In Silico Approach for Antibacterial Discovery: PTML Modeling of Virtual Multi-Strain Inhibitors Against Staphylococcus aureus
Abstract
:1. Introduction
2. Results and Discussion
2.1. The PTML-MLP Model
2.2. Designing Multi-Strain Inhibitors Through the FBTD Approach
2.2.1. Interpreting the Multi-Label Graph-Theoretical Indices
2.2.2. Designing Multi-Strain Inhibitors Against S. aureus
2.3. Druglikeness Properties of the Designed Molecules
3. Materials and Methods
3.1. Data and Computation of the Graph-Theoretical Indices
3.2. Creation, Performance Analysis, and Applicability Domain of the PTML-MLP Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collaborators GBDAR. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Douglas, E.J.A.; Wulandari, S.W.; Lovell, S.D.; Laabei, M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb. Biotechnol. 2023, 16, 1456–1474. [Google Scholar] [CrossRef]
- Heaton, C.J.; Gerbig, G.R.; Sensius, L.D.; Patel, V.; Smith, T.C. Staphylococcus aureus Epidemiology in Wildlife: A Systematic Review. Antibiotics 2020, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature 2023, 616, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Srivastava, N. Computational Approaches for Antibacterial Drug Discovery. In Antibacterial Drug Discovery to Combat MDR: Natural Compounds, Nanotechnology and Novel Synthetic Sources; Ahmad, I., Ahmad, S., Rumbaugh, K.P., Eds.; Springer: Singapore, 2019; pp. 239–249. [Google Scholar]
- Bhattacharya, S.; Khanra, P.K.; Dutta, A.; Gupta, N.; Aliakbar Tehrani, Z.; Severova, L.; Sredl, K.; Dvorak, M.; Fernandez-Cusimamani, E. Computational Screening of T-Muurolol for an Alternative Antibacterial Solution against Staphylococcus aureus Infections: An In Silico Approach for Phytochemical-Based Drug Discovery. Int. J. Mol. Sci. 2024, 25, 9650. [Google Scholar] [CrossRef]
- Almufarriji, F.M.; Alotaibi, B.S.; Alamri, A.S.; Alkhalil, S.S.; Alkhorayef, N.; Hakami, M.A. Unveiling the multitargeted potential of deprodone and control comparison with linezolid against hydrolase and transferase enzymes of methicillin-resistant Staphylococcus aureus. Int. J. Biol. Macromol. 2024, 279, 135459. [Google Scholar] [CrossRef]
- Qandeel, B.M.; Mowafy, S.; Abouzid, K.; Farag, N.A. Lead generation of UPPS inhibitors targeting MRSA: Using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking, and molecular dynamic simulations. BMC Chem. 2024, 18, 14. [Google Scholar] [CrossRef]
- Fatima, A.; Choudhary, M.I.; Siddiqui, S.; Zafar, H.; Hu, K.; Wahab, A.T. Insights into the molecular interactions between urease subunit gamma from MRSA and drugs: An integrative approach by STD-NMR and molecular docking studies. RSC Adv. 2024, 14, 30859–30872. [Google Scholar] [CrossRef]
- Korol, N.; Holovko-Kamoshenkova, O.; Mariychuk, R.; Slivka, M. Insights into bacterial interactions: Comparing fluorine-containing 1,2,4-triazoles to antibiotics using molecular docking and molecular dynamics approaches. Heliyon 2024, 10, e37538. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dutta, A.; Khanra, P.K.; Gupta, N.; Dutta, R.; Tzvetkov, N.T.; Milella, L.; Ponticelli, M. In silico exploration of 4(alpha-l-rhamnosyloxy)-benzyl isothiocyanate: A promising phytochemical-based drug discovery approach for combating multi-drug resistant Staphylococcus aureus. Comput. Biol. Med. 2024, 179, 108907. [Google Scholar] [CrossRef]
- Mahmutovic-Dizdarevic, I.; Mesic, A.; Jerkovic-Mujkic, A.; Zujo, B.; Avdic, M.; Hukic, M.; Omeragic, E.; Osmanovic, A.; Spirtovic-Halilovic, S.; Ahmetovski, S.; et al. Biological potential, chemical profiling, and molecular docking study of Morus alba L. extracts. Fitoterapia 2024, 177, 106114. [Google Scholar] [CrossRef] [PubMed]
- Volynets, G.P.; Iungin, O.S.; Gudzera, O.I.; Vyshniakova, H.V.; Rybak, M.Y.; Moshynets, O.V.; Balanda, A.O.; Borovykov, O.V.; Prykhod’ko, A.O.; Lukashov, S.S.; et al. Identification of novel antistaphylococcal hit compounds. J. Antibiot. 2024, 77, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.O.; Dias, A.L.T.; Dos Santos Junior, V.S.; Sa Magalhaes Serafim, M.; Sousa, Y.V.; Monteiro, G.C.; Coutinho, I.D.; Valli, M.; Verzola, M.; Ottoni, F.M.; et al. Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus. J. Chem. Inf. Model. 2024, 64, 1932–1944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Q.; Zhao, H.; Li, G.; Yi, Y.; Shang, R. Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure-Activity Relationship Model. Int. J. Mol. Sci. 2024, 25, 2256. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, J.; Xing, M.; Li, B. Antimicrobial Peptide Identified via Machine Learning Presents Both Potent Antibacterial Properties and Low Toxicity toward Human Cells. Microorganisms 2024, 12, 1682. [Google Scholar] [CrossRef]
- Kleandrova, V.V.; Cordeiro, M.N.D.S.; Speck-Planche, A. Current in silico methods for multi-target drug discovery in early anticancer research: The rise of the perturbation-theory machine learning approach. Future Med. Chem. 2023, 15, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Kleandrova, V.V.; Cordeiro, M.N.D.S.; Speck-Planche, A. Optimizing drug discovery using multitasking models for quantitative structure-biological effect relationships: An update of the literature. Expert Opin. Drug Discov. 2023, 18, 1231–1243. [Google Scholar] [CrossRef]
- Santana, R.; Zuluaga, R.; Ganan, P.; Arrasate, S.; Onieva, E.; Montemore, M.M.; Gonzalez-Diaz, H. PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy. Mol. Pharm. 2020, 17, 2612–2627. [Google Scholar] [CrossRef] [PubMed]
- Santana, R.; Zuluaga, R.; Ganan, P.; Arrasate, S.; Onieva, E.; Gonzalez-Diaz, H. Predicting coated-nanoparticle drug release systems with perturbation-theory machine learning (PTML) models. Nanoscale 2020, 12, 13471–13483. [Google Scholar] [CrossRef] [PubMed]
- Urista, D.V.; Carrue, D.B.; Otero, I.; Arrasate, S.; Quevedo-Tumailli, V.F.; Gestal, M.; Gonzalez-Diaz, H.; Munteanu, C.R. Prediction of Antimalarial Drug-Decorated Nanoparticle Delivery Systems with Random Forest Models. Biology 2020, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Diez-Alarcia, R.; Yanez-Perez, V.; Muneta-Arrate, I.; Arrasate, S.; Lete, E.; Meana, J.J.; Gonzalez-Diaz, H. Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [(35)S]GTPgammaS Binding Assays. ACS Chem. Neurosci. 2019, 10, 4476–4491. [Google Scholar] [CrossRef] [PubMed]
- Kleandrova, V.V.; Speck-Planche, A. PTML Modeling for Alzheimer’s Disease: Design and Prediction of Virtual Multi-Target Inhibitors of GSK3B, HDAC1, and HDAC6. Curr. Top. Med. Chem. 2020, 20, 1661–1676. [Google Scholar] [CrossRef]
- Ferreira da Costa, J.; Silva, D.; Caamano, O.; Brea, J.M.; Loza, M.I.; Munteanu, C.R.; Pazos, A.; Garcia-Mera, X.; Gonzalez-Diaz, H. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics. ACS Chem. Neurosci. 2018, 9, 2572–2587. [Google Scholar] [CrossRef]
- Martinez-Arzate, S.G.; Tenorio-Borroto, E.; Barbabosa Pliego, A.; Diaz-Albiter, H.M.; Vazquez-Chagoyan, J.C.; Gonzalez-Diaz, H. PTML Model for Proteome Mining of B-Cell Epitopes and Theoretical-Experimental Study of Bm86 Protein Sequences from Colima, Mexico. J. Proteome Res. 2017, 16, 4093–4103. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Diaz, H.; Perez-Montoto, L.G.; Ubeira, F.M. Model for vaccine design by prediction of B-epitopes of IEDB given perturbations in peptide sequence, in vivo process, experimental techniques, and source or host organisms. J. Immunol. Res. 2014, 2014, 768515. [Google Scholar] [CrossRef] [PubMed]
- Kleandrova, V.V.; Rojas-Vargas, J.A.; Scotti, M.T.; Speck-Planche, A. PTML modeling for peptide discovery: In silico design of non-hemolytic peptides with antihypertensive activity. Mol. Divers. 2022, 26, 2523–2534. [Google Scholar] [CrossRef]
- Vazquez-Prieto, S.; Paniagua, E.; Solana, H.; Ubeira, F.M.; Gonzalez-Diaz, H. A study of the Immune Epitope Database for some fungi species using network topological indices. Mol. Divers. 2017, 21, 713–718. [Google Scholar] [CrossRef]
- Tenorio-Borroto, E.; Castanedo, N.; Garcia-Mera, X.; Rivadeneira, K.; Vazquez Chagoyan, J.C.; Barbabosa Pliego, A.; Munteanu, C.R.; Gonzalez-Diaz, H. Perturbation Theory Machine Learning Modeling of Immunotoxicity for Drugs Targeting Inflammatory Cytokines and Study of the Antimicrobial G1 Using Cytometric Bead Arrays. Chem. Res. Toxicol. 2019, 32, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Tenorio-Borroto, E.; Garcia-Mera, X.; Penuelas-Rivas, C.G.; Vasquez-Chagoyan, J.C.; Prado-Prado, F.J.; Castanedo, N.; Gonzalez-Diaz, H. Entropy model for multiplex drug-target interaction endpoints of drug immunotoxicity. Curr. Top. Med. Chem. 2013, 13, 1636–1649. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Andrade, A.; Lopez-Cortes, A.; Jaramillo-Koupermann, G.; Gonzalez-Diaz, H.; Pazos, A.; Munteanu, C.R.; Perez-Castillo, Y.; Tejera, E. A Multi-Objective Approach for Anti-Osteosarcoma Cancer Agents Discovery through Drug Repurposing. Pharmaceuticals 2020, 13, 409. [Google Scholar] [CrossRef] [PubMed]
- Bediaga, H.; Arrasate, S.; Gonzalez-Diaz, H. PTML Combinatorial Model of ChEMBL Compounds Assays for Multiple Types of Cancer. ACS Comb. Sci. 2018, 20, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Casanola-Martin, G.M.; Le-Thi-Thu, H.; Perez-Gimenez, F.; Marrero-Ponce, Y.; Merino-Sanjuan, M.; Abad, C.; Gonzalez-Diaz, H. Multi-output model with Box-Jenkins operators of linear indices to predict multi-target inhibitors of ubiquitin-proteasome pathway. Mol. Divers. 2015, 19, 347–356. [Google Scholar] [CrossRef]
- Cabrera-Andrade, A.; Lopez-Cortes, A.; Munteanu, C.R.; Pazos, A.; Perez-Castillo, Y.; Tejera, E.; Arrasate, S.; Gonzalez-Diaz, H. Perturbation-Theory Machine Learning (PTML) Multilabel Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma Compounds. ACS Omega 2020, 5, 27211–27220. [Google Scholar] [CrossRef]
- Cabrera-Andrade, A.; Lopez-Cortes, A.; Jaramillo-Koupermann, G.; Paz, Y.M.C.; Perez-Castillo, Y.; Munteanu, C.R.; Gonzalez-Diaz, H.; Pazos, A.; Tejera, E. Gene Prioritization through Consensus Strategy, Enrichment Methodologies Analysis, and Networking for Osteosarcoma Pathogenesis. Int. J. Mol. Sci. 2020, 21, 1053. [Google Scholar] [CrossRef] [PubMed]
- Kleandrova, V.V.; Speck-Planche, A. PTML Modeling for Pancreatic Cancer Research: In Silico Design of Simultaneous Multi-Protein and Multi-Cell Inhibitors. Biomedicines 2022, 10, 491. [Google Scholar] [CrossRef]
- Speck-Planche, A.; Cordeiro, M.N.D.S. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med. Chem. Res. 2017, 26, 2345–2356. [Google Scholar] [CrossRef]
- Santiago, C.; Ortega-Tenezaca, B.; Barbolla, I.; Fundora-Ortiz, B.; Arrasate, S.; Dea-Ayuela, M.A.; Gonzalez-Diaz, H.; Sotomayor, N.; Lete, E. Prediction of Antileishmanial Compounds: General Model, Preparation, and Evaluation of 2-Acylpyrrole Derivatives. J. Chem. Inf. Model. 2022, 62, 3928–3940. [Google Scholar] [CrossRef] [PubMed]
- Barbolla, I.; Hernandez-Suarez, L.; Quevedo-Tumailli, V.; Nocedo-Mena, D.; Arrasate, S.; Dea-Ayuela, M.A.; Gonzalez-Diaz, H.; Sotomayor, N.; Lete, E. Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents. Eur. J. Med. Chem. 2021, 220, 113458. [Google Scholar] [CrossRef] [PubMed]
- Dieguez-Santana, K.; Casanola-Martin, G.M.; Torres, R.; Rasulev, B.; Green, J.R.; Gonzalez-Diaz, H. Machine Learning Study of Metabolic Networks vs. ChEMBL Data of Antibacterial Compounds. Mol. Pharm. 2022, 19, 2151–2163. [Google Scholar] [CrossRef]
- Nocedo-Mena, D.; Cornelio, C.; Camacho-Corona, M.D.R.; Garza-Gonzalez, E.; Waksman de Torres, N.; Arrasate, S.; Sotomayor, N.; Lete, E.; Gonzalez-Diaz, H. Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure Information with Microorganism Metabolic Networks. J. Chem. Inf. Model. 2019, 59, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Tenezaca, B.; Gonzalez-Diaz, H. IFPTML mapping of nanoparticle antibacterial activity vs. pathogen metabolic networks. Nanoscale 2021, 13, 1318–1330. [Google Scholar] [CrossRef]
- Vasquez-Dominguez, E.; Armijos-Jaramillo, V.D.; Tejera, E.; Gonzalez-Diaz, H. Multioutput Perturbation-Theory Machine Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds. Mol. Pharm. 2019, 16, 4200–4212. [Google Scholar] [CrossRef] [PubMed]
- Speck-Planche, A.; Kleandrova, V.V. Multi-Condition QSAR Model for the Virtual Design of Chemicals with Dual Pan-Antiviral and Anti-Cytokine Storm Profiles. ACS Omega 2022, 7, 32119–32130. [Google Scholar] [CrossRef] [PubMed]
- Kleandrova, V.V.; Speck-Planche, A. The QSAR Paradigm in Fragment-Based Drug Discovery: From the Virtual Generation of Target Inhibitors to Multi-Scale Modeling. Mini Rev. Med. Chem. 2020, 20, 1357–1374. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.; Wrede, P. Artificial neural networks for computer-based molecular design. Prog. Biophys. Mol. Biol. 1998, 70, 175–222. [Google Scholar] [CrossRef] [PubMed]
- Manallack, D.T.; Livingstone, D.J.; A-Razzak, M.; Glen, R.C. Neural Networks and Expert Systems in Molecular Design. In Advanced Computer-Assisted Techniques in Drug Discovery; van de Waterbeemd, H., Ed.; Methods and Principles in Medicinal Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 1994; pp. 293–331. [Google Scholar]
- Guha, R.; Velegol, D. Harnessing Shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties. J. Cheminform. 2023, 15, 54. [Google Scholar] [CrossRef]
- van Tilborg, D.; Alenicheva, A.; Grisoni, F. Exposing the Limitations of Molecular Machine Learning with Activity Cliffs. J. Chem. Inf. Model. 2022, 62, 5938–5951. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, J. Handbook of Chemoinformatics; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Kleandrova, V.V.; Cordeiro, M.N.D.S.; Speck-Planche, A. Perturbation Theory Machine Learning Model for Phenotypic Early Antineoplastic Drug Discovery: Design of Virtual Anti-Lung-Cancer Agents. Appl. Sci. 2024, 14, 9344. [Google Scholar] [CrossRef]
- Kleandrova, V.V.; Cordeiro, M.; Speck-Planche, A. Perturbation-theory machine learning for mood disorders: Virtual design of dual inhibitors of NET and SERT proteins. BMC Chem. 2025, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lin, H.; Lin, H. Global Sensitivity Analysis. In Encyclopedia of GIS; Shekhar, S., Xiong, H., Eds.; Springer: Boston, MA, USA, 2008; pp. 408–409. [Google Scholar]
- Estrada, E. Spectral moments of the edge adjacency matrix in molecular graphs. 1. Definition and applications for the prediction of physical properties of alkanes. J. Chem. Inf. Comput. Sci. 1996, 36, 844–849. [Google Scholar] [CrossRef]
- Estrada, E. Spectral moments of the edge adjacency matrix in molecular graphs. 2. Molecules containing heteroatoms and QSAR applications. J. Chem. Inf. Comput. Sci. 1997, 37, 320–328. [Google Scholar] [CrossRef]
- Estrada, E. Spectral moments of the edge adjacency matrix in molecular graphs. 3. Molecules containing cycles. J. Chem. Inf. Comput. Sci. 1998, 38, 23–27. [Google Scholar] [CrossRef]
- Estrada, E. How the parts organize in the whole? A top-down view of molecular descriptors and properties for QSAR and drug design. Mini Rev. Med. Chem. 2008, 8, 213–221. [Google Scholar] [CrossRef]
- Estrada, E.; Patlewicz, G.; Gutierrez, Y. From knowledge generation to knowledge archive. A general strategy using TOPS-MODE with DEREK to formulate new alerts for skin sensitization. J. Chem. Inf. Comput. Sci. 2004, 44, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Estrada, E.; Molina, E. Automatic extraction of structural alerts for predicting chromosome aberrations of organic compounds. J. Mol. Graph. Model. 2006, 25, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Estrada, E. Edge adjacency relationship and a novel topological index related to molecular volume. J. Chem. Inf. Comput. Sci. 1995, 35, 31–33. [Google Scholar] [CrossRef]
- Estrada, E. Edge adjacency relationships in molecular graphs containing heteroatoms: A new topological index related to molar volume. J. Chem. Inf. Comput. Sci. 1995, 35, 701–707. [Google Scholar] [CrossRef]
- Estrada, E.; Rodríguez, L. Edge-Connectivity Indices in QSPR/QSAR Studies. 1. Comparison to Other Topological Indices in QSPR Studies. J. Chem. Inf. Comput. Sci. 1999, 39, 1037–1041. [Google Scholar] [CrossRef]
- Estrada, E. Edge-Connectivity Indices in QSPR/QSAR Studies. 2. Accounting for Long-Range Bond Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 1042–1048. [Google Scholar] [CrossRef]
- Estrada, E.; Guevara, N.; Gutman, I. Extension of Edge Connectivity Index. Relationships to Line Graph Indices and QSPR Applications. J. Chem. Inf. Comput. Sci. 1998, 38, 428–431. [Google Scholar] [CrossRef]
- Estrada, E. Physicochemical Interpretation of Molecular Connectivity Indices. J. Phys. Chem. A 2002, 106, 9085–9091. [Google Scholar] [CrossRef]
- Kier, L.B.; Murray, W.J.; Hall, L.H. Molecular connectivity. 4. Relationships to biological activities. J. Med. Chem. 1975, 18, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Kier, L.B.; Hall, L.H. Molecular connectivity VII: Specific treatment of heteroatoms. J. Pharm. Sci. 1976, 65, 1806–1809. [Google Scholar] [CrossRef]
- Hall, L.H.; Kier, L.B. Structure-activity studies using valence molecular connectivity. J. Pharm. Sci. 1977, 66, 642–644. [Google Scholar] [CrossRef]
- Kier, L.B.; Hall, L.H. Derivation and significance of valence molecular connectivity. J. Pharm. Sci. 1981, 70, 583–589. [Google Scholar] [CrossRef]
- Kier, L.B.; Hall, L.H. Intermolecular accessibility: The meaning of molecular connectivity. J. Chem. Inf. Comput. Sci. 2000, 40, 792–795. [Google Scholar] [CrossRef]
- Kier, L.B.; Hall, L.H. Molecular connectivity: Intermolecular accessibility and encounter simulation. J. Mol. Graph. Model. 2001, 20, 76–83. [Google Scholar] [CrossRef]
- Kier, L.B. Shape Indexes of Orders One and Three from Molecular Graphs. Quant. Struct.-Act. Relat. 1986, 5, 1–7. [Google Scholar] [CrossRef]
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Felix, E.; Magarinos, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef] [PubMed]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef] [PubMed]
- Overington, J. ChEMBL. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A. Warr. J. Comput. Aided Mol. Des. 2009, 23, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Hersey, A.; Chambers, J.; Bellis, L.; Patricia Bento, A.; Gaulton, A.; Overington, J.P. Chemical databases: Curation or integration by user-defined equivalence? Drug Discov Today Technol. 2015, 14, 17–24. [Google Scholar] [CrossRef]
- Papadatos, G.; Davies, M.; Dedman, N.; Chambers, J.; Gaulton, A.; Siddle, J.; Koks, R.; Irvine, S.A.; Pettersson, J.; Goncharoff, N.; et al. SureChEMBL: A large-scale, chemically annotated patent document database. Nucleic Acids Res. 2016, 44, D1220–D1228. [Google Scholar] [CrossRef]
- Mauri, A. alvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints. In Ecotoxicological QSARs; Roy, K., Ed.; Springer: New York, NY, USA, 2020; pp. 801–820. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Blasco, B.; Jang, S.; Terauchi, H.; Kobayashi, N.; Suzuki, S.; Akao, Y.; Ochida, A.; Morishita, N.; Takagi, T.; Nagamiya, H.; et al. High-throughput screening of small-molecules libraries identified antibacterials against clinically relevant multidrug-resistant A. baumannii and K. pneumoniae. eBioMedicine 2024, 102, 105073. [Google Scholar] [CrossRef] [PubMed]
- Estrada, E.; Gutiérrez, Y. MODESLAB, v1.5. Santiago de Compostela, Spain. 2004. Available online: https://insilicomoleculardesign.com/modeslab/ (accessed on 28 January 2025).
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; WILEY-VCH Verlag GmbH: Weinheim, Germany; New York, NY, USA; Chichester, UK; Brisbane, Australia; Singapore; Toronto, ON, Canada, 2000. [Google Scholar]
- Todeschini, R.; Consonni, V. (Eds.) Molecular Descriptors for Chemoinformatics; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; Volumes I and II. [Google Scholar]
- Platts, J.A.; Abraham, M.H.; Butina, D.; Hersey, A. Estimation of molecular linear free energy relationship descriptors by a group contribution approach. 2. Prediction of partition coefficients. J. Chem. Inf. Comput. Sci. 2000, 40, 71–80. [Google Scholar] [CrossRef]
- Platts, J.A.; Butina, D.; Abraham, M.H.; Hersey, A. Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf. Comput. Sci. 1999, 39, 835–845. [Google Scholar] [CrossRef]
- Abraham, M.H. Scales of solute hydrogen-bonding: Their application to physicochemical and biochemical processes. Chem. Soc. Rev. 1993, 22, 73–83. [Google Scholar] [CrossRef]
- Abraham, M.H.; Fuchs, R. Correlation and prediction of gas–liquid partition coefficients in hexadecane and olive oil. J. Chem. Soc., Perkin Trans. 2 1988, 523–527. [Google Scholar] [CrossRef]
- Baskin, I.I.; Skvortsova, M.I.; Stankevich, I.V.; Zefirov, N.S. On the basis of invariants of labeled molecular graphs. J. Chem. Inf. Comput. Sci. 1995, 35, 527–531. [Google Scholar] [CrossRef]
- Estrada, E.; Molina, E.; Perdomo-Lopez, I. Can 3D structural parameters be predicted from 2D (topological) molecular descriptors? J. Chem. Inf. Comput. Sci. 2001, 41, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Urias, R.W.; Barigye, S.J.; Marrero-Ponce, Y.; Garcia-Jacas, C.R.; Valdes-Martini, J.R.; Perez-Gimenez, F. IMMAN: Free software for information theory-based chemometric analysis. Mol. Divers. 2015, 19, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Stahura, F.L.; Godden, J.W.; Bajorath, J. Differential Shannon entropy analysis identifies molecular property descriptors that predict aqueous solubility of synthetic compounds with high accuracy in binary QSAR calculations. J. Chem. Inf. Comput. Sci. 2002, 42, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific Computing, 1st ed.; Cambridge University Press: New York, NY, USA, 1988. [Google Scholar]
- TIBCO-Software-Inc. STATISTICA, version 13.5.0.17, Data Analysis Software System; Palo Alto: California, CA, USA, 2018. [Google Scholar]
- Chicco, D.; Jurman, G. The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. BioData Min. 2023, 16, 4. [Google Scholar] [CrossRef] [PubMed]
Code a,b | Symbology | Definition |
---|---|---|
DGTI01 | D[SM(Psa)1]bs | Multi-label graph-theoretical index based on the bond spectral moment of order 1 weighted by the atomic polar surface area. |
DGTI02 | D[SM(Psa)5]bs | Multi-label graph-theoretical index based on the bond spectral moment of order 5 weighted by the atomic polar surface area. |
DGTI03 | D[SM(Mol)1]bs | Multi-label graph-theoretical index based on the bond spectral moment of order 1 weighted by the atomic molar refractivity. |
DGTI04 | D[X(C)3]bs | Multi-label graph-theoretical index based on atom connectivity of order 3 involving only cluster subgraphs. |
DGTI05 | D[e(Ch)3]bs | Multi-label graph-theoretical index based on bond connectivity of order 3 involving only cycle (ring) subgraphs. |
DGTI06 | D[e(Ch)4]bs | Multi-label graph-theoretical index based on bond connectivity of order 4 involving only cycle (ring) subgraphs. |
DGTI07 | D[e(Ch)5]bs | Multi-label graph-theoretical index based on bond connectivity of order 5 involving only cycle (ring) subgraphs. |
DGTI08 | D[e(C)6]bs | Multi-label graph-theoretical index based on bond connectivity of order 6 involving only cluster subgraphs. |
DGTI09 | D[e(Ch)6]bs | Multi-label graph-theoretical index based on bond connectivity of order 6 involving only cycle (ring) subgraphs. |
DGTI10 | D[K(Alpha)3]bs | Multi-label graph-theoretical index of order 3 based on molecular shape involving only path subgraphs. |
DGTI11 | D[NSM(Std)2]bs | Multi-label normalized graph-theoretical index based on the bond spectral moment of order 2 weighted by the standard bond distance. |
DGTI12 | D[NSM(Dip)7]bs | Multi-label normalized graph-theoretical index based on the bond spectral moment of order 7 weighted by the bond dipole moment. |
DGTI13 | D[NSM(Hyd)1]bs | Multi-label normalized graph-theoretical index based on the bond spectral moment of order 1 weighted by the atomic hydrophobicity. |
DGTI14 | D[NSM(Hyd)6]bs | Multi-label normalized graph-theoretical index based on the bond spectral moment of order 6 weighted by the atomic hydrophobicity. |
DGTI15 | D[NSM(Mol)2]bs | Multi-label normalized graph-theoretical index based on the bond spectral moment of order 2 weighted by the atomic molar refractivity. |
DGTI16 | D[NSM(Van)2]bs | Multi-label normalized graph-theoretical index based on the bond spectral moment of order 2 weighted by the van der Waals radius. |
DGTI17 | D[NSM(Ato)4]bs | Multi-label normalized graph-theoretical index based on the bond spectral moment of order 4 weighted by the atomic weight. |
DGTI18 | D[NSM(logL16)1]bs | Multi-label normalized graph-theoretical index based on the bond spectral moment of order 1 weighted by the atomic contribution to the hexadecane/gas phase partition coefficient. |
DGTI19 | D[NXv(P)2]bs | Multi-label normalized graph-theoretical index based on valence atom connectivity of order 2 involving only path subgraphs. |
DGTI20 | D[NXv(Ch)6]bs | Multi-label normalized graph-theoretical index based on valence atom connectivity of order 6 involving only cycle (ring) subgraphs. |
DGTI21 | D[Ne(P)1]bs | Multi-label normalized graph-theoretical index based on bond connectivity of order 1 involving only path subgraphs. |
SYMBOLS a | Training Set | Test Set |
---|---|---|
NActive | 3722 | 1232 |
CCActive | 3137 | 980 |
Sn | 84.28% | 79.55% |
NInactive | 5016 | 1673 |
CCInactive | 4554 | 1417 |
Sp | 90.79% | 84.70% |
nMCC | 0.877 | 0.821 |
Code a | ARITHMETIC MEANS b | Propensity c | |
---|---|---|---|
Active | Inactive | ||
DGTI01 | 3.0465 × 10−2 | −2.6581 × 10−1 | Increase |
DGTI02 | 1.0490 × 10−2 | −1.0355 × 10−1 | Increase |
DGTI03 | 3.9720 × 10−2 | −3.6811 × 10−1 | Increase |
DGTI04 | 4.7883 × 10−2 | −3.5375 × 10−1 | Increase |
DGTI05 | 3.5900 × 10−2 | −2.1759 × 10−1 | Increase |
DGTI06 | 1.5332 × 10−2 | −3.4821 × 10−2 | Increase |
DGTI07 | 1.6622 × 10−2 | −6.0985 × 10−2 | Increase |
DGTI08 | 3.0394 × 10−2 | −1.4827 × 10−1 | Increase |
DGTI09 | 1.1054 × 10−7 | −8.2182 × 10−2 | Increase |
DGTI10 | 2.0196 × 10−2 | −1.6413 × 10−1 | Increase |
DGTI11 | 4.7825 × 10−2 | −2.8640 × 10−1 | Increase |
DGTI12 | 2.4487 × 10−2 | −4.5096 × 10−2 | Increase |
DGTI13 | −2.3486 × 10−2 | 1.4339 × 10−1 | Decrease |
DGTI14 | 2.4933 × 10−2 | −1.4037 × 10−1 | Increase |
DGTI15 | −9.2336 × 10−3 | 1.2918 × 10−1 | Decrease |
DGTI16 | 1.8411 × 10−2 | −8.7712 × 10−2 | Increase |
DGTI17 | 7.1753 × 10−3 | 6.9784 × 10−2 | Decrease |
DGTI18 | −1.6442 × 10−2 | 2.2357 × 10−1 | Decrease |
DGTI19 | 2.0916 × 10−2 | −9.4055 × 10−3 | Increase |
DGTI20 | −3.1756 × 10−3 | 5.0729 × 10−2 | Decrease |
DGTI21 | −3.0244 × 10−2 | 2.5218 × 10−1 | Decrease |
PREDICTION RESULTS a | |||||
---|---|---|---|---|---|
ID | S. aureus Strains (bs) | ProbAct | ID | S. aureus Strains (bs) | ProbAct |
MS-ASP-01 | S. aureus (ATCC 13709) | 85.65% | MS-ASP-03 | S. aureus (ATCC 13709) | 77.52% |
MS-ASP-01 | S. aureus (ATCC 25923) | 63.27% | MS-ASP-03 | S. aureus (ATCC 25923) | 46.48% |
MS-ASP-01 | S. aureus (ATCC 29213) | 86.16% | MS-ASP-03 | S. aureus (ATCC 29213) | 77.05% |
MS-ASP-01 | S. aureus (ATCC 33591) | 87.34% | MS-ASP-03 | S. aureus (ATCC 33591) | 76.69% |
MS-ASP-01 | S. aureus (ATCC 33592) | 83.73% | MS-ASP-03 | S. aureus (ATCC 33592) | 79.72% |
MS-ASP-01 | S. aureus (ATCC 43300) | 86.41% | MS-ASP-03 | S. aureus (ATCC 43300) | 76.44% |
MS-ASP-01 | S. aureus (ATCC 700699) | 86.27% | MS-ASP-03 | S. aureus (ATCC 700699) | 78.84% |
MS-ASP-01 | S. aureus (MDR) | 84.79% | MS-ASP-03 | S. aureus (MDR) | 75.52% |
MS-ASP-01 | S. aureus (Methicillin-Resistant) | 87.47% | MS-ASP-03 | S. aureus (Methicillin-Resistant) | 83.15% |
MS-ASP-01 | S. aureus (Methicillin-Susceptible) | 87.90% | MS-ASP-03 | S. aureus (Methicillin-Susceptible) | 85.56% |
MS-ASP-01 | S. aureus (N315) | 44.73% | MS-ASP-03 | S. aureus (N315) | 43.31% |
MS-ASP-01 | S. aureus (RN4220) | 83.14% | MS-ASP-03 | S. aureus (RN4220) | 79.88% |
MS-ASP-01 | S. aureus (USA300) | 78.13% | MS-ASP-03 | S. aureus (USA300) | 62.99% |
MS-ASP-02 | S. aureus (ATCC 13709) | 72.88% | MS-ASP-04 | S. aureus (ATCC 13709) | 78.38% |
MS-ASP-02 | S. aureus (ATCC 25923) | 38.92% | MS-ASP-04 | S. aureus (ATCC 25923) | 60.93% |
MS-ASP-02 | S. aureus (ATCC 29213) | 52.96% | MS-ASP-04 | S. aureus (ATCC 29213) | 83.35% |
MS-ASP-02 | S. aureus (ATCC 33591) | 62.78% | MS-ASP-04 | S. aureus (ATCC 33591) | 82.33% |
MS-ASP-02 | S. aureus (ATCC 33592) | 79.41% | MS-ASP-04 | S. aureus (ATCC 33592) | 84.08% |
MS-ASP-02 | S. aureus (ATCC 43300) | 51.29% | MS-ASP-04 | S. aureus (ATCC 43300) | 81.72% |
MS-ASP-02 | S. aureus (ATCC 700699) | 66.96% | MS-ASP-04 | S. aureus (ATCC 700699) | 86.26% |
MS-ASP-02 | S. aureus (MDR) | 75.57% | MS-ASP-04 | S. aureus (MDR) | 85.97% |
MS-ASP-02 | S. aureus (Methicillin-Resistant) | 61.41% | MS-ASP-04 | S. aureus (Methicillin-Resistant) | 86.32% |
MS-ASP-02 | S. aureus (Methicillin-Susceptible) | 66.06% | MS-ASP-04 | S. aureus (Methicillin-Susceptible) | 86.69% |
MS-ASP-02 | S. aureus (N315) | 38.15% | MS-ASP-04 | S. aureus (N315) | 42.85% |
MS-ASP-02 | S. aureus (RN4220) | 66.40% | MS-ASP-04 | S. aureus (RN4220) | 75.70% |
MS-ASP-02 | S. aureus (USA300) | 44.35% | MS-ASP-04 | S. aureus (USA300) | 75.94% |
ID a | MW | nHDon | nHAcc | MlogP | AlogP | nAT | AMR | NRB | PSA |
---|---|---|---|---|---|---|---|---|---|
MS-ASP-01 | 448.82 | 2 | 10 | 2.3186 | 3.4572 | 43 | 103.52 | 4 | 109.70 |
MS-ASP-02 | 465.87 | 1 | 10 | 2.2549 | 4.0255 | 42 | 107.72 | 4 | 122.15 |
MS-ASP-03 | 466.47 | 1 | 10 | 2.6201 | 3.1361 | 51 | 113.7404 | 5 | 105.48 |
MS-ASP-04 | 443.43 | 1 | 11 | 2.5295 | 2.5752 | 48 | 104.348 | 5 | 109.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleandrova, V.V.; Cordeiro, M.N.D.S.; Speck-Planche, A. In Silico Approach for Antibacterial Discovery: PTML Modeling of Virtual Multi-Strain Inhibitors Against Staphylococcus aureus. Pharmaceuticals 2025, 18, 196. https://doi.org/10.3390/ph18020196
Kleandrova VV, Cordeiro MNDS, Speck-Planche A. In Silico Approach for Antibacterial Discovery: PTML Modeling of Virtual Multi-Strain Inhibitors Against Staphylococcus aureus. Pharmaceuticals. 2025; 18(2):196. https://doi.org/10.3390/ph18020196
Chicago/Turabian StyleKleandrova, Valeria V., M. Natália D. S. Cordeiro, and Alejandro Speck-Planche. 2025. "In Silico Approach for Antibacterial Discovery: PTML Modeling of Virtual Multi-Strain Inhibitors Against Staphylococcus aureus" Pharmaceuticals 18, no. 2: 196. https://doi.org/10.3390/ph18020196
APA StyleKleandrova, V. V., Cordeiro, M. N. D. S., & Speck-Planche, A. (2025). In Silico Approach for Antibacterial Discovery: PTML Modeling of Virtual Multi-Strain Inhibitors Against Staphylococcus aureus. Pharmaceuticals, 18(2), 196. https://doi.org/10.3390/ph18020196