
- Gordaliza, M.; Castro, M.; Miguel del Corral, J.; San Feliciano, A. Antitumor Properties of Podophyllotoxin and Related Compounds. Curr. Pharm. Des. 2000, 6, 1811–1839. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Vera, C.; Hernández; García-García, P.; Díez, D.; García, P.A.; Castro, M.Á. Podophyllotoxin: Recent Advances in the Development of Hybridization Strategies to Enhance Its Antitumoral Profile. Pharmaceuticals 2023, 15, 2728. [Google Scholar] [CrossRef]
- Zefirova, O.N.; Diikov, A.G.; Zyk, N.V.; Zefitov, N.S. Ligands of the Colchicine Site of Tubulin: A Common Pharmacophore and New Structural Classes. Russ. Chem. Bull. 2007, 56, 680–688. [Google Scholar] [CrossRef]
- Baldwin, E.L.; Osheroff, N. Etoposide, Topoisomerase II and Cancer. Curr. Med. Chem. Anticancer Agents 2005, 5, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Van Maanen, J.M.S.; Retèl, J.; De Vries, J.; Pinedo, H.M. Mechanism of Action of Antitumor Drug Etoposide: A Review. JNCI J. Natl. Cancer Inst. 1988, 80, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Gordaliza, M.; García, P.A.; Miguel del Corral, J.M.; Castro, M.A.; Gómez-Zurita, M.A. Podophyllotoxin: Distribution, Sources, Applications and New Cytotoxic Derivatives. Toxicon 2004, 44, 441–459. [Google Scholar] [CrossRef] [PubMed]
- Guerram, M.; Jiang, Z.Z.; Zhang, L.Y. Podophyllotoxin, a Medicinal Agent of Plant Origin: Past, Present and Future. Chin. J. Nat. Med. 2012, 10, 161–169. [Google Scholar] [CrossRef]
- Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; El Habak, K.; Mostafa, R.; Ali, M.A.; et al. A Review on the Efficacy and Toxicity of Different Doxorubicin Nanoparticles for Targeted Therapy in Metastatic Breast Cancer. Biomed. Pharmacother. 2017, 95, 1209–1218. [Google Scholar] [CrossRef]
- McFadden, M.; Singh, S.K.; Oprea-Ilies, G.; Singh, R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers 2021, 13, 5480. [Google Scholar] [CrossRef]
- Budi, H.S.; Farhood, B. Tumor Microenvironment Remodeling in Oral Cancer: Application of Plant Derived-Natural Products and Nanomaterials. Environ. Res. 2023, 233, 116432. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.J.; Fan, H.Y.; Yu, X.H.; Tang, Y.L.; Jiang, J.; Liang, X.H. Advances of Podophyllotoxin and Its Derivatives: Patterns and Mechanisms. Biochem. Pharmacol. 2022, 200, 115039. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Tong, Y.; Luo, Y.; Huang, L.; Gao, W. Biosynthesis, Total Synthesis, and Pharmacological Activities of Aryltetralin-Type Lignan Podophyllotoxin and Its Derivatives. Nat. Prod. Rep. 2022, 39, 1856–1875. [Google Scholar] [CrossRef]
- Motyka, S.; Jafernik, K.; Ekiert, H.; Sharifi-Rad, J.; Calina, D.; Al-Omari, B.; Szopa, A.; Cho, W.C. Podophyllotoxin and Its Derivatives: Potential Anticancer Agents of Natural Origin in Cancer Chemotherapy. Biomed. Pharmacother. 2023, 158, 114145. [Google Scholar] [CrossRef]
- Xu, Y.; He, Z.; Chen, L.; Wang, H. Podophyllotoxin Derivatives Targeting Tubulin: An Update (2017–2022). Drug Discov. Today 2023, 28, 103640. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Herrero, E.; Fernández-Medarde, A. Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef]
- Irby, D.; Du, C.; Li, F. Lipid–Drug Conjugate for Enhancing Drug Delivery. Mol. Pharm. 2017, 14, 1325. [Google Scholar] [CrossRef]
- Nikezić, A.V.V.; Bondžić, A.M.; Vasić, V.M. Drug Delivery Systems Based on Nanoparticles and Related Nanostructures. Eur. J. Pharm. Sci. 2020, 151, 105412. [Google Scholar] [CrossRef] [PubMed]
- Thakor, P.; Bhavana, V.; Sharma, R.; Srivastava, S.; Singh, S.B.; Mehra, N.K. Polymer–Drug Conjugates: Recent Advances and Future Perspectives. Drug Discov. Today 2020, 25, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Menjoge, A.R.; Kannan, R.M.; Tomalia, D.A. Dendrimer-Based Drug and Imaging Conjugates: Design Considerations for Nanomedical Applications. Drug Discov. Today 2010, 15, 171–185. [Google Scholar] [CrossRef]
- Ray, P.; Ferraro, M.; Haag, R.; Quadir, M. Dendritic Polyglycerol-Derived Nano-Architectures as Delivery Platforms of Gemcitabine for Pancreatic Cancer. Macromol. Biosci. 2019, 19, e1900073. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-marza, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, I.; Noreen, S. A Review of Novel Techniques for Nanoparticles Preparation. Glob. Drug Des. Dev. Rev. 2019, IV(I), 41–50. [Google Scholar] [CrossRef]
- Vinothini, K.; Rajan, M. Mechanism for the Nano-Based Drug Delivery System. In Characterization and Biology of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 219–263. [Google Scholar]
- Cheaburu-Yilmaz, C.N.; Karasulu, H.Y.; Yilmaz, O. Nanoscaled Dispersed Systems Used in Drug-Delivery Applications. In Polymeric Nanomaterials in Nanotherapeutics; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 437–468. [Google Scholar]
- Roy, A.; Zhao, Y.; Yang, Y.; Szeitz, A.; Klassen, T.; Li, S. Selective Targeting and Therapy of Metastatic and Multidrug Resistant Tumors Using a Long Circulating Podophyllotoxin Nanoparticle. Biomaterials 2017, 137, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Roy, A.; Zhao, Y.; Undzys, E.; Li, S. Comparison of Tumor Penetration of Podophyllotoxin-Carboxymethylcellulose Conjugates with Various Chemical Compositions in Tumor Spheroid Culture and In Vivo Solid Tumor. Bioconjug. Chem. 2017, 28, 1505–1518. [Google Scholar] [CrossRef]
- Ou, K.; Kang, Y.; Chen, L.; Zhang, X.; Chen, X.; Zheng, Y.; Wu, J.; Guan, S. H2O2-Responsive Nano-Prodrug for Podophyllotoxin Delivery. Biomater. Sci. 2019, 7, 2491–2498. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yu, Y.; Wang, X.; Shi, P.; Wang, Y.; Wang, P. Manipulation of pH-Sensitive Interactions between Podophyllotoxin-Chitosan for Enhaced Controlled Drug Release. Interact. J. Biol. Macromol. 2017, 95, 451–461. [Google Scholar] [CrossRef]
- Huang, H.L.; Lin, W.J. Dual Peptide-Modified Nanoparticles Improve Combination Chemotherapy of Etoposide and SiPIK3CA against Drug-Resistant Small Cell Lung Carcinoma. Pharmaceutics 2020, 12, 254. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Yu, J.; Qiu, Q.; Liao, R.; Zhang, S.; Luo, C. Reduction-Hypersensitive Podophyllotoxin Prodrug Self-Assembled Nanoparticles for Cancer Treatment. Pharmaceutics 2023, 15, 784. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.I.; Nordio, G.; Di Paolo, M.L.; Colombo, E.; Gaffuri, B.; Polito, L.; Amenta, A.; Seneci, P.; Dalla Via, L.; Perdicchia, D.; et al. 2-Hydroxyoleic Acid as a Self-Assembly Inducer for Anti-Cancer Drug-Centered Nanoparticles. Pharmaceuticals 2023, 16, 722. [Google Scholar] [CrossRef]
- Colombo, E.; Coppini, D.A.; Polito, L.; Ciriello, U.; Paladino, G.; Hyeraci, M.; Di Paolo, M.L.; Nordio, G.; Dalla Via, L.; Passarella, D. Cannabidiol as Self-Assembly Inducer for Anticancer Drug-Based Nanoparticles. Molecules 2023, 28, 112. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, L.; Deng, L.; Li, X.; Zhao, X.; Jiang, D.; Liu, J.; Song, Y.; Liu, J.; Cui, N.; et al. Redox-Responsive Self-Assembled Podophyllotoxin Twin Drug Nanoparticles for Enhanced Intracellular Drug Delivery. Biomed. Mater. 2023, 18, 045019. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Khan, F.A.; Khan, N.M.; Ahmad, S.; Alsaiari, A.A.; Almehmadi, M.; Ahmad, N.; Ul-Haq, Z.; Jan, A.K.; Allahyani, M.; et al. PEGylated Graphene Oxide as a Nanodrug Delivery Vehicle for Podophyllotoxin (GO/PEG/PTOX) and In Vitro α-Amylase/α-Glucosidase Inhibition Activities. ACS Omega 2023, 8, 20550–20560. [Google Scholar] [CrossRef]
- Ha, W.; Zhao, X.B.; Zhao, W.H.; Tang, J.J.; Shi, Y.P. A Colon-Targeted Podophyllotoxin Nanoprodrug: Synthesis, Characterization, and Supramolecular Hydrogel Formation for the Drug Combination. J. Mater. Chem. B 2021, 9, 3200–3209. [Google Scholar] [CrossRef]
- Zhou, H.; Lv, S.; Zhang, D.; Deng, M.; Zhang, X.; Tang, Z. A Polypeptide Based Podophyllotoxin Conjugate for the Treatment of Multi Drug Resistant Breast Cancer with Enhanced Efficiency and Minimal Toxicity. Acta Biomater. 2018, 73, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Tang, Y.; He, P.; Ma, S.; Song, W.; Deng, M.; Thang, Z. Hydrophobic Modified Poly-(L-Glutamic Acid) Graft Copolymer Micelles with Ultrahigh Drug Loading Capacity for Anticancer Drug Delivery. Polym. Int. 2022, 71, 487–494. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Xuan, Y.; Zhi, D.; Wang, W.; Zhang, W.; Zhao, Y.; Zhang, S.; Zhang, S. PH-Sensitive Hyaluronic Acid-Targeted Prodrug Micelles Constructed via a One-Step Reaction for Enhanced Chemotherapy. Int. J. Biol. Macromol. 2022, 206, 489–500. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Yao, B.; Lu, X.; Zhang, X.; He, P.; Vasilatos, S.N.; Ren, X.; Bian, W.; Yao, C. Transferrin Receptor-Targeted Redox/PH-Sensitive Podophyllotoxin Prodrug Micelles for Multidrug-Resistant Breast Cancer Therapy. J. Mater. Chem. B 2019, 7, 5814. [Google Scholar] [CrossRef]
- Hou, M.; Shanshan, L.; Xu, Z.; Li, B. A Reduction-Responsive Amphiphilic Methotrexate-Podophyllotoxin Conjugate for Targeted Chemotherapy. Chem. Asian J. 2019, 14, 3840–3844. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Liu, F.; Tao, B.; Sun, S. GSH-Responsive Anti-Mitotic Cell Penetrating Peptide-Linked Podophyllotoxin Conjugate for Improving Water Solubility and Targeted Synergistic Drug Delivery. Bioorg. Med. Chem. Lett. 2019, 29, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Fu, Y.; Hao, T.; Wei, L.; Liu, Y.; Fan, Z.C.; Guo, N.; Yu, P.; Teng, Y. Podophyllotoxin-Loaded PEGylated E-Selectin Peptide Conjugate Targeted Cancer Site to Enhance Tumor Inhibition and Reduce Side Effect. Eur. J. Med. Chem. 2023, 260, 115780. [Google Scholar] [CrossRef] [PubMed]
- Zu, C.; Yu, Y.; Yu, C.; Li, Y.; Sun, R.; Chaurasiya, B.; Tang, B.; Chen, D.; Tu, J.; Shen, Y. Highly Loaded Deoxypodophyllotoxin Nano-Formulation Delivered by Methoxy Polyethylene Glycol-Block-Poly (D,L-Lactide) Micelles for Efficient Cancer Therapy. Drug Deliv. 2020, 27, 248–257. [Google Scholar] [CrossRef]
- Alliot, J.; Theodorou, I.; Nguyen, D.V.; Forier, C.; Ducongé, F.; Gravel, E.; Doris, E. Tumor Targeted Micellar Nanocarriers Assembled from Epipodophyllotoxin-Based Amphiphiles. Nanoscale 2019, 11, 9756–9759. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Min, Y.; Bludau, H.; Keith, A.; Sheiko, S.S.; Jordan, R.; Wang, A.Z.; Sokolsky-Papkov, M.; Kabanov, A.V. Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer. ACS Nano 2018, 12, 2426–2439. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Zhang, S.; Zhang, J.; Wang, F.; Sun, Y.; Huang, L.; Bian, W. PH and ROS Sequentially Responsive Podophyllotoxin Prodrug Micelles with Surface Charge-Switchable and Self-Amplification Drug Release for Combating Multidrug Resistance Cancer. Drug Deliv. 2021, 28, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Zhou, D. ROS-Activated Homodimeric Podophyllotoxin Nanomedicine with Self-Accelerating Drug Release for Efficient Cancer Eradication. Drug Deliv. 2021, 28, 2361–2372. [Google Scholar] [CrossRef]
- Kalinova, R.G.; Dimitrov, I.V.; Ivanova, D.I.; Ilieva, Y.E.; Tashev, A.N.; Zaharieva, M.M.; Angelov, G.; Najdenski, H.M. Polycarbonate-Based Copolymer Micelles as Biodegradable Carriers of Anticancer Podophyllotoxin or Juniper Extracts. J. Funct. Biomater. 2024, 15, 53. [Google Scholar] [CrossRef]
- Ling, L.; Yu, H.; Ismail, M.; Zhu, Y. Synthetic Dimeric-Drug Phospholipid: A Versatile Liposomal Platform for Cancer Therapy. Chem. Comm. 2020, 56, 7621–7624. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, Y.; Huang, Z.; Zhou, Y.; Wang, W.; Xuan, Y.; Zhen, Y.; Ju, B.; Guo, S.; Zhang, S. Self-Assembly of Podophyllotoxin-Loaded Lipid Bilayer Nanoparticles for Highly Effective Chemotherapy and Immunotherapy via Downregulation of Programmed Cell Death Ligand 1 Production. ACS Nano 2022, 16, 3943–3954. [Google Scholar] [CrossRef]
- Wang, R.; Xuan, Y.; Zhao, Y.; Wang, W.; Ma, P.; Ju, B.; Zhen, Y.; Zhang, S. Cationic Nanoparticulate System for Codelivery of MicroRNA-424 and Podophyllotoxin as a Multimodal Anticancer Therapy. Mol. Pharm. 2022, 19, 2092–2104. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Yuan, M.; Chen, J.; Wang, L.; Qi, Y.; Bai, K.; Fan, Y.; Gao, P. L-Cysteine-Modified Transfersomes for Enhanced Epidermal Delivery of Podophyllotoxin. Molecules 2023, 28, 5712. [Google Scholar] [CrossRef]
- Colombo, E.; Aydın, E.M.; Canıtez, İ.S.; Polito, L.; Penconi, M.; Bossi, A.; Impresari, E.; Passarella, D.; Dallavalle, S.; Athanassopoulos, C.M.; et al. Tetraphenylethylene-Based Photoluminescent Self-Assembled Nanoparticles: Preparation and Biological Evaluation. ACS Med. Chem. Lett. 2023, 14, 1472–1477. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef] [PubMed]
- Tafech, A.; Stéphanou, A. On the Importance of Acidity in Cancer Cells and Therapy. Biology 2024, 13, 225. [Google Scholar] [CrossRef]
Organic NPs | Composition | Advantages | Disadvantages | Ref. |
---|---|---|---|---|
Liposomes | Self-assembled colloidal vesicles with lipid bilayer | Biocompatibility, long circulation blood properties, controlled released, reduced toxicity, improved stability | Poor efficacy in vivo, distribution and removal mechanism, industrial reproducibility | [15,40,41] |
Polymer-based drug carriers | Small bioactive molecules attached to a polymeric backbone through a linker | Variety, controllable molecular weight, controllable release in response to environmental stimulus | Safety issues, toxicity, inflammatory response, degradation pathways. Need to stabilize the payload from physiological clearance | [42,43,44,45] |
Micelles | Core-shell structure composed of hydrophobic interior and hydrophilic shell. | Small size, simple prescription, passive targeting | Scale-up production, cytotoxicity, instability, immune response, inflammation | [15,17,42] |
Method | Characteristics |
---|---|
Solvent evaporation | Polymers are first dissolved into volatile organic solvents and an emulsion is formed. The emulsion is converted into NPs after evaporation of the solvent |
Solvent diffusion | Formation of an o/w emulsion between a partially water-miscible solvent containing the polymer and drug and an aqueous solution with a surfactant. Dilution with water leads to solvent diffusion forming colloidal particles |
Dialysis | Drug polymers, previously dissolved, are placed inside a dialysis matrix. The organic phase diffuses out the matrix into aqueous phase forming NPs |
Nanoprecipitation | An aqueous solution is added dropwise to an organic solution with the polymer and lipophilic drug. The nanoparticles are formed when the polymer diffuses to the aqueous solution |
Self-assembly | NPs spontaneously organized due to specific interactions and/or indirectly through the environment |
Thin-film lipid | Lipid molecules are randomly oriented with a small degree of bilayer type caused by exposure to traces of water |
Polymeric Drug Carrier | Protocol | Drug Loading Efficiency | Drug Release Rate | Cellular Uptake | Cell Viability | Ref. |
---|---|---|---|---|---|---|
Celludo | Nano-assembly | No data | No data | Higher than free podophyllotoxin | No data | [50,51] |
Podophyllotoxin-PEGs NPs | Nanoprecipitation | 83.2% | In presence of H2O2: >78% | Time-dependent | High cytotoxicity against CT26 cell line | [52] |
Podophyllotoxin-Chitosan NPs | Ionic gelation method | 52.4% | At pH 3.7: >80%. pH-dependency. | Higher than free podophyllotoxin | Increment of apoptosis in HepG2 and MCF-7 cells | [53] |
PLGA-PEG-ETO NPs | Solvent evaporation method | Almost 60% | No data | Enhanced ETO’s cellular uptake in CD133(+) H69 cells | IC50 values of A/T-NPs-SiRNA & A/T-NPs-ETO higher than IC50 values of free ETO in CD133(+) H69 cells | [54] |
Dimeric SS podophyllotoxin NPs | Solvent exchange method | 82.6% | In presence of DTT: >96%. In presence of PBS: 14.3% | Incremented cellular uptake in A2780S and A2780T cells | IC50 values lower than 1 mM against all cell lines tested | [58] |
Podophyllotoxin graphene-based nanocomposites | No data | 25% | After 48 h it remains constant at 33% | No data | IC50 values of 5 mg/mL and 7 mg/mL against α-amylase and α-glucosidase. | [59] |
PEGylated podophyllotoxin hydrogels | No data | No data | Almost 95% | No data | Synergistics effects between podophyllotoxin and 5-FU | [60] |
Podophyllotoxin Micelles | Protocol | Drug Loading Efficiency | Drug Release Rate | Cellular Uptake | Cell Viability | Ref. |
---|---|---|---|---|---|---|
PLG-γ-PEGpodophyllotoxin | Self-assembly in aqueous solution | No data | Without trypsin in PBS: <10% With trypsin in PBS: -pH 5: >70% -pH 7.4: <60% | Time-dependent | IC50 against MCF-7 & MCF-7/ADR: 12.3 & 5.8 µM | [61] |
Podophyllotoxin-PPB | Dialysis | 94% | pH-dependent. At pH 5 in PBS: > 80% | No data | IC50 of 9.4 µM against A-549 cells | [62] |
HA-CO-O podophyllotoxin | Self-assembly in aqueous solution | No data | pH-dependent. At pH 5 in PBS: >80% | Time-dependent. 99% cellular uptake after 4 h of incubation | 85% Tumor growth inhibition (TGI) 30 days post-treatment | [63] |
Pep-SS-NPs, SS-NPs & CC-NPs | Solvent evaporative method | Pep-SS-NPs: 13.5% SS-NPs: 14.5% CC-NPs: 14.2% | At 10 mM GSH: >80% At pH 5: 65% | No data | IC50 values of Pep-SS-NPs lower than SS-NPs and CC-NPs. 68% TGI of Pep-SS-NPs | [64] |
MTX-SS-PPT | Self-assembly in aqueous solution | No data | In presence of DTT: >90% | No data | TGI of 80% in BALB/C mice bearing 4T1 xenograft. | [65] |
FA@PPT-PRA@DOX | Self-assembly in aqueous medium | No data | Higher release in the presence of GSH | After 2 h, strong fluorescence in HepG2 cells over-expressing FA receptors | Selectivity against HepG2 tumor cell line. | [66] |
PEG-Pept-PPT | Self-assembly in 10 mL anhydrous DCM/MeOH (1:1) | No data | Higher release in the presence of GSH | No data | Selectivity against MCF-7 tumor cell line. TGI of 67% in MCF-7 xenograft mice | [67] |
mPEG-PLA-DPT | Solvent evaporation film dispersion method | 98% | Biphasic pattern: diffusion and dissolution. pH 7.4: 53% but better release in acidic environments | Time- and dose-dependent. Saturation 4 h post-incubation at 500 ng | Cytotoxic level of micelles was monitored 83% 24 h post-treatment. | [68] |
C18-epipodophyllotoxin-PEG | Self-assembly in aqueous medium | No data | No data | No data | IC50 against MDA-MB231: 21 µM | [69] |
ETO-CnCP-POx | Thin solid film | 98% | Co-loaded drug micelles retained higher amount of cisplatin and etoposide compared to single drug-loaded micelles | No data | Cytotoxicity incremented with the length of the aliphatic chain. Each prodrug was more active than free cisplatin against H69AR cells | [70] |
pH-responsive-ROS PPT micelles | Nanoprecipitation | 20% | At 10 mM H2O2: 83% | Time-dependent and more prone to occur in acidic conditions | pH dependency: at pH 6.8 lower cell viability than at pH 7.4 | [71] |
PTV-NPs | Nanoprecipitation | 40% wt% | At 10 mM H2O2: 95% | After 1 h post-treatment, fluorescence in tumor was observed | IC50 for MCF-7 tumor cells: 0.6 µg/mL | [72] |
PPT-loaded micelles JS-loaded micelles JV-loaded micelles | Nanoprecipitation and adsorption | 99.8% | No data | No data | IC50 for PPT-loaded micelles higher than JS and JV-loaded micelles, in similar range with free PPT’s IC50 | [73] |
Podophyllotoxin Liposomes | Protocol | Drug Loading Efficiency | Drug Release Rate | Cellular Uptake | Cell Viability | Ref. |
---|---|---|---|---|---|---|
DiPPT-GPC liposomes | Lipid film hybridization method | 63% | In 10% FBS: <18% released at 36 h. At pH 5: 97% PPT | Time-dependent with internalization similar to free PPT | IC50 values of nanocomposite like free podophyllotoxin | [74] |
PPCNs | Dried-film ultrasonic procedure | 57% | At pH 7.4: no PPT release At pH 5.5 with hydrolase: >60% At pH 5.5: <than 10% | Time-dependent reaching the maximum uptake at 4 h | Selectivity toward H460 cells compared to free podophyllotoxin | [75] |
miR-424-PPCNs | Electrostatic adsorption | No data | No data | miR-424 was released 6 h post-incubation | 48 h post-treatment cell viability of 63% (H460), compared with 80% of PPCNs | [76] |
Transfersomes | Thin membrane dispersion method | No data | 53% after 36 h | No data | No data | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda-Vera, C.; Hernández, Á.-P.; García-García, P.; Díez, D.; García, P.A.; Castro, M.Á. Bioconjugation of Podophyllotoxin and Nanosystems: Approaches for Boosting Its Biopharmaceutical and Antitumoral Profile. Pharmaceuticals 2025, 18, 169. https://doi.org/10.3390/ph18020169
Miranda-Vera C, Hernández Á-P, García-García P, Díez D, García PA, Castro MÁ. Bioconjugation of Podophyllotoxin and Nanosystems: Approaches for Boosting Its Biopharmaceutical and Antitumoral Profile. Pharmaceuticals. 2025; 18(2):169. https://doi.org/10.3390/ph18020169
Chicago/Turabian StyleMiranda-Vera, Carolina, Ángela-Patricia Hernández, Pilar García-García, David Díez, Pablo A. García, and María Ángeles Castro. 2025. "Bioconjugation of Podophyllotoxin and Nanosystems: Approaches for Boosting Its Biopharmaceutical and Antitumoral Profile" Pharmaceuticals 18, no. 2: 169. https://doi.org/10.3390/ph18020169
APA StyleMiranda-Vera, C., Hernández, Á.-P., García-García, P., Díez, D., García, P. A., & Castro, M. Á. (2025). Bioconjugation of Podophyllotoxin and Nanosystems: Approaches for Boosting Its Biopharmaceutical and Antitumoral Profile. Pharmaceuticals, 18(2), 169. https://doi.org/10.3390/ph18020169