GABAA Receptors Are Involved in the Seizure Blockage Prompted by a Polyphenol-Rich Extract of White Grape Juice in Rodents
Abstract
:1. Introduction
2. Results
2.1. Polyphenolic Profile of WGJe
2.2. Effects of WGJe Treatment on Pentylenetetrazole (PTZ)-Induced Seizures
2.3. Effects of WGJe on Absence Seizures in WAG/Rij Rats
2.4. Effects of WGJe on Audiogenic Seizure (AGS)-Prone DBA/2 Mice
2.5. Open-Field Test (OFT) in Treated and Untreated DBA/2 Mice
2.6. Molecular Docking of the Main Components of WGJe in the GABAA Receptor
3. Discussion
4. Materials and Methods
4.1. Quali-Quantitative Characterization of WGJe
4.2. Animals
4.3. PTZ-Induced Seizures in ICR CD-1 Mice
4.4. Audiogenic Seizures in DBA/2 Mice
4.4.1. Experimental Protocol #1
4.4.2. Experimental Protocol #2 (Co-Administration Protocol)
4.5. Experiments in WAG/Rij Rats
4.6. Behavioral Test
Open-Field Test (OFT)
4.7. Statistical Analysis
4.8. Docking Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuberi, S.M.; Wirrell, E.; Yozawitz, E.; Wilmshurst, J.M.; Specchio, N.; Riney, K.; Pressler, R.; Auvin, S.; Samia, P.; Hirsch, E.; et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1349–1397. [Google Scholar] [CrossRef] [PubMed]
- Trinka, E.; Rainer, L.J.; Granbichler, C.A.; Zimmermann, G.; Leitinger, M. Mortality, and life expectancy in Epilepsy and Status epilepticus-current trends and future aspects. Front. Epidemiol. 2023, 3, 1081757. [Google Scholar] [CrossRef] [PubMed]
- Hakami, T. Neuropharmacology of Antiseizure Drugs. Neuropsychopharmacol. Rep. 2021, 41, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Elkommos, S.; Mula, M. Current and future pharmacotherapy options for drug-resistant epilepsy. Expert. Opin. Pharmacother. 2022, 23, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Wise, J. FDA approves its first cannabis based medicine. BMJ 2018, 361, k2827. [Google Scholar] [CrossRef]
- Moreira, F.A.; de Oliveira, A.C.P.; Santos, V.R.; Moraes, M.F.D. Cannabidiol and epilepsy. Int. Rev. Neurobiol. 2024, 177, 135–147. [Google Scholar] [CrossRef]
- Loscher, W. Single-Target Versus Multi-Target Drugs Versus Combinations of Drugs With Multiple Targets: Preclinical and Clinical Evidence for the Treatment or Prevention of Epilepsy. Front. Pharmacol. 2021, 12, 730257. [Google Scholar] [CrossRef]
- Dhir, A. Natural polyphenols in preclinical models of epilepsy. Phytother. Res. 2020, 34, 1268–1281. [Google Scholar] [CrossRef]
- Pazos-Tomas, C.C.; Cruz-Venegas, A.; Perez-Santiago, A.D.; Sanchez-Medina, M.A.; Matias-Perez, D.; Garcia-Montalvo, I.A. Vitis vinifera: An Alternative for the Prevention of Neurodegenerative Diseases. J. Oleo Sci. 2020, 69, 1147–1161. [Google Scholar] [CrossRef]
- Andreucci, M.; Faga, T.; Pisani, A.; Sabbatini, M.; Russo, D.; Mattivi, F.; De Sarro, G.; Navarra, M.; Michael, A. Reversal of radiocontrast medium toxicity in human renal proximal tubular cells by white grape juice extract. Chem. Biol. Interact. 2015, 229, 17–25. [Google Scholar] [CrossRef]
- Filocamo, A.; Bisignano, C.; Mandalari, G.; Navarra, M. In Vitro Antimicrobial Activity and Effect on Biofilm Production of a White Grape Juice (Vitis vinifera) Extract. Evid. Based Complement. Alternat Med. 2015, 2015, 856243. [Google Scholar] [CrossRef]
- Giacoppo, S.; Galuppo, M.; Lombardo, G.E.; Ulaszewska, M.M.; Mattivi, F.; Bramanti, P.; Mazzon, E.; Navarra, M. Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 2015, 103, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Montalbano, G.; Maugeri, A.; Guerrera, M.C.; Miceli, N.; Navarra, M.; Barreca, D.; Cirmi, S.; Germana, A. A White Grape Juice Extract Reduces Fat Accumulation through the Modulation of Ghrelin and Leptin Expression in an In Vivo Model of Overfed Zebrafish. Molecules 2021, 26, 1119. [Google Scholar] [CrossRef]
- Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 2003, 463, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh, R.M., Jr.; Lindahl, E.; Hibbs, R.E. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020, 585, 303–308. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Herrera-Bravo, J.; Martorell, M.; Sharopov, F.; Tumer, T.B.; Kurt, B.; Lankatillake, C.; Docea, A.O.; Moreira, A.C.; et al. A Pharmacological Perspective on Plant-derived Bioactive Molecules for Epilepsy. Neurochem. Res. 2021, 46, 2205–2225. [Google Scholar] [CrossRef] [PubMed]
- Copmans, D.; Orellana-Paucar, A.M.; Steurs, G.; Zhang, Y.; Ny, A.; Foubert, K.; Exarchou, V.; Siekierska, A.; Kim, Y.; De Borggraeve, W.; et al. Methylated flavonoids as anti-seizure agents: Naringenin 4′,7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem. Int. 2018, 112, 124–133. [Google Scholar] [CrossRef]
- Ferreira, M.K.A.; da Silva, A.W.; Dos Santos Moura, A.L.; Sales, K.V.B.; Marinho, E.M.; do Nascimento Martins Cardoso, J.; Marinho, M.M.; Bandeira, P.N.; Magalhaes, F.E.A.; Marinho, E.S.; et al. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav. 2021, 117, 107881. [Google Scholar] [CrossRef]
- Malanik, M.; Culenova, M.; Sychrova, A.; Skiba, A.; Skalicka-Wozniak, K.; Smejkal, K. Treating Epilepsy with Natural Products: Nonsense or Possibility? Pharmaceuticals 2023, 16, 1061. [Google Scholar] [CrossRef]
- Challal, S.; Skiba, A.; Langlois, M.; Esguerra, C.V.; Wolfender, J.L.; Crawford, A.D.; Skalicka-Wozniak, K. Natural product-derived therapies for treating drug-resistant epilepsies: From ethnopharmacology to evidence-based medicine. J. Ethnopharmacol. 2023, 317, 116740. [Google Scholar] [CrossRef]
- Gasior, M.; Ungard, J.T.; Beekman, M.; Carter, R.B.; Witkin, J.M. Acute and chronic effects of the synthetic neuroactive steroid, ganaxolone, against the convulsive and lethal effects of pentylenetetrazol in seizure-kindled mice: Comparison with diazepam and valproate. Neuropharmacology 2000, 39, 1184–1196. [Google Scholar] [CrossRef] [PubMed]
- Nkwingwa, B.K.; Wado, E.K.; Foyet, H.S.; Bouvourne, P.; Jugha, V.T.; Mambou, A.; Bila, R.B.; Taiwe, G.S. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems. Biomed. Pharmacother. 2023, 165, 115093. [Google Scholar] [CrossRef]
- Aldawsari, H.M.; Eid, B.G.; Neamatallah, T.; Zaitone, S.A.; Badr, J.M. Anticonvulsant and Neuroprotective Activities of Phragmanthera austroarabica Extract in Pentylenetetrazole-Kindled Mice. Evid. Based Complement. Alternat Med. 2017, 2017, 5148219. [Google Scholar] [CrossRef] [PubMed]
- Sefil, F.; Kahraman, I.; Dokuyucu, R.; Gokce, H.; Ozturk, A.; Tutuk, O.; Aydin, M.; Ozkan, U.; Pinar, N. Ameliorating effect of quercetin on acute pentylenetetrazole induced seizures in rats. Int. J. Clin. Exp. Med. 2014, 7, 2471–2477. [Google Scholar] [PubMed]
- Citraro, R.; Navarra, M.; Leo, A.; Donato Di Paola, E.; Santangelo, E.; Lippiello, P.; Aiello, R.; Russo, E.; De Sarro, G. The Anticonvulsant Activity of a Flavonoid-Rich Extract from Orange Juice Involves both NMDA and GABA-Benzodiazepine Receptor Complexes. Molecules 2016, 21, 1261. [Google Scholar] [CrossRef]
- Prakash, C.; Tyagi, J.; Rabidas, S.S.; Kumar, V.; Sharma, D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med. 2023, 25, 163–178. [Google Scholar] [CrossRef]
- Kessler, S.K.; McGinnis, E. A Practical Guide to Treatment of Childhood Absence Epilepsy. Paediatr. Drugs 2019, 21, 15–24. [Google Scholar] [CrossRef]
- Kizilaslan, N.; Aydin, D.; Sumbul, O.; Koroglu, R.; Aygun, H. The effect of quercetin on absence epilepsy in WAG/Rij rats. Neurol. Res. 2023, 45, 701–707. [Google Scholar] [CrossRef]
- Li, Z.; You, Z.; Li, M.; Pang, L.; Cheng, J.; Wang, L. Protective Effect of Resveratrol on the Brain in a Rat Model of Epilepsy. Neurosci. Bull. 2017, 33, 273–280. [Google Scholar] [CrossRef]
- Masiulis, S.; Desai, R.; Uchanski, T.; Serna Martin, I.; Laverty, D.; Karia, D.; Malinauskas, T.; Zivanov, J.; Pardon, E.; Kotecha, A.; et al. GABA(A) receptor signalling mechanisms revealed by structural pharmacology. Nature 2019, 565, 454–459. [Google Scholar] [CrossRef]
- Rios, J.L.; Schinella, G.R.; Moragrega, I. Phenolics as GABA(A) Receptor Ligands: An Updated Review. Molecules 2022, 27, 1770. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Kirchmair, J. Cheminformatics in Natural Product-based Drug Discovery. Mol. Inform. 2020, 39, e2000171. [Google Scholar] [CrossRef] [PubMed]
- Middendorp, S.J.; Maldifassi, M.C.; Baur, R.; Sigel, E. Positive modulation of synaptic and extrasynaptic GABAA receptors by an antagonist of the high affinity benzodiazepine binding site. Neuropharmacology 2015, 95, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Zeller, A.; Arras, M.; Jurd, R.; Rudolph, U. Mapping the contribution of beta3-containing GABAA receptors to volatile and intravenous general anesthetic actions. BMC Pharmacol. 2007, 7, 2. [Google Scholar] [CrossRef]
- Zeller, A.; Arras, M.; Jurd, R.; Rudolph, U. Identification of a molecular target mediating the general anesthetic actions of pentobarbital. Mol. Pharmacol. 2007, 71, 852–859. [Google Scholar] [CrossRef]
- Islam, M.T.; Bhuia, M.S.; Sheikh, S.; Hasan, R.; Bappi, M.H.; Chowdhury, R.; Ansari, S.A.; Islam, M.A.; Saifuzzaman, M. Sedative Effects of Daidzin, Possibly Through the GABA(A) Receptor Interaction Pathway: In Vivo Approach with Molecular Dynamic Simulations. J. Mol. Neurosci. 2024, 74, 83. [Google Scholar] [CrossRef]
- Fonseca, D.V.; da Silva, P.R.; Pires, H.F.O.; Rocha, J.S.; de Oliveira, L.E.G.; Reis, F.M.S.; Cavalho, E.B.M.; Pazos, N.D.N.; de Sousa, N.F.; Guedes, E.C.; et al. Anticonvulsant activity of Tetrahydrolinalool: Behavioral, electrophysiological, and molecular docking approaches. ChemMedChem 2024, 19, e202400135. [Google Scholar] [CrossRef]
- Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci. 2021, 265, 118826. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, B.; Wang, Y.; Chen, Z. Cholinergic Signaling, Neural Excitability, and Epilepsy. Molecules 2021, 26, 2258. [Google Scholar] [CrossRef]
- Svob Strac, D.; Pivac, N.; Smolders, I.J.; Fogel, W.A.; De Deurwaerdere, P.; Di Giovanni, G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front. Neurosci. 2016, 10, 492. [Google Scholar] [CrossRef]
- Martin, E.; Berka, V.; Tsai, A.L.; Murad, F. Soluble guanylyl cyclase: The nitric oxide receptor. Methods Enzymol. 2005, 396, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Piskorska, B.; Czuczwar, S.J.; Borowicz, K.K. Nitric oxide, epileptic seizures, and action of antiepileptic drugs. CNS Neurol. Disord. Drug Targets 2011, 10, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Miyai, A.; Danjo, S.; Nakamura, Y.; Itoh, K. The threshold of pentylenetetrazole-induced convulsive seizures, but not that of nonconvulsive seizures, is controlled by the nitric oxide levels in murine brains. Exp. Neurol. 2013, 247, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Vrhovsek, U.; Masuero, D.; Gasperotti, M.; Franceschi, P.; Caputi, L.; Viola, R.; Mattivi, F. A Versatile Targeted Metabolomics Method for the Rapid Quantification of Multiple Classes of Phenolics in Fruits and Beverages. J. Agric. Food Chem. 2012, 60, 8831–8840. [Google Scholar] [CrossRef] [PubMed]
- Funck, V.R.; de Oliveira, C.V.; Pereira, L.M.; Rambo, L.M.; Ribeiro, L.R.; Royes, L.F.; Ferreira, J.; Guerra, G.P.; Furian, A.F.; Oliveira, M.S.; et al. Differential effects of atorvastatin treatment and withdrawal on pentylenetetrazol-induced seizures. Epilepsia 2011, 52, 2094–2104. [Google Scholar] [CrossRef]
- Velíšková, J.; Velíšek, L. Behavioral Characterization and Scoring of Seizures in Rodents. In Models of Seizures and Epilepsy; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Citraro, R.; Russo, E.; Leo, A.; Russo, R.; Avagliano, C.; Navarra, M.; Calignano, A.; De Sarro, G. Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2′-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur. J. Pharmacol. 2016, 791, 523–534. [Google Scholar] [CrossRef]
- Andres-Mach, M.; Zolkowska, D.; Barcicka-Klosowska, B.; Haratym-Maj, A.; Florek-Luszczki, M.; Luszczki, J.J. Effect of ACEA--a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 301–309. [Google Scholar] [CrossRef]
- De Sarro, G.; Carotti, A.; Campagna, F.; McKernan, R.; Rizzo, M.; Falconi, U.; Palluotto, F.; Giusti, P.; Rettore, C.; De Sarro, A. Benzodiazepine receptor affinities, behavioral, and anticonvulsant activity of 2-aryl-2,5-dihydropyridazino[4,3-b]indol- 3(3H)-ones in mice. Pharmacol. Biochem. Behav. 2000, 65, 475–487. [Google Scholar] [CrossRef]
- Leo, A.; Citraro, R.; Amodio, N.; De Sarro, C.; Gallo Cantafio, M.E.; Constanti, A.; De Sarro, G.; Russo, E. Fingolimod Exerts only Temporary Antiepileptogenic Effects but Longer-Lasting Positive Effects on Behavior in the WAG/Rij Rat Absence Epilepsy Model. Neurotherapeutics 2017, 14, 1134–1147. [Google Scholar] [CrossRef]
- Citraro, R.; Leo, A.; Franco, V.; Marchiselli, R.; Perucca, E.; De Sarro, G.; Russo, E. Perampanel effects in the WAG/Rij rat model of epileptogenesis, absence epilepsy, and comorbid depressive-like behavior. Epilepsia 2017, 58, 231–238. [Google Scholar] [CrossRef]
- Russo, C.; Maugeri, A.; De Luca, L.; Gitto, R.; Lombardo, G.E.; Musumeci, L.; De Sarro, G.; Cirmi, S.; Navarra, M. The SIRT2 Pathway Is Involved in the Antiproliferative Effect of Flavanones in Human Leukemia Monocytic THP-1 Cells. Biomedicines 2022, 10, 2383. [Google Scholar] [CrossRef]
Class | Compounds | Concentration (mg/kg) |
---|---|---|
Flavonols | Quercetin-3-glucuronide | 15,531.7 |
Quercetin-3-glucoside | 6470.2 | |
Quercetin-3,4-rutinoside | 1266.1 | |
Kaempferol-3-glucuronide | 828.2 | |
Kaempferol-3-glucoside | 409.5 | |
Isorhamnetin-3-glucoside | 359.5 | |
Quercetin-3-glucoside-arabinoside | 115.1 | |
Rutin | 34.2 | |
Quercetin | 27.5 | |
Kaempferol-3-rutinoside | 4.1 | |
Quercetin-3-glucoside acetyl | 4.1 | |
Isorhamnetin-3-rutinoside | 3.8 | |
Flavanols | Procyanidin B1 | 7326.9 |
Catechin | 3355.8 | |
Procyanidin B3 | 2086.2 | |
Epicatechin | 379.1 | |
Hydroxycinnamates | trans-Coutaric acid | 2740.2 |
Caffeic acid | 371.5 | |
Chlorogenic acid | 33.6 | |
p-Coumaric acid | 23.5 | |
Ferulic acid | 21.1 | |
Resveratrols | cis-Piceid | 2295.7 |
trans-Piceid | 57.7 | |
Phenolic acids | Ellagic acid | 867.6 |
p-hydroxybenzoic acid | 85.4 | |
Vanillic acid | 64.3 | |
2,6-diOH-benzoic acid | 5.1 | |
Methyl gallate | 2.1 | |
Dihydroflavonols | Taxifolin | 491.2 |
Dihydrokaempferol | 60.6 | |
Dihydrochalcones | Phlorizin | 40.1 |
Trilobatin | 20.3 | |
Flavanones | Hesperidin | 21.1 |
Flavones | Luteolin-7-O-glucoside | 6.3 |
Luteolin | 0.8 | |
Sinensetin | 0.5 | |
Hydroquinones | Arbutin | 295.2 |
Treatment | Dose Range (mg/kg) | Mice Model | Seizure Phase | ||
---|---|---|---|---|---|
Wild Running | Clonus | Tonus | |||
WGJe | 20–120 | PTZ treated ICR-CD1 mice | / | NE | 57.76 (45.48–73.36) * |
WGJe | 20–120 | DBA/2 mice | 89.28 (62.31–127.91) * | 60.68 (45.76–80.47) * | 47.83 (33.17–68.96) * |
WGJe + Flumazenil (2.5 mg/kg) | 20–120 | DBA/2 mice | NE | 98.95 (73.65–132.93) # | 73.94 (55.05–99.30) # |
Compound | Structure | Docking Score | |||
---|---|---|---|---|---|
ECD | TMD | ||||
GoldScore | ChemPLP | GoldScore | ChemPLP | ||
Catechin | 64.67 | 75.51 | 56.69 | 66.14 | |
Cis-piceid | 72.03 | 80.50 | 61.13 | 72.11 | |
Coutaric acid | 64.04 | 75.40 | 51.55 | 62.14 | |
Epicatechin | 62.92 | 78.21 | 56.11 | 66.75 | |
Quercetin | 66.11 | 75.86 | 53.56 | 60.24 | |
Quercetin-3-glucoronide | 75.57 | 109.34 | 72.72 | 68.06 | |
Quercetin-3-glucoside | 80.14 | 110.93 | 72.02 | 76.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maugeri, A.; Citraro, R.; Leo, A.; Russo, C.; Navarra, M.; De Sarro, G. GABAA Receptors Are Involved in the Seizure Blockage Prompted by a Polyphenol-Rich Extract of White Grape Juice in Rodents. Pharmaceuticals 2025, 18, 186. https://doi.org/10.3390/ph18020186
Maugeri A, Citraro R, Leo A, Russo C, Navarra M, De Sarro G. GABAA Receptors Are Involved in the Seizure Blockage Prompted by a Polyphenol-Rich Extract of White Grape Juice in Rodents. Pharmaceuticals. 2025; 18(2):186. https://doi.org/10.3390/ph18020186
Chicago/Turabian StyleMaugeri, Alessandro, Rita Citraro, Antonio Leo, Caterina Russo, Michele Navarra, and Giovambattista De Sarro. 2025. "GABAA Receptors Are Involved in the Seizure Blockage Prompted by a Polyphenol-Rich Extract of White Grape Juice in Rodents" Pharmaceuticals 18, no. 2: 186. https://doi.org/10.3390/ph18020186
APA StyleMaugeri, A., Citraro, R., Leo, A., Russo, C., Navarra, M., & De Sarro, G. (2025). GABAA Receptors Are Involved in the Seizure Blockage Prompted by a Polyphenol-Rich Extract of White Grape Juice in Rodents. Pharmaceuticals, 18(2), 186. https://doi.org/10.3390/ph18020186