The Role of Monoclonal Antibodies in the Management of Leukemia
Abstract
:1. Introduction
MAb | Target antigen | Isotype | Indication |
---|---|---|---|
XmAB 5574 | CD19 | Humanized and FC enhanced, mouse IgG1 | Preclinical development |
Rituximab | CD20 | Humanized mouse IgG1 | CLL, Follicular and diffuse large B cell NHL |
Ofatumumab | CD20 | Fully humanized IgG1 | Phase I-II CLL Follicular B cell NHL |
Ocrelizumab | CD20 | Humanized IgG1 | Phase II Follicular B cell NHL |
Veltuzumab | CD22 | Humanized and enhanced IgG1 | Phase I Follicular B cell NHL |
Epratuzumab | CD22 | Humanized IgG1 | Phase I-II Follicular B cell NHL and CLL |
Inotuzumab ozogamicin | CD22 | Humanized IgG4-N-acetyl-y1-calicheamiein | Preclinical development |
BI22 ha22 | CD22 | Murine, IgG1 (pseudomonas exotoxin) | Phase I-II HCL and B cell CLL |
Lumiliximab | CD23 | Cynomolgus macaque-human IgG1 | Phase I-II-III CLL |
Alemtuzumub | CD52 | Humanized rat IgG2b | CLL, T-PLL |
2. Anti-CD20 Antibodies
2.1. Chemo Immunotherapy for CLL
2.2. Rituximab in Acute Lymphoid Leukemia (ALL)
2.3. Rituximab in Burkitt’s Lymphoma
3. Ofatumumab
4. Other Anti CD20 MAbs
4.1. Anti-CD52 Antibodies
4.2. Anti-CD33 Antibodies
MAb | Target Antigen | Type | Indication |
---|---|---|---|
Gemtuzumab | CD33 | IgG4 Calicheeam immunotoxin (y1) | AML |
Lintuzumab | CD33 | IgG1 Humanized | Under investigation |
A3D8 Anti-CD44 | Adhesion glycoprotein | Murine IgG1 | Under investigation |
Anti-CD45 YTH2568 | Leukocyte protein tyrosine phosphatase | IgG1Radio-labeled 131I murine IgG1 | Under Investigation |
Anti CD 66 | CEA family granulocyte antigen | Radio labeled 188Re 90Y murine IgG1 | Under Investigation |
Anti CD 123 | CD123(IL-3Ra) | Murine (pseudomonas exotoxin A immunotoxin) | Under Investigation |
4.3. Anti-CD45 and -CD66 Antibodies
4.4. Anti-CD2 Antibody
4.5. Anti-CD3 Antibody
4.6. Anti-CD4 Antibody
4.7. Anti-CD25 Antibody
Moab | Target Antigen | Isotype | Approval | Indications |
---|---|---|---|---|
Siplizumab | CD2 | Human IgG1 | Phase I-II | CD 2 T cell leukemia/ lymphoma |
Muromonab-CD3 | CD3 | MURINE IgG2a | FDA approved | Renal, allograft rejection |
Zanolimumab | CD4 | Human IgG1 | Phase I-III | CTCL/Sezary syndrome, T-cell lymphoma |
Daclizumab | CD25 | Humanized IgG2a | Phase II-III | HTLV-1-associated ATL |
LMB-2 | CD25 | Murine anti-Tac(Fv) | Phase I-II CD25 | Lymphoproliferative malignancy |
Mik- β1 | CD122 | Humanized IgG1 | Phase I | T-LGL leukemia |
5. Conclusions
References
- Ehrlich, P. Croonian Lecture: On immunity with special reference to cell life. Proc. R. Soc. London 1899/1900, 66, 424–448. [Google Scholar]
- Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar]
- Cartron, G.; Dacheux, L.; Salles, G.; Solal-Celigny, P.; Bardos, P.; Colombat, P.; Watier, H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fc RIIIa gene. Blood 99, 2002, 754–758. [Google Scholar]
- Countouriotis, A.; Moore, T.B.; Sakamoto, K.M. Cell surface antigen and molecular targeting in the treatment of hematologic malignancies. Stem Cells 2002, 20, 215–229. [Google Scholar]
- Coiffier, B. Monoclonal antibody as therapy for malignant lymphomas. C.R. Biol. 2006, 329, 241–254. [Google Scholar]
- Maloney, D.G.; Smith, B.; Rose, A. Rituximab mechanism of action and resistance. Semin. Oncol. 2002, 29, 2–9. [Google Scholar]
- Byrd, J.C.; Murphy, T.; Howard, R.S.; Lucas, M.S.; Goodrich, A.; Park, K.; Pearson, M.; Waselenko, J.K.; Ling, G.; Grever, M.R.; Grillo-Lopez, A.J.; Rosenberg, J.; Kunkel, L.; Flinn, I.W. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J. Clin. Oncol. 2001, 19, 2153–2164. [Google Scholar]
- Glennie, M.J.; French, R.R.; Cragg, M.S.; Taylor, R.P. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 2007, 44, 3823–3837. [Google Scholar]
- Weng, W.K.; Levy, R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood 2001, 98, 1352–1357. [Google Scholar]
- Taylor, R.P.; Lindorfer, M.A. Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr. Opin. Immunol. 2008, 20, 444–449. [Google Scholar]
- Williams, M.E.; Densmore, J.J.; Pawluczkowycz, A.W.; Beum, P.V.; Kennedy, A.D.; Lindorfer, M.A.; Hamil, S.H.; Eggleton, J.C.; Taylor, R.P. Thrice-weekly low-dose rituximab decreases CD20 loss via shaving and promotes enhanced targeting in chronic lymphocytic leukemia. J. Immunol. 2006, 177, 7435–7443. [Google Scholar] [PubMed]
- Racila, E.; Link, B.K.; Weng, W.K.; Witzig, T.E.; Ansell, S.; Maurer, M.J.; Huang, J.; Dahle, C.; Halwani, A.; Levy, R.; Weiner, G.J. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin. Cancer Res. 2008, 14, 6697–6703. [Google Scholar]
- Perz, J.; Topaly, J.; Fruehauf, S.; Hensel, M.; Ho, A.D. Level of CD 20-expression and efficacy of rituximab treatment in patients with resistant or relapsing B-cell prolymphocytic leukemia and B-cell chronic lymphocytic leukemia. Leuk. Lymphoma 2002, 43, 149–151. [Google Scholar]
- Byrd, J.C.; Peterson, B.L.; Morrison, V.A.; Park, K.; Jacobson, R.; Hoke, E.; Vardiman, J.W.; Rai, K.; Schiffer, C.A.; Larson, R.A. Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B 9712 (CALGB 9712). Blood 2003, 101, 6–14. [Google Scholar]
- Amadori, S.; Suciu, S.; Willemze, R.; Mandelli, F.; Selleslag, D.; Stauder, R.; Ho, A.; Denzlinger, C.; Leone, G.; Fabris, P.; Muus, P.; Vignetti, M.; Hagemeijer, A.; Beeldens, F.; Anak, O.; De Witte, T. Sequential administration of gemtuzumab ozogamicin and conventional chemotherapy as first line therapy in elderly patients with acute myeloid leukemia: a phase II study (AML-15) of the EORTC and GIMEMA leukemia groups. Haematologica 2004, 89, 950–956. [Google Scholar] [PubMed]
- Hainsworth, J.D.; Litchy, S.; Barton, J.H.; Houston, G.L.; Hermann, R.C.; Bradof, J.E.; Greco, F.A. Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network. J. Clin. Oncol. 2003, 21, 1746–1751. [Google Scholar]
- Youssoufian, H.; Rowinsky, E.K.; Tonra, J.; Li, Y. Targeting FMS-related tyrosine kinase receptor 3 with the human immunoglobulin G1 monoclonal antibody IMC-EB10. Cancer 2010, 116, 1013–1017. [Google Scholar]
- Hainsworth, J.D. Prolonging remission with rituximab maintenance therapy. Semin. Oncol. 2004, 31 (Suppl. 2), 17–21. [Google Scholar]
- O’Brien, S.M.; Kantarjian, H.; Thomas, D.A.; Giles, F.J.; Freireich, E.J; Cortes, J.; Lerner, S.; Keating, M.J. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J. Clin. Oncol. 2001, 19, 2165–2170. [Google Scholar] [PubMed]
- O'Brien, S.; Wierda, W.G.; Faderl, S.; Ferrajoli, A.; Bueso-Ramos, C.E.; Browning, M.; Kantarjian, H.M. FCR-3 as frontline therapy for patients with chronic lymphocytic leukemia (CLL). Blood 2005, 106, 599a. [Google Scholar]
- Keating, M.J.; O’Brien, S.; Albitar, M.; Lerner, S.; Plunkett, W.; Giles, F.; Andreeff, M.; Cortes, J.; Faderl, S.; Thomas, D.; Koller, C.; Wierda, W.; Detry, M.A.; Lynn, A.; Kantarjian, H. Early results of Chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 2005, 23, 4079–4088. [Google Scholar] [PubMed]
- Tam, C.S.; O'Brien, S.; Wierda, W.; Kantarjian, H.; Wen, S.; Do, K.A.; Thomas, D.A.; Cortes, J.; Lerner, S.; Keating, M.J. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood 2008, 112, 975–980. [Google Scholar] [PubMed]
- Elter, T.; Borchmann, P.; Schulz, H.; Reiser, M.; Trelle, S.; Schnell, R.; Jensen, M.; Staib, P.; Schinköthe, T.; Stützer, H.; Rech, J.; Gramatzki, M.; Aulitzky, W.; Hasan, I.; Josting, A.; Hallek, M.; Engert, A. Fludarabine in combination with alemtuzumab is effective and feasible in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: results of a phase II trial. J. Clin. Oncol. 2005, 23, 7024–7031. [Google Scholar]
- Wierda, W.; O’Brien, S.; Wen, S.; Faderl, S.; Garcia-Manero, G.; Thomas, D.; Do, K.-A.; Cortes, J.; Koller, C.; Beran, M.; Ferrajoli, A.; Giles, F.; Lerner, S.; Albitar, M.; Kantarjian, H.; Keating, M.J. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J. Clin. Oncol. 2005, 23, 4070–4078. [Google Scholar]
- Hallek, M.; Fingerle-Rowson, G.; Fink, A.-M.; Busch, R.; Mayer, J.; Hensel, M.; Zinzano, P.-L.; Caligaris Cappio, F.; Seymour, J.-F.; Berrebi, A.; Jaeger, U.; Cazin, B.; Trneny, M. ; Westermann, A.; Wendtner, C.-M.; Eichhorst, B.; Staib, P.; Boettcher, S.; Ritgen, M.; Mendila, M.; Kneba, M.; Doehner, H.; Stilgenbauer, S.; Fischer, K. First-line treatment with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) improves overall survival (OS) in previously untreated patients (pts) with advanced chronic lymphocytic leukemia (CLL): results of a randomized phase III trial on behalf of an International Group of Investigators and the German CLL Study Group. Blood 2009, 114, 223, Abstract 535. [Google Scholar]
- Hagenbeek, A.; Gadeberg, O.; Johnson, P.; Pedersen, L.M.; Walewski, J.; Hellmann, A.; Link, B.K.; Robak, T.; Wojtukiewicz, M.; Pfreundschuh, M.; Kneba, M.; Engert, A.; Sonneveld, P.; Flensburg, M.; Petersen, J.; Losic, N.; Radford, J. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood 2008, 111, 5486–5495. [Google Scholar] [Green Version]
- Coiffier, B.; Lepretre, S; Pedersen, L.M.; Gadeberg, O.; Fredriksen, H.; van Oers, M.H.J.; Wooldridge, J.; Kloczko, J.; Holowiecki, J.; Hellmann, A.; Walewski, J.; Flensburg, M.; Petersen, J.; Robak, T. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1–2 study. Blood 2008, 111, 1094–1100. [Google Scholar] [PubMed]
- Bhat, S.A.; Czuczman, M.S. Novel antibodies in the treatment of non-Hodgkin's lymphoma. Neth. J. Med. 2009, 67, 309–310. [Google Scholar]
- Moreton, P.; Kennedy, B.; Lucas, G.; Leach, M.; Rassam, S.M.B.; Haynes, A.; Tighe, J.; Oscier, D.; Fegan, C.; Rawstron, A.; Hillmen, P. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J. Clin. Oncol. 2005, 23, 2971–2979. [Google Scholar]
- Leonard, J.P.; Coleman, M.; Ketas, J.C.; Chadburn, A.; Furman, R.; Schuster, M.W.; Feldman, E.J.; Ashe, M.; Schuster, S.J.; Wegener, W.A.; Hansen, H.J.; Ziccardi, H.; Eschenberg, M.; Gayko, U.; Fields, S.Z.; Cesano, A.; Goldenberg, D.M. Epratuzumab a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: Phase I/II clinical trial results. Clin. Cancer Res. 2004, 10, 5327–5334. [Google Scholar]
- Kaufman, M.; Rai, K.R. Alemtuzumab in the up-front setting. Ther. Clin. Risk Manag. 2008, 4, 459–464. [Google Scholar]
- Keating, M.J.; Flinn, I.; Jain, V.; Binet, J.-L.; Hillmen, P.; Byrd, J.; Albitar, M.; Brettman, L.; Santabarbara, P.; Wacker, B; Rai, K.R. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002, 99, 3554–3561. [Google Scholar] [PubMed]
- Zenz, T.; Mohr, J.; Edelmann, J.; Sarno, A.; Hoth, P.; Heuberger, M.; Helfrich, H.; Mertens, D.; Döhner, H.; Stilgenbauer, S. Treatment resistance in chronic lymphocytic leukemia: the role of the p53 pathway. Leuk. Lymphoma 2009, 50, 510–513. [Google Scholar]
- Hillmen, P.; Skotnicki, A.B.; Robak, T.; Jaksic, B.; Dmoszynska, A.; Wu, J.; Sirard, C.; Mayer, J. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 2007, 25, 5616–5623. [Google Scholar]
- Faderl, S.; Thomas, D.A.; O’Brien, S.; Garcia-Manero, G.; Kantarjian, H.M.; Giles, F.J.; Koller, C.; Ferrajoli, A.; Verstovsek, S.; Pro, B.; Andreeff, M.; Beran, M.; Cortes, J.; Wierda, W.; Tran, N.; Keating, M.J. Experience with alemtuzumab plus rituximab in patients with relapsed and refractory lymphoid malignancies. Blood 2003, 101, 3413–3415. [Google Scholar]
- Wendtner, C.M.; Ritgen, M.; Schweighofer, C.D.; Fingerle-Rowson, G.; Campe, H.; Jäger, G.; Eichhorst, B.; Busch, R.; Diem, H.; Engert, A.; Stilgenbauer, S.; Döhner, H.; Kneba, M.; Emmerich, B.; Hallek, M. German Cll Study Group (GCLLSG). Consolidation with alemtuzumab in patients with chronic lymphocytic leukemia (CLL) in first remission experience on safety and efficacy within a randomized multicenter phase III trial of the German CLL Study Group (GCLLSG). Leukemia 2004, 18, 1093–1101. [Google Scholar] [PubMed]
- Dombret, H.; Raffoux, E.; Gardin, C. New insights in the management of elderly patients with acute myeloid leukemia. Curr. Opin. Oncol. 2009, 21, 589–593. [Google Scholar]
- Larson, R.A.; Sievers, E.L.; Stadtmauer, .E.A; Löwenberg, B.; Estey, E.H.; Dombret, H.; Theobald, M.; Voliotis, D.; Bennett, H.M.; Richie, M.; Leopold, L.H.; Berger, M.S.; Sherman, M.L.; Loken, M.R.; van Dongen, J.J.M.; Bernstein, I.D.; Appelbaum, F.R. Mylotarg Study Group. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 2005, 104, 1442–1452. [Google Scholar] [PubMed]
- Clavio, M.; Vignolo, L.; Albarello, A.; Varaldo, R.; Pierri, I.; Catania, G.; Balocco, M.; Michelis, G.; Miglino, M.; Manna, A.; Balleari, E.; Carella, A.M.; Sessarego, M.; Van Lint, M.T.; Bacigalupo, A.; Gobbi, M. Adding low-dose gemtuzumab ozogamicin to fludarabine, Ara-C and idarubicin (MY-FLAI) may improve disease-free and overall survival in elderly patients with non-M3 acute myeloid leukemia: results of a prospective, pilot, multi-centre trial and comparison with a historical cohort of patients. Br. J. Haematol. 2007, 138, 186–195. [Google Scholar]
- Bross, P.F.; Beitz, J.; Chen, G.; Chen, X.H.; Duffy, E.; Kieffer, L.; Roy, S.; Sridhara, R.; Rahman, A.; Williams, G.; Pazdur, R. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 2001, 7, 1490–1496. [Google Scholar] [PubMed]
- Estey, E.H.; Giles, F.J.; Beran, M.; O’Brien, S.; Pierce, S.A.; Faderl, S.H.; Cortes, J.E.; Kantarjian, H.M. Experience with gemtuzumab ozogamycin (“mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 2002, 99, 4222–4224. [Google Scholar]
- Dinndorf, P.A.; Andrews, R.G.; Benjamin, D.; Ridgway, D.; Wolff, L.; Bernstein, I.D. Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 1986, 67, 1048–1053. [Google Scholar]
- Hamann, P.R.; Hinman, L.M.; Beyer, C.F.; Lindh, D.; Upeslacis, J.; Flowers, D.A.; Bernstein, I. An anti-CD33 antibody calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug. Chem. 2002, 13, 40–66. [Google Scholar]
- Raza, A.; Jurcic, J.G.; Roboz, G.J.; Maris, M.; Stephenson, J.J.; Wood, B.L.; Feldman, E.J.; Galil, N.; Grove, L.E.; Drachman, J.G.; Sievers, E.L. Complete remissions observed in acute myeloid leukemia following prolonged exposure to lintuzumab: a phase 1 trial. Leuk. Lymphoma 2009, 50, 1336–1344. [Google Scholar] [PubMed]
- Feldman, E.J.; Brandwein, J.; Stone, R.; Kalaycio, M.; Moore, J.; O’Connor, J.; Wedel, N.; Roboz, G.J.; Miller, C.; Chopra, R.; Jurcic, J.C.; Brown, R.; Ehmann, W.C.; Schulman, P.; Frankel, S.R.; De Angelo, D.; Scheinberg, D. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J. Clin. Oncol. 2005, 23, 4110–4116. [Google Scholar] [PubMed]
- Burke, J.M.; Caron, P.C.; Papadopoulos, E.B.; Divgi, C.R.; Sgouros, G.; Panageas, K.S.; Finn, R.D.; Larson, S.M.; O’Reilly, J.; Scheinberg, D.A.; Jurcic, J.G. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced. Myeloid leukemia. Bone Marrow Transplant 2003, 32, 549–556. [Google Scholar]
- Jurcic, J.G.; Larson, S.M.; Sgouros, G.; McDevitt, M.R.; Finn, R.D.; Divgi, C.R.; Ballangrud, A.M.; Hamacher, K.A.; Ma, D.; Humm, J.L.; Brechbiel, M.W.; Molinet, R.; Scheinberg, D.A. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002, 100, 1233–1239. [Google Scholar]
- Maury, S.; Huguet, F.; Leguay, T.; Lacombe, F.; Maynadié, M.; Girard, S.; de Labarthe, A.; Kuhlein, E.; Raffoux, E.; Thomas, X.; Chevallier, P.; Buzyn, A.; Delannoy, A.; Chalandon, Y.; Vernant, J.-P.; Rousselot, P.; Macintyre, E.; Ifrah, N.; Donbret, H.; Béné, M.-C. Group for Research on Adult Acute Lymphoblastic Leukemia. Adverse prognostic significance of CD20 expression in adults with Philadelphia chromosome-negative B-cell precursor acute lymphoblastic leukemia. Haematologica 2010, 95, 324–328. [Google Scholar] [PubMed]
- Thomas, D.A.; O'Brien, S.; Jorgensen, J.L.; Cortes, J.; Faderl, S.; Garcia-Manero, G.; Verstovsek, S.; Koller, C.; Pierce, S.; Huh, Y.; Wierda, W.; Keating, M.J.; Kantarjian, H.M. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood 2009, 113, 6330–6337. [Google Scholar]
- Thomas, D.A.; O’Brien, S.; Cortes, J.; Giles, F.J.; Faderl, S.; Verstovsek, S.; Ferrajoli, A.; Koller, C.; Beran, M.; Pierce, S.; Ha, C.S.; Cabanillas, F.; Keating, M.J.; Kantarjian, H. Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood 2004, 104, 1624–1630. [Google Scholar]
- Thomas, D.A.; Faderl, S.; O'Brien, S.; Bueso-Ramos, C.; Cortes, J.; Garcia-Manero, G.; Giles, F.J.; Verstovsek, S.; Wierda, W.G.; Pierce, S.A.; Shan, J.; Brandt, M.; Hagemeister, F.B.; Keating, M.J.; Cabanillas, F.; Kantarjian, H. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer 2006, 106, 1569–1580. [Google Scholar]
- Adkins, D.; Ratanatharathorn, V.; Yang, H.; White, B. Safety profile and clinical outcomes in a phase I, placebo-controlled study of siplizumab in acute graft-versus-host disease. Transplantation 2009, 88, 198–202. [Google Scholar]
- Knop, S.; Hebart, H.; Gscheidle, H.; Holler, E.; Kolb, H.-J.; Niederwieser, D.; Einsele, H. OKT3 muromonab as second-line and subsequent treatment in recipients of stem cell allografts with steroid-resistant acute graft-versus-host disease. Bone Marrow Transplant 2005, 36, 831–837. [Google Scholar]
- Castillo, J.; Winer, E.; Quesenberry, P. Newer monoclonal antibodies for hematological malignancies. Exp. Hema. Mbol. 2008, 36, 755–768. [Google Scholar]
- Chen, J.; Zhang, M.; Ju, W.; Waldmann, T.A. Effective treatment of a murine model of adult T-cell leukemia using depsipeptide and its combination with unmodified daclizumab directed toward CD25. Blood 2009, 113, 1287–1293. [Google Scholar]
- Kreitman, R.J. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. Bio. Drugs 2009, 23, 1–13. [Google Scholar]
- Gregory, S.A.; Barr, P.M.; Nabhan, C.; Nukala, A.; Gallot, L.; Larsen, A.; Moll, M.Z.; Smith, S.E.; Gordon, L.I.; Evens, A.M. Incorporation of rituximab and liposomal doxorubicin into CODOX-m/IVAC for HIV-negative and HIV-positive adult patients (pts) with untreated Burkitt's lymphoma (BL): Preliminary results of a multicenter phase II study. J. Clin. Oncol. 2010, 28. No 15, Abstract 8033. [Google Scholar]
- Kimby, E.; Jurlander, J.; Geisler, C.; Hagberg, H.; Holte, H.; Lehtinen, T.; Ostenstad, B.; Hansen, M.; Osterborg, A.; Lindén, O.; Sundström, C. Nordic, Lymphoma. Long-term molecular remissions in patients with indolent lymphoma treated with rituximab as a single agent or in combination with interferon alpha-2a: A randomized phase II study from the Nordic Lymphoma Group. Leuk. Lymphoma 2008, 49, 102–112. [Google Scholar] [PubMed]
- Engert, A.; Gercheva, L.; Robak, T.; Pilipenko Galina, P.; Wu, J; Sirard, C.-A.; Elter, T. Improved progression-free survival (PFS) of alemtuzumab (Campath®), MabCampath®) plus fludarabine (Fludara®) versus fludarabine alone as second-line treatment of patients with B-cell chronic lymphocytic leukemia: preliminary results from a phase III randomized trial. Blood 2009, 114, 224, Abstract 537. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Al-Ameri, A.; Cherry, M.; Al-Kali, A.; Ferrajoli, A. The Role of Monoclonal Antibodies in the Management of Leukemia. Pharmaceuticals 2010, 3, 3258-3274. https://doi.org/10.3390/ph3103258
Al-Ameri A, Cherry M, Al-Kali A, Ferrajoli A. The Role of Monoclonal Antibodies in the Management of Leukemia. Pharmaceuticals. 2010; 3(10):3258-3274. https://doi.org/10.3390/ph3103258
Chicago/Turabian StyleAl-Ameri, Ali, Mohamad Cherry, Aref Al-Kali, and Alessandra Ferrajoli. 2010. "The Role of Monoclonal Antibodies in the Management of Leukemia" Pharmaceuticals 3, no. 10: 3258-3274. https://doi.org/10.3390/ph3103258
APA StyleAl-Ameri, A., Cherry, M., Al-Kali, A., & Ferrajoli, A. (2010). The Role of Monoclonal Antibodies in the Management of Leukemia. Pharmaceuticals, 3(10), 3258-3274. https://doi.org/10.3390/ph3103258