Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms
Abstract
:1. Introduction
2. Pharmacokinetic Factors
3. Pharmacodynamic Factors
3.1. Cannabis Withdrawal
3.2. Cannabinoid Efficacy and Intrinsic Activity
3.3. CB1 Receptor Desensitization and/or Down-Regulation
3.4. Acute vs. Chronic Cannabis Exposure
3.5. Constitutive CB1 Receptor Activity and Endogenous Inverse Agonists
3.6. Brainstem vs. Enteric Emetic Loci
3.7. Hot Bathing
4. Summary
Acknowledgements
References
- Allen, J.H.; de Moore, G.M.; Heddle, R.; Twartz, J.C. Cannabinoid hyperemesis: cyclical hyperemesis in association with chronic cannabis abuse. Gut 2004, 53, 1566–1570. [Google Scholar]
- Boeckxtaens, G.E. Cannabinoid hyperemesis with the unusual symptom of compulsive bathing. Ned. Tijdschr Geneeskd 2005, 149, 1970. [Google Scholar]
- Roche, E.; Foster, P.N. Cannabinoid hyperemesis: not just a problem in Adelaide Hills. Gut 2005, 54, 731. [Google Scholar]
- Roelofs, J.; Vorel, S.K.; Vorel-Havelkova, E.; Brombacher, P.J. Cannabinoid hyperemesis with the unusual symptom of compulsive bathing. Ned. Tijdschr Geneeskd 2005, 149, 1468–1471. [Google Scholar]
- Alfonso-Moreno, V.; Ojesa, F.; Moreno-Osset, E. Cannabinoid hyperemisis. Gastroenterol. Hepatol. 2006, 29, 434–435. [Google Scholar]
- Wallace, D.; Martin, A-L.; Park, B. Cannabinoid hyperemesis: marijuana puts patients in hot water. Australasian Psychiatry 2007, 15, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Budhraja, V.; Narang, T.; Azees, S. Cannabinoid hyperemesis syndrome:cyclic vomiting and compulsive vomiting, chronic cannabis use, and compulsive bathing. Pract. Gastroenterol. 2008, 32, 79–80. [Google Scholar]
- Chang, Y.H.; Windish, D.M. Cannabinoid hyperemesis relieved by compulsive bathing. Mayo Clin. Proc. 2009, 84, 76–78. [Google Scholar] [PubMed]
- Donnino, M.W.; Cocchi, M.N.; Miller, J.; Fisher, J. Cannabinoid hyperemesis: A case series. J. Em. Med. 2009. [Google Scholar]
- Sontineni, S.P.; Chaudhary, S.; Sontineni, V.; Lanspa, S.J. Cannabinoid hyperemesis syndrome: clinical diagnosis of an underrecognized manifestation of chronic cannabis use. World J. Gastroenterol. 2009, 15, 1264–1265. [Google Scholar]
- Watts, M. Cannabinoid hyperemesis presenting to a New Zealand hospital. N. Z. Med. J. 2009, 122, 116–118. [Google Scholar]
- Ochoa-Mangado, E.; Jimenez Gimenez, M.; Saldado Vadillo, E.; Madoz-Gurpide, A. Cyclical hyperemesis secondary to cannabis abuse. Gastroenterol. Hepatol. 2009, 32, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Co, M.; Batke, M.; Cappell, M.S. The cannabis hyperemesis syndrome characterized by persistent nausea and vomiting, abdominal pain, and compulsive bathing associated with chronic marijuana use: a report of eight cases in the United States. Dig. Dis. Sci. 2010. [Google Scholar]
- Sullivan, S. cannabinoid hyperemesis. Can. J. Gastrornterol. 2010, 24, 284–285. [Google Scholar]
- Abell, T.L.; Adams, K.A.; Boles, R.G.; Bousvaros, A.; Chong, S.K.F.; Fleisher, D.R.; Hasler, W.L.; Hyman, p.E.; Issenman, R.M.; Li, B.U.K.; Linder, S.L.; Mayer, E.A.; McCallum, R.W.; Olden, K.; Parkman, H.P.; Rudolph, C.D.; Tache, Y.; Tarbell, S.; Vakil, N. Cyclic vomiting syndrome in adults. Neurogastrointerol. Motil. 2008, 20, 269–284. [Google Scholar]
- Darmani, N.A. Antiemetic action of Δ9-tetrahydrocannabinoid and synthetic cannabinoids. In Biology of Marijuana: From Gene to Behavior; Onaivi, E.S., Ed.; Taylor and Francis Books Ltd.: London, UK, 2002; pp. 356–389. [Google Scholar]
- Darmani, N.A.; Ray, A.P. A re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem. Rev. 2009, 109, 3158–3199. [Google Scholar]
- Darmani, N.A. Delta (9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid antagonist/inverse agonist SR141716A. Neuropsychopharmacology 2001, 24, 198–203. [Google Scholar]
- Di Marzo, V. Endocannabinoids: synthesis and degradation. Rev. Physiol. Biochem. Pharmacol. 2008, 160, 1–24. [Google Scholar]
- Pacher, P.; Mukhopadhyay, P.; Mohanraj, R.; Godlewski, G.; Bátkai, S.; Kunos, G. Modulation of the endocannabinoid system in cardiovascular disease: therapeutic potential and limitations. Hypertension 2008, 52, 601–607. [Google Scholar]
- Panikashvili, D.; Mechoulam, R.; Beni, S.M.; Alexandrovich, A.; Shohami, D. CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J. Cereb. Blood Flow Metab. 2005, 25, 477–488. [Google Scholar]
- Watson, S.J.; Benson, J.A.; Joy, J.E. Marijuana and Medicine: assessing the science base: a summary of the 1999 Institute of Medicine Report. Arch. Gen. Psychiat. 2000, 57, 547–552. [Google Scholar]
- Kwiatkowska, M.; Parker, L.A.; Burton, P.; Mechoulam, R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology 2004, 174, 254–259. [Google Scholar]
- Del Mar Ramirez Fernandez, M.; De Boeck, G.; Wood, M.; Lopez-Rivadulla, M.; Samyn, N. Simultaneous analysis of THC and its metabolites in blood using liquid chromatography-tandem mass spectrometry. J. Chromator. Analyt. Technol. Biomed. Life Sci. 2008, 875, 465–470. [Google Scholar]
- Crowley, T.J.; Macdonald, M.J.; Whitmore, E.A.; Mikulich, S.K. Cannabis dependence, withdrawal, and reinforcing effects among adolescents with conduct symptoms and substance use disorders. Drug Alcohol Depend. 1998, 50, 27–37. [Google Scholar] [PubMed]
- Lichtman, A.H.; Wiley, J.L.; LaVecchia, K.L.; Neviaser, S.T.; Arthur, D.B.; Wilson, D.M.; Martin, B.R. Effects of SR141716A after acute or chronic cannabinoid administration in dogs. Eur. J. Pharmacol. 1998, 357, 139–148. [Google Scholar]
- Kenakin, T.P. A Pharmacology Primer, 3rd ed; Elsevier-Academin Press: San diego, CA, USA, 2009; pp. 21–59. [Google Scholar]
- Sugiura, T.; Waku, K. 2-arachidonoylglycerol and the cannabinoid receptors. Chem. Phys. Lipids. 2000, 108, 89–106. [Google Scholar]
- Roloff, A.M.; Thayer, S.A. Modulation of excitatory synaptic transmission by delta 9-tetrahydrocannabinol swithches from agonist to antagonist depending on the firing rate. Mol. Pharmacol. 2009, 75, 892–900. [Google Scholar]
- Schlicker, E.; Kathman, M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol.Sci. 2001, 22, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Nakazi, M.; Bauer, U.; Nickel, T.; Kathman, M.; Schlicker, E. Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn-Schmeideberg’s Arch. Pharmacol. 2000, 361, 19–24. [Google Scholar]
- Darmani, N.A.; Janoyan, J.J.; Kumar, N.; Crim, J.L. Behaviorally active doses of the CB1 receptor antagonist increase brain serotonin and dopamine levels and turnover. Pharmacol. Biochem. Behav. 2003, 75, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, J.; Heleyes, Z.; Than, M.; Jakab, B.; Pinter, E.; Szolcsanyi, J. Concentration-dependent dual effect of anandamide on sensory neuropeptide release from isolated rat trachea. Neurosci.Letters 2003, 336, 89–92. [Google Scholar]
- Sulcova, E.; Mechoulam, R.; Fride, E. Biphasic effects of anandamide. Pharmacol. Biochem. Behav. 1998, 59, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Darmani, N.A. delta-9-tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB1 receptors in the least shrew. Pharmacol. Biochem. Behav. 2001, 69, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Wickens, A.P.; Pertwee, R.G. Effect of D9-tetrahydrocannabinol on circling in rats induced by intranigral muscimol administration. Eur. J. Pharmacol. 1995, 282, 251–254. [Google Scholar]
- Turkanis, S.A.; Karler, R. Excitatory and depressant effects of delta-9-tetrahydrocannabinol and cannabidiol on cortical evoked responses in the conscious rat. Psychopharmacology 1981, 75, 294–298. [Google Scholar]
- Rodriguez de Fonseca, F.; Rubio, P.; Menzaghi, F.; Merlo-Pich, E.; Rivier, J.; Koob, G.F.; Navarro, M. Corticotropin-releasing factor (CRF) antagonist [D-Phe12, N1e21,38, CαMeLeu37] CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU-210 on defensive-withdrawal behavior in rats. J. Pharmacol. Exp. Ther. 1996, 276, 56–63. [Google Scholar] [PubMed]
- Lundberg, D.J.; Daniel, A.R.; Thayer, S.A. Δ9-Tetrahydrocannabinol-induced desensitization cannabinoid-mediated inhibition of synaptic transmission between hippocampal neurons in culture. Neuropharmacology 2005, 49, 1170–1177. [Google Scholar] [PubMed]
- Martin, B.R.; Sim-Selley, L.J.; Selley, D.E. Signalling pathways involved in the development of cannabinoid tolerance. Trends Pharmacol. Sci. 2004, 25, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Sim, L.J.; Hampson, R.E.; Deadwyler, S.A.; Childers, S.R. Effects of chronic treatment with delta-9-tetrahydrocannabinol on cannabinoid-stimulated [s-35]GTP-Gamma-S autoradiography in rat brain. J. Neurosci. 1996, 16, 8057–8066. [Google Scholar]
- Di Marzo, V. The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol. Res. 2009, 60, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bergman, J.; delatte, M.S.; Paronis, C.A.; Vemuri, K.; Thakur, G.A.; Makriyannis, A. Some effects of CB1 antagonists with inverse agonist and neutral biochemical properties. Physiol. Behav. 2008, 93, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Thomas, R.; Sterling, M.; Seiff, K.; Pahl, M.V.; Davila, J.; Wilson, A. Toxicity with intravenous injection of crude marijuana extract. Clin. Toxicol. 1981, 18, 353–366. [Google Scholar]
- Martin, B.R. The use of cannabinoids in patients with chronic illness. US Pharmacist. 2002, 27, 61–70. [Google Scholar]
- Frytak, S.; Moertel, C.G.; O’Fallen, J.R.; Rubib, J.; Creagen, E.T.; O’Connel, M.J.; Schutt, A.J.; Schwartan, N.W. Delta-9-tetrahydrocannabinol as an antiemetic for patients receiving chemotherapy: a comparison with prochorperazine and placebo. Ann. Intern. Med. 1979, 91, 825–830. [Google Scholar]
- Noyes, R.; Brunk, S.F.; Avery, D.H.; Carter, R. The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin. Pharmacol. 1975, 18, 84–89. [Google Scholar]
- Orr, L.E.; McKernan,, J.F. Antiemetic effect of Δ9-tetrahydrocannabinol in chemotherapy-associated nausea and vomiting as compared to placebo and compazine. J. Clin. pharmacol. Ther. 1980, 21, 76–80. [Google Scholar]
- Shannon, H.E.; Martin, W.R.; Silcox, D. Lack of antiemetic effects of Δ9-tetrahydrocannabinol in apomorphine-induced emesis in the dog. Life Sci. 1978, 23, 49–54. [Google Scholar]
- Berdyshev, E.V.; Boichot, E.; Germain, N.; Allain, N.; Anger, J.-P.; Lagente, V. Influence of fatty acid ethanolamides and Δ9-tetrahydrocannabinol on cytokine and arachidonate by mononuclear cells. Eur. J. Pharmacol. 1997, 330, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.A.; Burstein, S.H. Receptor mediation in cannabinoid stimulated arachidonic acid mobilization and anandamide synthesis. Life Sci. 1997, 60, 1563–1573. [Google Scholar]
- Darmani, N.A. The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by Δ9-tetrahydrocannabinol and other cannabinoids. J. Pharmacol. Exp. Therap. 2002, 300, 34–42. [Google Scholar]
- Darmani, N.A. Endocannabinoids and gastrointestinal function. In Endocannabinoids: The Brain and Body’s Marijuana and Beyond; Onaivi, E.S., Sigiura, T., Di Marzo, V., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 393–418. [Google Scholar]
- Chebolu, S.; Wang, Y.; Ray, A.P.; Darmani, N.A. Pranlukast prevents cysteinyl leukotriene-induced emesis in the least shrew (Cryptotis parva). Eur. J. Pharmacol. 2010, 628, 195–201. [Google Scholar]
- Nabemoto, M.; Mashimo, M.; Someya, A.; Nakamura, H.; Hirabayashi, T.; Fujino, H.; Kaneko, M.; Okuma, Y.; Saito, T.; Yamaguchi, N.; Murayama, T. Release of arachidonic acid by 2-arachidonoyl glycerol and HU210 in PC12 cells; roles of Src, phospholipase C and cytosolic phospholipase A2α. Eur. J. Pharmacol. 2008, 590, 1–11. [Google Scholar] [PubMed]
- Atack, J.R. Anxioselective compounds acting at the GABA(A) receptor benzodiazepine binding site. Curr.Drug Targets CNS Neurol. Disord. 2003, 2, 213–232. [Google Scholar]
- Newman-Tancredi, A.; Conte, C.; Chaput, C.; Spedding, M.; Millan, M.J. Inhibition of the constitutive activity of human 5-HT1A receptors by the inverse agonist, spiperone but not the neutral antagonist, WAY 100,635. Br. J. Pharmacol. 1997, 120, 737–739. [Google Scholar] [PubMed]
- Heimann, A.S.; Gomes, I.; Dale, C.S.; Pagano, R.L.; Gupta, A.; de Souza, L.L.; Luchessi, A.D.; Castro, L.M.; Giorgi, R.; Rioli, V.; Ferro, E.S.; Devi, L.A. Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc. Natl. Acad. Sci. USA 2007, 104, 20588–20593. [Google Scholar]
- Parker, L.A.; Mechoulam, R.; Schlievert, C.; Abbott, L.; Fudge, M.L.; Burton, P. Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea. Psychopharmacology 2003, 166, 156–162. [Google Scholar]
- Parker, L.A.; Limebeer, C.L.; Rock, E.M.; Litt, D.L.; Kwiatkowska, M.; Piomelli, D. The FAAH inhibitor URB-597 intereferes with cisplatin- and nicotine-induced vomiting in the Suncus murinus (house musk shrew). Physiol. Behav. 2009, 97, 121–124. [Google Scholar]
- Parker, L.A.; Limebeer, C.L. Conditioned gaping in rats: a selective measure of nausea. Auton. Neurosci. 2006, 129, 36–41. [Google Scholar] [PubMed]
- Pi-Sunyer, F.X.; Aronne, L.J.; Heshmati, H.M.; Devin, j.; Rosenstock, J. RIO-North America Study Group Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized control trial. J. Am. Med. Assoc. 2006, 295, 761–775. [Google Scholar]
- Van Gall, L.F.; Pfeiffer, E. New approaches for the management of patients with multiple cardiometabolic risk factors. J. Endocrinol. Investig. 2006, 29, 83–89. [Google Scholar]
- Darmani, N.A.; McClanahan, B.A.; Trinh, C.; Petrosino, S.; Valenti, M.; Di Marzo, V. Cisplatin increases 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. Neuropharmacology 2005, 49, 502–513. [Google Scholar]
- Izzo, A.A.; Sharkey, K.A. Cannabinoids and the gut:new developments and emerging concepts. Pharmacol. Therap. 2010, 126, 21–38. [Google Scholar] [CrossRef]
- Partosoedarso, E.R.; Abrahams, T.P.; Scullion, R.; Moerschbaecher, J.M.; Hornby, P.J. Cannabinoid 1 receptor in the dorsal vagal complex modulates lower esophageal sphincter relaxation in ferrets. J. Phsiol. 2003, 550, 149–158. [Google Scholar] [CrossRef]
- Krowicki, Z.K.; Moerschbacher, J.M.; Winsauer, P.J.; Digavalli, S.V.; Hornby, P.J. Delta9-Tetrahydrocannabinol inhibits gastric motility in the rat through cannabinoid CB1 receptors. Eur. J. Pharmacol. 1999, 371, 187–196. [Google Scholar]
- Darmani, N.A.; Johnson, J.C. Central and peripheral mechanisms contribute to the antiemetic actions of delta-9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis. Eur. J. Pharmacol. 2004, 288, 201–212. [Google Scholar]
- Lehmann, A.; Blackshaw, L.A.; Brandon, L.; Carlson, A.; Jensen, J.; Nygren, E.; Smid, S.D. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxation and reflux in dogs. Gastroenterology 2002, 123, 1129–1134. [Google Scholar]
- Benarroch, E.E. Thermoregulation: recent concepts and remaining questions. Neurology 2007, 69, 1293–1297. [Google Scholar]
- Moldrich, G.; Wenger, T. Localization of the CB1 cannabinoid receptor in the rat brain. Peptides 2000, 21, 1735–1742. [Google Scholar]
- Wiley, J.L.; Razdan, R.K.; Martin, B.R. Evaluation of the role of the arachidonic acid cascade in anandamide’s in vivo effects in mice. Life Sci. 2006, 80, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, M.S.; Kiyatkin, E.A. Behavioral and temperature effects of delta 9-tetrahydrocannabinol in human-relevant doses in rats. Brain Res. 2008, 1228, 145–160. [Google Scholar]
- Fennessy, M.R.; Taylor, D.A. The effect of delta-9-tetrahydrocannabinol on body temperature and brain amine concentrations in the rat at different ambient temperatures. Br. J. Pharmacol. 1977, 60, 65–71. [Google Scholar]
- Baker, M.; Cronin, M.; Mountjoy, D. Variability in skin temperature in the walking monkey. Am. J. Physiol. 1976, 230, 244–255. [Google Scholar]
- Bae, D.D.; Leon Brown, P.; Kiyatkin, E.A. Procedure of rectal temperature measurement affects brain, muscle, skin, and body temperatures and modulates the effects of intravenous cocaine. Brain Res. 1154, 61–70. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Darmani, N.A. Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms. Pharmaceuticals 2010, 3, 2163-2177. https://doi.org/10.3390/ph3072163
Darmani NA. Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms. Pharmaceuticals. 2010; 3(7):2163-2177. https://doi.org/10.3390/ph3072163
Chicago/Turabian StyleDarmani, Nissar A. 2010. "Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms" Pharmaceuticals 3, no. 7: 2163-2177. https://doi.org/10.3390/ph3072163
APA StyleDarmani, N. A. (2010). Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms. Pharmaceuticals, 3(7), 2163-2177. https://doi.org/10.3390/ph3072163