Nonsteroidal Anti-Inflammatory Drugs and the Kidney
Abstract
:1. Introduction
2. Physiology and Pathophysiology of COX Inhibition
3. COX and the Renin-Angiotensin System
4. COX-2 Inhibition and Sodium Retention
- -
- sodium depletion
- -
- renal artery stenosis
- -
- aortic coarctation
- -
- renal ablation
- -
- loop diuretics
- -
- Barter’s syndrome
- -
- congestive heart failure [55].
5. COX-2 and Renal Development
6. COX and Glomerular Diseases
7. COX and Diabetic Nephropathy
8. COX in Ureteral Obstruction and Lithium Nephropathy
9. NSAIDs and Blood Pressure
10. NSAIDs and Acute Renal Failure
11. NSAIDs and Risk for Chronic Kidney Disease
12. Future Developments
13. Conclusions
References
- Singh, G.; Triadafilopoulos, G. Epidemiology of NSAID induced gastrointestinal complications. J. Rheumatol. 1999, 56, 18–24. [Google Scholar]
- Gambaro, G.; Perazella, M.A. Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors. J. Intern. Med. 2003, 253, 643–652. [Google Scholar]
- Sandhu, G.K.; Heyneman, C.A. Nephrotoxic potential of selective cyclooxygenase-2 inhibitors. Ann. Pharmacother. 2004, 38, 700–704. [Google Scholar]
- Harris, R.C. COX-2 and the Kidney. J. Cardiovasc Pharmacol. 2006, 47, S37–S42. [Google Scholar]
- de Leval, X.; Hanson, J.; David, J.L.; Masereel, B.; Pirotte, B.; Dogné, J.M. New developments on thromboxane and prostacyclin modulators part II: prostacyclin modulators. Curr. Med. Chem. 2004, 11, 1243–1252. [Google Scholar]
- Weir, M.R. Renal effects of nonselective NSAIDs and coxibs. Cleve. Clin. J. Med. 2002, 69 Suppl. 1, SI-53–SI-58. [Google Scholar]
- Nantel, F.; Meadows, E.; Denis, D.; Connolly, B.; Metters, KM.; Giaid, A. Immunolocalization of cyclooxygenase-2 in the macula densa of human elderly. FEBS Lett. 1999, 457, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Schnermann, J.; Briggs, J.P. The macula densa is worth its salt. J. Clin. Invest. 1999, 104, 1007–1009. [Google Scholar]
- Harris, R.C. Cyclooxygenase-2 in the kidney. J. Am. Soc. Nephrol. 2000, 11, 2387–2394. [Google Scholar]
- Noroian, G.; Clive, D. Cyclo-oxygenase-2 inhibitors and the kidney: a case for caution. Drug Saf. 2002, 25, 165–172. [Google Scholar]
- Weir, M.R.; Froch, L. Weighing the renal effects of NSAIDs and COX-2 inhibitors. Clin. Dilemmas 2000, 1, 3–12. [Google Scholar]
- LeLorier, J.; Bombardier, C.; Burgess, E.; Moist, L.; Wright, N.; Cartier, P.; Huckell, V.; Hunt, R.; Nawar, T.; Tobe, S. Practical considerations for the use of nonsteroidal anti-inflammatory drugs and cyclo-oxygenase-2 inhibitors in hypertension and kidney disease. Can. J. Cardiol. 2002, 18, 1301–1308. [Google Scholar]
- Kömhoff, M.; Gröne, H.J.; Klein, T.; Seyberth, H.W.; Nüsing, R.M. Localization of cyclooxygenase-1 and -2 in adult and fetal human kidney: implication for renal function. Am. J. Physiol. 1997, 272, F460–F468. [Google Scholar]
- Carmichael, J.; Shankel, S.W. Effects of nonsteroidal anti-inflammatory drugs on prostaglandins and renal function. Am. J. Med. 1985, 78, 992–1000. [Google Scholar]
- Dilger, K.; Herrlinger, C.; Peters, J.; Seyberth, H.W.; Schweer, H.; Klotz, U. Effects of celecoxib and diclofenac on blood pressure, renal function, and vasoactive prostanoids in young and elderly subjects. J. Clin. Pharmacol. 2002, 42, 985–994. [Google Scholar] [PubMed]
- Schwartz, J.I.; Chan, C.C.; Mukhopadhyay, S.; McBride, K.J.; Jones, T.M.; Adcock, S.; Moritz, C.; Hedges, J.; Grasing, K.; Dobratz, D.; Cohen, R.A.; Davidson, M.H.; Bachmann, K.A.; Gertz, B.J. Cyclooxygenase-2 inhibition by rofecoxib reverses naturally occurring fever in humans. Clin. Pharmacol. Ther. 1999, 65, 653–660. [Google Scholar]
- Rossat, J.; Maillard, M.; Nussberger, J.; Brunner, H.R.; Burnier, M. Renal effects of selective cyclooxygenase-2 inhibition in normotensive salt-depleted subjects. Clin. Pharmacol. Ther. 1999, 66, 76–84. [Google Scholar]
- Patrignani, P.; Capone, M.L.; Tacconelli, S. Clinical pharmacology of etoricoxib: a novel selective COX2 inhibitor. Expert Opin. Pharmacother. 2003, 4, 265–384. [Google Scholar]
- Alsalameh, S.; Burian, M.; Mahr, G.; Woodcock, B.G.; Geisslinger, G. Review article: The pharmacological properties and clinical use of valdecoxib, a new cyclo-oxygenase-2-selective inhibitor. Aliment Pharmacol. Ther. 2003, 17, 489–501. [Google Scholar]
- Whelton, A.; Schulman, G.; Wallemark, C.; Drower, E.J.; Isakson, P.C.; Verburg, K.M.; Geis, G.S. Effects of celecoxib and naproxen on renal function in the elderly. Arch. Intern. Med. 2000, 160, 1465–1470. [Google Scholar]
- Swan, S.K.; Rudy, D.W.; Lasseter, K.C.; Ryan, C.F.; Buechel, K.L.; Lambrecht, L.J.; Pinto, M.B.; Dilzer, S.C.; Obrda, O.; Sundblad, K.J.; et al. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Ann. Intern. Med. 2000, 133, 1–9. [Google Scholar] [PubMed]
- Whelton, A.; Fort, J.G.; Puma, J.A.; Normandin, D.; Bello, A.E.; Verburg, K.M. SUCCESS-VI Study Group. Cyclooxygenase-2–specific inhibitors and cardiorenal function: a randomized, controlled trial of celecoxib and rofecoxib in older hypertensive osteoarthritis patients. Am. J. Ther. 2001, 8, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Whelton, A.; White, W.B.; Bello, A.E.; Puma, J.A.; Fort, J.G. SUCCESS-VII Investigators. Effects of celecoxib and rofecoxib on blood pressure and edema in patients>or = 65 years of age with systemic hypertension and osteoarthritis. Am. J. Cardiol. 2002, 90, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Brater, D.C. Effects of nonsteroidal anti-inflammatory drugs on renal function: focus on cyclooxygenase-2-selective inhibition. Am. J. Med. 1999, 107, 65S–70S. [Google Scholar]
- Turull, A.; Piera, C.; Queralt, J. Acute effects of the anti-inflammatory cyclooxygenase-2 selective inhibitor, flosulide, on renal plasma flow and glomerular filtration rate in rats. Inflammation 2001, 25, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Ginès, P.; Schrier, R.W. Renal failure in cirrhosis. N. Engl. J. Med. 2009, 361, 1279–1290. [Google Scholar]
- Bosch-Marcè, M.; Clària, J.; Titos, E.; Masferrer, J.L.; Altuna, R.; Poo, J.L.; Jiménez, W.; Arroyo, V.; Rivera, F.; Rodés, J. Selective inhibition of cyclooxygenase 2 spares renal function and prostaglandin synthesis in cirrhotic rats with ascites. Gastroenterology 1999, 116, 1167–1175. [Google Scholar]
- López-Parra, M.; Clària, J.; Planagumà, A.; Titos, E.; Masferrer, J.L.; Woerner, B.M.; Koki, A.T.; Jiménez, W.; Altuna, R.; Arroyo, V.; et al. Cyclooxygenase-1 derived prostaglandins are involved in the maintenance of renal function in rats with cirrhosis and ascites. Br. J. Pharmacol. 2002, 135, 891–900. [Google Scholar] [PubMed]
- Leehey, D.J.; Uckerman, M.T.; Rahman, M.A. Role of prostaglandins and thromboxane in the control of renal hemodynamics in experimental liver cirrhosis. J. Lab. Clin. Med. 1989, 113, 309–315. [Google Scholar]
- Ros, J.; Clària, J.; Jiménez, W.; Bosch-Marcé, M.; Angeli, P.; Arroyo, V.; Rivera, F.; Rodés, J. Role of nitric oxide and prostacyclin in the control of renal perfusion in experimental cirrhosis. Hepatology 1995, 22, 915–920. [Google Scholar]
- Clària, J.; Kent, J.D.; López-Parra, M.; Escolar, G.; Ruiz-Del-Arbol, L.; Ginès, P.; Jiménez, W.; Vucelic, B.; Arroyo, V. Effects of celecoxib and naproxen on renal function in nonazotemic patients with cirrhosis and ascites. Hepatology 2005, 41, 579–587. [Google Scholar]
- Campbell, M.S.; Makar, G.A. Safety of short-term administration of celecoxib in decompensated cirrhosis. Hepatology 2005, 42, 237. [Google Scholar]
- Guevara, M.; Abecasis, R.; Terg, R. Effect of celecoxib on renal function in cirrhotic patients with ascites. A pilot study. Scand. J. Gastroenterol. 2004, 39, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Clària, J. Safety of short-term administration of celecoxib in decompensated cirrhosis. Hepatology 2005, 42, 238. [Google Scholar]
- Boyer, T.D.; Zia, P.; Reynolds, T.B. Effect of indomethacin and prostaglandin A1 on renal function and plasma renin activity in alcoholic liver disease. Gastroenterology 1979, 77, 215–222. [Google Scholar]
- Zipser, R.D.; Hoefs, J.C.; Speckart, P.F.; Zia, P.K.; Horton, R. Prostaglandins: modulators of renal function and pressor resistance in chronic liver disease. J. Clin. Endocrinol. Metab. 1979, 48, 895–900. [Google Scholar]
- Arroyo, V.; Planas, R.; Gaya, J.; Deulofeu, R.; Rimola, A.; Pérez-Ayuso, R.M.; Rivera, F.; Rodés, J. Sympathetic nervous activity, renin-angiotensin system and renal excretion of prostaglandin E2 in cirrhosis. Relationship to functional renal failure and sodium and water excretion. Eur. J. Clin. Invest. 1983, 13, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Mirouze, D.; Zipser, R.D.; Reynolds, T.B. Effect of inhibitors of prostaglandin synthesis on induced diuresis in cirrhosis. Hepatology 1983, 3, 50–55. [Google Scholar]
- Quintero, E.; Ginés, P.; Arroyo, V.; Rimola, A.; Camps, J.; Gaya, J.; Guevara, A.; Rodamilans, M.; Rodés, J. Sulindac reduces the urinary excretion of prostaglandins and impairs renal function in cirrhosis with ascites. Nephron 1986, 42, 298–303. [Google Scholar]
- Brater, D.C.; Anderson, S.A.; Brown-Cartwright, D. Reversible acute decrease in renal function by NSAIDs in cirrhosis. Am. J. Med. Sci. 1987, 294, 168–174. [Google Scholar]
- Navar, L.G.; Inscho, E.W.; Majid, S.A.; Imig, J.D.; Harrison-Bernard, L.M.; Mitchell, K.D. Paracrine regulation of the renal microcirculation. Physiol. Rev. 1996, 76, 425–536. [Google Scholar]
- Schnermann, J. Juxtaglomerular cell complex in the regulation of renal salt excretion. Am. J. Physiol. 1998, 274, R263–R279. [Google Scholar]
- Ichihara, A.; Imig, J.D.; Inscho, E.W.; Navar, L.G. Cyclooxygenase-2 participates in tubular flow-dependent afferent arteriolar tone: interaction with neuronal NOS. Am. J. Physiol. 1998, 275, F605–F612. [Google Scholar]
- Harding, P.; Sigmon, D.H.; Alfie, M.E.; Huang, P.L.; Fishman, M.C.; Beierwaltes, W.H.; Carretero, O.A. Cyclooxygenase-2 mediates increased renal renin content induced by low-sodium diet. Hypertension 1997, 29, 297–302. [Google Scholar]
- Schricker, K.; Hamann, M.; Kurtz, A. Nitric oxide and prostaglandins are involved in the macula densa control of the renin system. Am. J. Physiol. 1995, 269, F825–F830. [Google Scholar]
- Cheng, H.F.; Wang, J.L.; Zhang, M.Z.; Miyazaki, Y.; Ichikawa, I.; McKanna, J.A.; Harris, R.C. Angiotensin II attenuates renal cortical cyclooxygenase-2 expression. J. Clin. Invest. 1999, 103, 953–961. [Google Scholar]
- Kammerl, M.; Nüsing, R.M. Low sodium and furosemide-induced stimulation of the renin system in man is mediated by cyclooxygenase 2. Clin. Pharmacol. Ther. 2001, 70, 468–474. [Google Scholar]
- Yang, T.; Park, J.M.; Arend, L.; Huang, Y.; Topaloglu, R.; Pasumarthy, A.; Praetorius, H.; Spring, K.; Briggs, J.P.; Schnerman, J. Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J. Biol. Chem. 2000, 275, 37922–37929. [Google Scholar]
- Traynor, T.R.; Smart, A.; Briggs, J.P.; Schnermann, J. Inhibition of macula densa-stimulated renin secretion by pharmacological blockade of cyclooxygenase-2. Am. J. Physiol. 1999, 277, F706–F710. [Google Scholar]
- Peti-Peterdi, J.; Komlosi, P.; Fuson, A.L.; Guan, Y.; Schneider, A.; Qi, Z.; Redha, R.; Rosivall, L.; Breyer, M.D.; Bell, P.D. Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. J. Clin. Invest. 2003, 112, 76–82. [Google Scholar]
- Wang, J.L.; Cheng, H.F.; Harris, R.C. Cyclooxygenase-2 inhibition decreases renin content and lowers blood pressure in a model of renovascular hypertension. Hypertension 1999, 34, 96–101. [Google Scholar]
- Stubbe, J.; Jensen, B.L.; Bachmann, S.; Morsing, P.; Skøtt, O. Cyclooxygenase-2 contributes to elevated renin in the early postnatal period in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R1179–R1189. [Google Scholar]
- Cheng, H.F.; Wang, J.L.; Zhang, M.Z.; Wan, S.W.; McKanna, J.A.; Harris, R.C. Genetic deletion of COX-2 prevents increased renin expression in response to ACE inhibition. Am. J. Physiol. Renal. Physiol. 2001, 280, F449–F456. [Google Scholar]
- Athirakul, K.; Kim, H.S.; Audoly, L.P.; Smithies, O.; Coffman, T.M. Deficiency of COX-1 causes natriuresis and enhanced sensitivity to ACE inhibition. Kidney Int. 2001, 60, 2324–2329. [Google Scholar]
- Harris, C.J.; Brate, D.C. Renal effects of cyclooxygenase-2 selective inhibitors. Curr. Opin. Nephrol. Hypertens. 2001, 10, 603–610. [Google Scholar]
- Cheng, H.F.; Wang, J.L.; Zhang, M.Z.; McKanna, J.A.; Harris, R.C. Nitric oxide regulates renal cortical cyclooxygenase-2 expression. Am. J. Physiol. Renal Physiol. 2000, 279, F122–F129. [Google Scholar]
- Harris, R.C.; Cheng, H.; Wang, J.; Zhang, M.; McKanna, J.A. Interactions of the renin-angiotensin system and neuronal nitric oxide synthase in regulation of cyclooxygenase-2 in the macula densa. Acta Physiol. Scand. 2000, 168, 47–51. [Google Scholar]
- Cheng, H.F.; Wang, J.L.; Zhang, M.Z.; McKanna, J.A.; Harris, R.C. Role of p38 in the regulation of renal cortical cyclooxygenase-2 expression by extracellular chloride. J. Clin. Invest. 2000, 106, 681–688. [Google Scholar]
- Hao, C.M.; Yull, F.; Blackwell, T.; Kömhoff, M.; Davis, L.S.; Breyer, M.D. Dehydration activates an NF-kappaB-driven, COX2-dependent survival mechanism in renal medullary interstitial cells. J. Clin. Invest. 2000, 106, 973–982. [Google Scholar]
- Palmer, B.F. Renal complications associated with use of nonsteroidal anti-inflammatory agents. J. Investig. Med. 1995, 43, 516–533. [Google Scholar]
- Whelton, A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am. J. Med. 1999, 106, 13S–24S. [Google Scholar]
- Harirforoosh, S.; Jamali, F. Effect of nonsteroidal anti-inflammatory drugs with varying extent of COX-2-COX-1 selectivity on urinary sodium and potassium excretion in the rat. Can. J. Physiol. Pharmacol. 2005, 83, 85–90. [Google Scholar]
- Harirforoosh, S.; Aghazadeh-Habashi, A.; Jamali, F. Extent of renal effect of cyclo-oxygenase-2-selective inhibitors is pharmacokinetic dependent. Clin. Exp. Pharmacol. Physiol. 2006, 33, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Brater, D.C.; Harris, C.; Redfern, J.S.; Gertz, B.J. Renal effects of COX-2-selective inhibitors. Am. J. Nephrol. 2001, 21, 1–15. [Google Scholar]
- Schwartz, J.I.; Vandormael, K.; Malice, M.P.; Kalyani, R.N.; Lasseter, K.C.; Holmes, G.B.; Gertz, B.J.; Gottesdiener, K.M.; Laurenzi, M.; Redfern, K.J.; Brune, K. Comparison of rofecoxib, celecoxib, and naproxen on renal function in elderly subjects receiving a normal-salt diet. Clin. Pharmacol. Ther. 2002, 72, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Kahvecioglu, S.; Dilek, K.; Akdag, I.; Gullulu, M.; Demircan, C.; Ersoy, A.; Yurtkuran, M. Effect of indomethacin and selective cyclooxygenase-2 inhibitors on proteinuria and renal function in patients with AA type renal amyloidosis. Nephrology (Carlton) 2006, 11, 232–237. [Google Scholar] [PubMed]
- Curtis, S.P.; Ng, J.; Yu, Q.; Shingo, S.; Bergman, G.; McCormick, C.L.; Reicin, A.S. Renal effects of etoricoxib and comparator nonsteroidal anti-inflammatory drugs in controlled clinical trials. Clin. Ther. 2004, 26, 70–83. [Google Scholar]
- Seta, F.; Chung, A.D.; Turner, P.V.; Mewburn, J.D.; Yu, Y.; Funk, C.D. Renal and cardiovascular characterization of COX-2 knockdown mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R1751–1760. [Google Scholar]
- Harris, R.C.; McKanna, J.A.; Akai, Y.; Jacobson, H.R.; Dubois, R.N.; Breyer, M.D. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J. Clin. Invest. 1994, 94, 2504–2510. [Google Scholar]
- Zhang, M.Z.; Wang, J.L.; Cheng, H.F.; Harris, R.C.; McKanna, J.A. Cyclooxygenase-2 in rat nephron development. Am. J. Physiol. 1997, 273, F994–F1002. [Google Scholar]
- Khan, K.N.; Venturini, C.M.; Bunch, R.T.; Brassard, J.A.; Koki, A.T.; Morris, D.L.; Trump, B.F.; Maziasz, T.J.; Alden, C.L. Interspecies differences in renal localization of cyclooxygenase isoforms: implications in nonsteroidal antiinflammatory drug-related nephrotoxicity. Toxicol. Pathol. 1998, 26, 612–620. [Google Scholar]
- Morham, S.G.; Langenbach, R.; Loftin, C.D.; Tiano, H.F.; Vouloumanos, N.; Jennette, J.C.; Mahler, J.F.; Kluckman, K.D.; Ledford, A.; Lee, C.A.; Smithies, O. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 1995, 83, 473–482. [Google Scholar]
- Dinchuk, J.E.; Car, B.D.; Focht, R.J.; Johnston, J.J.; Jaffee, B.D.; Covington, M.B.; Contel, N.R.; Eng, V.M.; Collins, R.J.; Czerniak, P.M.; Gorry, S.A.; Trzaskos, J.M. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 1995, 378, 406–409. [Google Scholar] [PubMed]
- Langenbach, R.; Morham, S.G.; Tiano, H.F.; Loftin, C.D.; Ghanayem, B.I.; Chulada, P.C.; Mahler, J.F.; Lee, C.A.; Goulding, E.H.; Kluckman, K.D.; Kim, H.S.; Smithies, O. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 1995, 83, 483–492. [Google Scholar]
- Kömhoff, M.; Wang, J.L.; Cheng, H.F.; Langenbach, R.; McKanna, J.A.; Harris, R.C.; Breyer, M.D. Cyclooxygenase-2-selective inhibitors impair glomerulogenesis and renal cortical development. Kidney Int. 2000, 57, 414–422. [Google Scholar]
- Diamond, J.R.; Kees-Folts, D.; Ding, G.; Frye, J.E.; Restrepo, N.C. Macrophages, monocyte chemoattractant peptide-1, and TGF-beta 1 in experimental hydronephrosis. Am. J. Physiol. 1994, 266, F926–F933. [Google Scholar] [PubMed]
- Prodjosudjadi, W.; Gerritsma, J.S.; van Es, L.A.; Daha, M.R.; Bruijn, J.A. Monocyte chemoattractant protein-1 in normal and diseased human kidneys: an immunohistochemical analysis. Clin. Nephrol. 1995, 44, 148–155. [Google Scholar]
- Rovin, B.H.; Rumancik, M.; Tan, L.; Dickerson, J. Glomerular expression of monocyte chemoattractant protein-1 in experimental and human glomerulonephritis. Lab. Invest. 1994, 71, 536–542. [Google Scholar]
- Stahl, R.A.; Thaiss, F.; Disser, M.; Helmchen, U.; Hora, K.; Schlöndorff, D. Increased expression of monocyte chemoattractant protein-1 in anti-thymocyte antibody-induced glomerulonephritis. Kidney Int. 1993, 44, 1036–1047. [Google Scholar]
- Grandaliano, G.; Valente, A.J.; Rozek, M.M.; Abboud, H.E. Gamma interferon stimulates monocyte chemotactic protein (MCP-1) in human mesangial cells. J. Lab. Clin. Med. 1994, 123, 282–289. [Google Scholar]
- Rovin, B.H.; Yoshiumura, T.; Tan, L. Cytokine-induced production of monocyte chemoattractant protein-1 by cultured human mesangial cells. J. Immunol. 1992, 148, 2148–2153. [Google Scholar]
- Satriano, J.A.; Hora, K.; Shan, Z.; Stanley, E.R.; Mori, T.; Schlondorff, D. Regulation of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor-1 by IFN-gamma, tumor necrosis factor-alpha, IgG aggregates, and cAMP in mouse mesangial cells. J. Immunol. 1993, 150, 1971–1978. [Google Scholar] [PubMed]
- Mukaida, N.; Zachariae, C.C.; Gusella, G.L.; Matsushima, K. Dexamethasone inhibits the induction of monocyte chemotactic-activating factor production by IL-1 or tumor necrosis factor. J. Immunol. 1991, 146, 1212–1215. [Google Scholar]
- Jocks, T.; Zahner, G.; Freudenberg, J.; Wolf, G.; Thaiss, F.; Helmchen, U.; Stahl, R.A. Prostaglandin E1 reduces the glomerular mRNA expression of monocyte-chemoattractant protein 1 in anti-thymocyte antibody-induced glomerular injury. J. Am. Soc. Nephrol. 1996, 7, 897–905. [Google Scholar]
- Schneider, A.; Harendza, S.; Zahner, G.; Jocks, T.; Wenzel, U.; Wolf, G.; Thaiss, F.; Helmchen, U.; Stahl, R.A. Cyclooxygenase metabolites mediate glomerular monocyte chemoattractant protein-1 formation and monocyte recruitment in experimental glomerulonephritis. Kidney Int. 1999, 55, 430–441. [Google Scholar]
- Rzymkiewicz, D.; Leingang, K.; Baird, N.; Morrison, A.R. Regulation of prostaglandin endoperoxide synthase gene expression in rat mesangial cells by interleukin-1 beta. Am. J. Physiol. 1994, 266, F39–F45. [Google Scholar]
- Hwang, D.; Jang, B.C.; Yu, G.; Boudreau, M. Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide: mediation through both mitogen-activated protein kinase and NF-kappaB signaling pathways in macrophages. Biochem. Pharmacol. 1997, 54, 87–96. [Google Scholar]
- Hirose, S.; Yamamoto, T.; Feng, L.; Yaoita, E.; Kawasaki, K.; Goto, S.; Fujinaka, H.; Wilson, C.B.; Arakawa, M.; Kihara, I. Expression and localization of cyclooxygenase isoforms and cytosolic phospholipase A2 in anti-Thy-1 glomerulonephritis. J. Am. Soc. Nephrol. 1998, 9, 408–416. [Google Scholar] [PubMed]
- Blume, C.; Heise, G.; Mühlfeld, A.; Bach, D.; Schrör, K.; Gerhardz, C.D.; Grabensee, B.; Heering, P. Effect of flosulide, a selective cyclooxygenase 2 inhibitor, on passive heymann nephritis in the rat. Kidney Int. 1999, 56, 1770–1778. [Google Scholar] [PubMed]
- Tomasoni, S.; Noris, M.; Zappella, S.; Gotti, E.; Casiraghi, F.; Bonazzola, S.; Benigni, A.; Remuzzi, G. Upregulation of renal and systemic cyclooxygenase-2 in patients with active lupus nephritis. J. Am. Soc. Nephrol. 1998, 9, 1202–1212. [Google Scholar]
- Cattell, V.; Smith, J.; Cook, H.T. Prostaglandin E1 suppresses macrophage infiltration and ameliorates injury in an experimental model of macrophage-dependent glomerulonephritis. Clin. Exp. Immunol. 1990, 79, 260–265. [Google Scholar]
- Kelley, V.E.; Winkelstein, A.; Izui, S. Effect of prostaglandin E on immune complex nephritis in NZB/W mice. Lab. Invest. 1979, 41, 531–537. [Google Scholar]
- Schneider, A.; Thaiss, F.; Rau, H.P.; Wolf, G.; Zahner, G.; Jocks, T.; Helmchen, U.; Stahl, R.A. Prostaglandin E1 inhibits collagen expression in anti-thymocyte antibody-induced glomerulonephritis: possible role of TGF beta. Kidney Int. 1996, 50, 190–199. [Google Scholar]
- Zahner, G.; Schaper, M.; Panzer, U.; Kluger, M.; Stahl, R.A.; Thaiss, F.; Schneider, A. Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation. Biochem. J. 2009, 422, 563–570. [Google Scholar]
- Tegeder, I.; Pfeilschifter, J.; Geisslinger, G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001, 15, 2057–2072. [Google Scholar]
- Perico, N.; Remuzzi, A.; Sangalli, F.; Azzollini, N.; Mister, M.; Ruggenenti, P.; Remuzzi, G. The antiproteinuric effect of angiotensin antagonism in human IgA nephropathy is potentiated by indomethacin. J. Am. Soc. Nephrol. 1998, 9, 2308–2317. [Google Scholar]
- Takano, T.; Cybulsky, A.V.; Cupples, W.A.; Ajikobi, D.O.; Papillon, J.; Aoudjit, L. Inhibition of cyclooxygenases reduces complement-induced glomerular epithelial cell injury and proteinuria in passive Heymann nephritis. J. Pharmacol. Exp. Ther. 2003, 305, 240–249. [Google Scholar]
- Zoja, C.; Benigni, A.; Verroust, P.; Ronco, P.; Bertani, T.; Remuzzi, G. Indomethacin reduces proteinuria in passive Heymann nephritis in rats. Kidney Int. 1987, 31, 1335–1343. [Google Scholar]
- Donker, A.J.; Brentjens, J.R.; van der Hem, G.K.; Arisz, L. Treatment of the nephrotic syndrome with indomethacin. Nephron 1978, 22, 374–381. [Google Scholar]
- Shehadeh, I.H.; Demers, L.M.; Abt, A.B.; Schoolwerth, A.C. Indomethacin and the nephrotic syndrome. JAMA 1979, 241, 1264–1266. [Google Scholar]
- Okamura, M.; Takano, Y.; Hiramatsu, N.; Hayakawa, K.; Yao, J.; Paton, A.W.; Paton, J.C.; Kitamura, M. Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. Am. J. Physiol. Renal Physiol. 2008, 295, F1495–F1503. [Google Scholar]
- Höcherl, K.; Dreher, F.; Vitzthum, H.; Köhler, J.; Kurtz, A. Cyclosporine A suppresses cyclooxygenase-2 expression in the rat kidney. J. Am. Soc. Nephrol. 2002, 13, 2427–2436. [Google Scholar]
- Landewe, R.B.; Goei The, H.S.; van Rijthoven, A.W.; Rietveld, J.R.; Breedveld, F.C.; Dijkmans, B.A. Cyclosporine in common clinical practice: an estimation of the benefit/risk ratio in patients with rheumatoid arthritis. J. Rheumatol. 1994, 21, 1631–1636. [Google Scholar]
- Komers, R.; Lindsley, J.N.; Oyama, T.T.; Schutzer, W.E.; Reed, J.F.; Mader, S.L.; Anderson, S. Immunohistochemical and functional correlations of renal cyclooxygenase-2 in experimental diabetes. J. Clin. Invest. 2001, 107, 889–898. [Google Scholar]
- Cherney, D.Z.; Miller, J.A.; Scholey, J.W.; Bradley, T.J.; Slorach, C.; Curtis, J.R.; Dekker, M.G.; Nasrallah, R.; Hébert, R.L.; Sochett, E.B. The effect of cyclooxygenase-2 inhibition on renal hemodynamic function in humans with type 1 diabetes. Diabetes 2008, 57, 688–695. [Google Scholar]
- Wang, J.L.; Cheng, H.F.; Shappell, S.; Harris, R.C. A selective cyclooxygenase-2 inhibitor decreases proteinuria and retards progressive renal injury in rats. Kidney Int. 2000, 57, 2334–2342. [Google Scholar]
- Mathiesen, E.R.; Hommel, E.; Olsen, U.B.; Parving, H.H. Elevated urinary prostaglandin excretion and the effect of indomethacin on renal function in incipient diabetic nephropathy. Diabet. Med. 1988, 5, 145–149. [Google Scholar]
- Bakris, G.L.; Starke, U.; Heifets, M.; Polack, D.; Smith, M.; Leurgans, S. Renal effects of oral prostaglandin suppl.ementation after ibuprofen in diabetic subjects: a double-blind, placebo-controlled, multicenter trial. J. Am. Soc. Nephrol. 1995, 5, 1684–1648. [Google Scholar] [PubMed]
- Cherney, D.Z.; Scholey, J.W.; Nasrallah, R.; Dekker, M.G.; Slorach, C.; Bradley, T.J.; Hébert, R.L.; Sochett, E.B.; Miller, J.A. Renal hemodynamic effect of cyclooxygenase 2 inhibition in young men and women with uncomplicated type 1 diabetes mellitus. Am. J. Physiol. Renal. Physiol. 2008, 294, F1336–F1341. [Google Scholar]
- Cherney, D.Z.; Miller, J.A.; Scholey, J.W.; Nasrallah, R.; Hébert, R.L.; Dekker, M.G.; Slorach, C.; Sochett, E.B.; Bradley, T.J. Renal hyperfiltration is a determinant of endothelial function responses to cyclooxygenase 2 inhibition in type 1 diabetes. Diabetes Care 2010, 33, 1344–1346. [Google Scholar]
- Nasrallah, R.; Robertson, S.J.; Hébert, R.L. Chronic COX inhibition reduces diabetes-induced hyperfiltration, proteinuria, and renal pathological markers in 36-week B6-Ins2(Akita) mice. Am. J. Nephrol. 2009, 30, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.F.; Wang, C.J.; Moeckel, G.W.; Zhang, M.Z.; McKanna, J.A.; Harris, R.C. Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney Int. 2002, 62, 929–939. [Google Scholar]
- Retailleau, K.; Belin de Chantemèle, E.J.; Chanoine, S.; Guihot, A.L.; Vessières, E.; Toutain, B.; Faure, S.; Bagi, Z.; Loufrani, L.; Henrion, D. Reactive oxygen species and cyclooxygenase 2-derived thromboxane A2 reduce angiotensin II type 2 receptor vasorelaxation in diabetic rat resistance arteries. Hypertension 2010, 55, 339–344. [Google Scholar]
- Cheng, X.; Zhang, H.; Lee, H.L.; Park, J.M. Cyclooxygenase-2 inhibitor preserves medullary aquaporin-2 expression and prevents polyuria after ureteral obstruction. J. Urol. 2004, 172, 2387–2390. [Google Scholar]
- Nørregaard, R.; Jensen, B.L.; Li, C.; Wang, W.; Knepper, M.A.; Nielsen, S.; Frøkiaer, J. COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 2005, 289, F322–F333. [Google Scholar]
- Nørregaard, R.; Jensen, B.L.; Topcu, S.O.; Diget, M.; Schweer, H.; Knepper, M.A.; Nielsen, S.; Frøkiaer, J. COX-2 activity transiently contributes to increased water and NaCl excretion in the polyuric phase after release of ureteral obstruction. Am. J. Physiol. Renal Physiol. 2007, 292, F1322–F1333. [Google Scholar]
- Chou, S.Y.; Cai, H.; Pai, D.; Mansour, M.; Huynh, P. Regional expression of cyclooxygenase isoforms in the rat kidney in complete unilateral ureteral obstruction. J. Urol. 2003, 170, 1403–1408. [Google Scholar]
- Nørregaard, R.; Jensen, B.L.; Topcu, S.O.; Wang, G.; Schweer, H.; Nielsen, S.; Frøkiaer, J. Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R1017–R1025. [Google Scholar]
- Nielsen, S.; DiGiovanni, S.R.; Christensen, E.I.; Knepper, M.A.; Harris, H.W. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc. Natl. Acad. Sci. USA 1993, 90, 11663–11667. [Google Scholar]
- Baggaley, E.; Nielsen, S.; Marples, D. Dehydration-induced increase in aquaporin-2 protein abundance is blocked by nonsteroidal anti-inflammatory drugs. Am. J. Physiol. Renal Physiol. 2010, 298, F1051–F1058. [Google Scholar]
- Frøkiaer, J.; Knudsen, L.; Nielsen, A.S.; Pedersen, E.B.; Djurhuus, J.C. Enhanced intrarenal angiotensin II generation in response to obstruction of the pig ureter. Am. J. Physiol. 1992, 263, F527–F533. [Google Scholar]
- Pimentel, J.L., Jr.; Montero, A.; Wang, S.; Yosipiv, I.; el-Dahr, S.; Martínez-Maldonado, M. Sequential changes in renal expression of renin-angiotensin system genes in acute unilateral ureteral obstruction. Kidney Int. 1995, 48, 1247–1253. [Google Scholar]
- Yarger, W.E.; Schocken, D.D.; Harris, R.H. Obstructive nephropathy in the rat: possible roles for the renin-angiotensin system, prostaglandins, and thromboxanes in postobstructive renal function. J. Clin. Invest. 1980, 65, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.M.; Li, C.; Praetorius, H.A.; Nørregaard, R.; Frische, S.; Knepper, M.A.; Nielsen, S.; Frøkiaer, J. Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium transporters in response to urinary tract obstruction. Am. J. Physiol. Renal Physiol. 2006, 291, F1021–F1032. [Google Scholar]
- Jensen, A.M.; Bae, E.H.; Nørregaard, R.; Wang, G.; Nielsen, S.; Schweer, H.; Kim, S.W.; Frøkiaer, J. Cyclooxygenase 2 inhibition exacerbates AQP2 and pAQP2 downregulation independently of V2 receptor abundance in the postobstructed kidney. Am. J. Physiol. Renal Physiol. 2010, 298, F941–F950. [Google Scholar]
- Kim, S.W.; Kim, J.W.; Choi, K.C.; Ma, S.K.; Oh, Y.; Jung, J.Y.; Kim, J.; Lee, J. Indomethacin enhances shuttling of aquaporin-2 despite decreased abundance in rat kidney. J. Am. Soc. Nephrol. 2004, 15, 2998–3005. [Google Scholar]
- Allen, H.M.; Jackson, R.L.; Winchester, M.D.; Deck, L.V.; Allon, M. Indomethacin in the treatment of lithium-induced nephrogenic diabetes insipidus. Arch. Intern. Med. 1989, 149, 1123–1126. [Google Scholar]
- Pattaragarn, A.; Alon, U.S. Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor. Pediatr. Nephrol. 2003, 18, 1073–1076. [Google Scholar]
- Rao, R.; Zhang, M.Z.; Zhao, M.; Cai, H.; Harris, R.C.; Breyer, M.D.; Hao, C.M. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am. J. Physiol. Renal Physiol. 2005, 288, F642–F649. [Google Scholar]
- Kim, G.H.; Choi, N.W.; Jung, J.Y.; Song, J.H.; Lee, C.H.; Kang, C.M.; Knepper, M.A. Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2. Am. J. Physiol. Renal Physiol. 2008, 294, F702–F709. [Google Scholar]
- Armstrong, E.P.; Malone, D.C. The impact of nonsteroidal anti-inflammatory drugs on blood pressure, with an emphasis on newer agents. Clin. Ther. 2003, 25, 1–18. [Google Scholar]
- FitzGerald, G.A. COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat. Rev. Drug. Discov. 2003, 2, 879–890. [Google Scholar]
- Francois, H.; Athirakul, K.; Mao, L.; Rockman, H.; Coffman, T.M. Role for thromboxane receptors in angiotensin-II-induced hypertension. Hypertension 2004, 43, 364–369. [Google Scholar]
- Qi, Z.; Hao, C.M.; Langenbach, R.I.; Breyer, R.M.; Redha, R.; Morrow, J.D.; Breyer, M.D. Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. J. Clin. Invest. 2002, 110, 61–69. [Google Scholar]
- Cheng, Y.; Wang, M.; Yu, Y.; Lawson, J.; Funk, C.D.; Fitzgerald, G.A. Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function. J. Clin. Invest. 2006, 116, 1391–1399. [Google Scholar] [PubMed]
- Yu, Y.; Stubbe, J.; Ibrahim, S.; Song, W.L.; Symth, E.M.; Funk, C.D.; FitzGerald, G.A. Cyclooxygenase-2-dependent prostacyclin formation and blood pressure homeostasis: targeted exchange of cyclooxygenase isoforms in mice. Circ. Res. 2010, 106, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA 2000, 284, 1247–1255. [Google Scholar] [PubMed]
- Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Hochberg, M.C.; Kvien, T.K.; Schnitzer, T.J. VIGOR Study Group. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N. Engl. J. Med. 2000, 343, 1520–1528. [Google Scholar] [PubMed]
- Fierro-Carrion, G.A.; Ram, C.V. Nonsteroidal anti-inflammatory drugs (NSAIDs) and blood pressure. Am. J. Cardiol. 1997, 80, 775–776. [Google Scholar]
- Johnson, A.G.; Nguyen, T.V.; Day, R.O. Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis. Ann. Intern. Med. 1994, 121, 289–300. [Google Scholar]
- Johnson, A.G. NSAIDs and increased blood pressure. What is the clinical significance? Drug. Saf. 1997, 17, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Perazella, M.A.; Eras, J. Are selective COX-2 inhibitors nephrotoxic? Am. J. Kidney Dis. 2000, 35, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Klotz, U. Clinical use and pharmacological properties of selective COX-2 inhibitors. Eur. J. Clin. Pharmacol. 2008, 64, 233–352. [Google Scholar]
- Whelton, A.; Lefkowith, J.L.; West, C.R.; Verburg, K.M. Cardiorenal effects of celecoxib as compared with the nonsteroidal anti-inflammatory drugs diclofenac and ibuprofen. Kidney Int. 2006, 70, 1495–1502. [Google Scholar]
- Sowers, J.R.; White, W.B.; Pitt, B.; Whelton, A.; Simon, L.S.; Winer, N.; Kivitz, A.; van Ingen, H.; Brabant, T.; Fort, J.G. Celecoxib Rofecoxib Efficacy and Safety in Comorbidities Evaluation Trial (CRESCENT) Investigators. The Effects of cyclooxygenase-2 inhibitors and nonsteroidal anti-inflammatory therapy on 24-hour blood pressure in patients with hypertension, osteoarthritis, and type 2 diabetes mellitus. Arch. Intern. Med. 2005, 165, 161–168. [Google Scholar] [PubMed]
- Maradit-Kremers, H.; Nicola, P.J.; Crowson, C.; Ballman, K.V.; Gabriel, S.E. Cardiovascular death in rheumatoid arthritis: a population-based study. Arthritis Rheum. 2005, 52, 722–732. [Google Scholar]
- Solomon, S.D.; McMurray, J.J.; Pfeffer, M.A.; Wittes, J.; Fowler, R.; Finn, P.; Anderson, W.F.; Zauber, A.; Hawk, E.; Bertagnolli, M. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 2005, 352, 1071–1080. [Google Scholar]
- Patrono, C.; Rocca, B. Nonsteroidal antiinflammatory drugs: past, present and future. Pharmacol. Res. 2009, 59, 285–289. [Google Scholar]
- Warner, T.D.; Mitchell, J.A. COX-2 selectivity alone does not define the cardiovascular risks associated with non-steroidal anti-inflammatory drugs. Lancet 2008, 371, 270–273. [Google Scholar]
- Brueggemann, L.I.; Mackie, A.R.; Mani, B.K.; Cribbs, L.L.; Byron, K.L. Differential effects of selective cyclooxygenase-2 inhibitors on vascular smooth muscle ion channels may account for differences in cardiovascular risk profiles. Mol. Pharmacol. 2009, 76, 1053–1061. [Google Scholar]
- Brueggemann, L.I.; Mani, B.K.; Mackie, A.R.; Cribbs, L.L.; Byron, K.L. Novel actions of nonsteroidal anti-inflammatory drugs on vascular ion channels: accounting for cardiovascular side effects and identifying new therapeutic applications. Mol. Cell Pharmacol. 2010, 2, 15–19. [Google Scholar] [PubMed]
- Shapiro, M.S. An ion channel hypothesis to explain divergent cardiovascular safety of cyclooxygenase-2 inhibitors: the answer to a hotly debated puzzle? Mol. Pharmacol. 2009, 76, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ding, E.L.; Song, Y. Adverse effects of cyclooxygenase 2 inhibitors on renal and arrhythmia events: meta-analysis of randomized trials. JAMA 2006, 296, 1619–1632. [Google Scholar]
- Bijlsma, J.W. Patient benefit-risk in arthritis–a rheumatologist's perspective. Rheumatology (Oxford) 2010, 49 Suppl. 2, ii11–17. [Google Scholar] [CrossRef] [PubMed]
- Kistler, T.; Ambühl, P.M. Renal safety of combined cyclooxygenase 2 (COX-2) inhibitor and angiotensin II receptor blocker administration in mild volume depletion. Swiss Med. Wkly. 2001, 131, 193–198. [Google Scholar]
- Cheng, H.F.; Wang, S.W.; Zhang, M.Z.; McKanna, J.A.; Breyer, R.; Harris, R.C. Prostaglandins that increase renin production in response to ACE inhibition are not derived from cyclooxygenase-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R638–R646. [Google Scholar] [PubMed]
- Harirforoosh, S.; Jamali, F. Renal adverse effects of nonsteroidal anti-inflammatory drugs. Expert. Opin. Drug Saf. 2009, 8, 669–681. [Google Scholar]
- Jamali, F. Arthritis is associated with cardiovascular disease in the users of analgesics and nonsteroidal anti-inflammatory drugs. Arch. Intern. Med. 2007, 167, 2371–2372. [Google Scholar]
- Kaplan, N.M. Up to Date. Available online: www.uptodate.com Assessed June 2008.
- Aw, T.J.; Haas, S.J.; Liew, D.; Krum, H. Meta-analysis of cyclooxygenase-2 inhibitors and their effects on blood pressure. Arch. Intern. Med. 2005, 165, 490–496. [Google Scholar]
- Pope, J.E.; Anderson, J.J.; Felson, D.T. A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure. Arch. Intern. Med. 1993, 153, 477–484. [Google Scholar]
- de Leeuw, P.W. Nonsteroidal anti-inflammatory drugs and hypertension. The risks in perspective. Drugs 1996, 51, 179–187. [Google Scholar] [PubMed]
- Radack, K.L.; Deck, C.C.; Bloomfield, S.S. Ibuprofen interferes with the efficacy of antihypertensive drugs. A randomized, double-blind, placebo-controlled trial of ibuprofen compared with acetaminophen. Ann. Intern. Med. 1987, 107, 628–635. [Google Scholar] [PubMed]
- Gurwitz, J.H.; Everitt, D.E.; Monane, M.; Glynn, R.J.; Choodnovskiy, I.; Beaudet, M.P.; Avorn, J. The impact of ibuprofen on the efficacy of antihypertensive treatment with hydrochlorothiazide in elderly persons. J. Gerontol. A Biol. Sci. Med. Sci. 1996, 51, M74–M79. [Google Scholar]
- Thomas, M.C. Diuretics, ACE inhibitors and NSAIDs–the triple whammy. Med. J. Aust. 2000, 172, 184–185. [Google Scholar]
- Seelig, C.B. Changes in residents' attitudes in response to residency program modifications: a prospective study. South Med. J. 1992, 85, 972–975. [Google Scholar]
- Packer, M. Interaction of prostaglandins and angiotensin II in the modulation of renal function in congestive heart failure. Circulation 1988, 77 Suppl. 1, 164–173. [Google Scholar]
- Kurata, C.; Uehara, A.; Sugi, T.; Yamazaki, K. Syncope caused by nonsteroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors. Jpn. Circ. J. 1999, 63, 1002–1003. [Google Scholar]
- Adhiyaman, V.; Asghar, M.; Oke, A.; White, A.D.; Shah, I.U. Nephrotoxicity in the elderly due to co-prescription of angiotensin converting enzyme inhibitors and nonsteroidal anti-inflammatory drugs. J. R. Soc. Med. 2001, 94, 512–514. [Google Scholar] [PubMed]
- Loboz, K.K.; Shenfield, G.M. Drug combinations and impaired renal function–the 'triple whammy'. Br. J. Clin. Pharmacol. 2005, 59, 239–243. [Google Scholar]
- Chennavasin, P.; Seiwell, R.; Brater, D.C. Pharmacokinetic-dynamic analysis of the indomethacin-furosemide interaction in man. J. Pharmacol. Exp. Ther. 1980, 215, 77–81. [Google Scholar] [PubMed]
- Reyes, J.L.; Aldana, I.; Barbier, O.; Parrales, A.A.; Melendez, E. Indomethacin decreases furosemide-induced natriuresis and diuresis on the neonatal kidney. Pediatr. Nephrol. 2006, 21, 1690–1697. [Google Scholar]
- Greven, J.; Farjam, A. Effect of inhibitors of prostaglandin synthesis on the furosemide action in the loop Henle of rat kidney. Pflugers Arch. 1988, 411, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Knauf, H.; Bailey, M.A.; Hasenfuss, G.; Mutschler, E. The influence of cardiovascular and antiinflammatory drugs on thiazide-induced hemodynamic and saluretic effects. Eur. J. Clin. Pharmacol. 2006, 62, 885–892. [Google Scholar]
- Kammerl, M.C.; Nüsing, R.M.; Richthammer, W.; Krämer, B.K.; Kurtz, A. Inhibition of COX-2 counteracts the effects of diuretics in rats. Kidney Int. 2001, 60, 1684–1691. [Google Scholar]
- Höcherl, K.; Kees, F.; Krämer, B.K.; Kurtz, A. Cyclosporine A attenuates the natriuretic action of loop diuretics by inhibition of renal COX-2 expression. Kidney Int. 2004, 65, 2071–2080. [Google Scholar]
- Sarafidis, P.A.; Bakris, G.L. Resistant hypertension: an overview of evaluation and treatment. J. Am. Coll. Cardiol. 2008, 52, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Höcherl, K.; Endemann, D.; Kammerl, M.C.; Grobecker, H.F.; Kurtz, A. Cyclo-oxygenase-2 inhibition increases blood pressure in rats. Br. J. Pharmacol. 2002, 136, 1117–1126. [Google Scholar]
- Yao, B.; Harris, R.C.; Zhang, M.Z. Interactions between 11beta-hydroxysteroid dehydrogenase and COX-2 in kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1767–R1773. [Google Scholar]
- Höcherl, K.; Kammerl, M.C.; Schumacher, K.; Endemann, D.; Grobecker, H.F.; Kurt, Z.A. Role of prostanoids in regulation of the renin-angiotensin-aldosterone system by salt intake. Am. J. Physiol. Renal Physiol. 2002, 283, F294–F301. [Google Scholar]
- Qi, Z.; Hao, C.M.; Langenbach, R.I.; Breyer, R.M.; Redha, R.; Morrow, J.D.; Breyer, M.D. Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. J. Clin. Invest. 2002, 110, 61–69. [Google Scholar]
- White, W.B.; Kent, J.; Taylor, A.; Verburg, K.M.; Lefkowith, J.B.; Whelton, A. Effects of celecoxib on ambulatory blood pressure in hypertensive patients on ACE inhibitors. Hypertension 2002, 39, 929–934. [Google Scholar]
- Harley, C.; Wagner, S. The prevalence of cardiorenal risk factors in patients prescribed nonsteroidal anti-inflammatory drugs: data from managed care. Clin. Ther. 2003, 25, 139–149. [Google Scholar]
- Morgan, T.; Anderson, A. The effect of nonsteroidal anti-inflammatory drugs on blood pressure in patients treated with different antihypertensive drugs. J. Clin. Hypertens. (Greenwich) 2003, 5, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Houston, M.C.; Weir, M.; Gray, J.; Ginsberg, D.; Szeto, C.; Kaihlenen, P.M.; Sugimoto, D.; Runde, M.; Lefkowitz, M. The effects of nonsteroidal anti-inflammatory drugs on blood pressures of patients with hypertension controlled by verapamil. Arch. Intern. Med. 1995, 155, 1049–1054. [Google Scholar]
- Johnson, A.G.; Nguyen, T.V.; Day, R.O. Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis. Ann. Intern. Med. 1994, 121, 289–300. [Google Scholar]
- Mulkerrin, E.C.; Clark, B.A.; Epstein, F.H. Increased salt retention and hypertension from non-steroidal agents in the elderly. QJM 1997, 90, 411–415. [Google Scholar]
- Mann, B.; Hartner, A.; Jensen, B.L.; Hilgers, K.F.; Höcherl, K.; Krämer, B.K.; Kurtz, A. Acute upregulation of COX-2 by renal artery stenosis. Am. J. Physiol. Renal Physiol. 2001, 280, F119–F125. [Google Scholar]
- Wang, J.L.; Cheng, H.F.; Harris, R.C. Cyclooxygenase-2 Inhibition Decreases Renin Content and Lowers Blood Pressure in a Model of Renovascular Hypertension. Hypertension 1999, 34, 96–101. [Google Scholar]
- Matzdorf, C.; Kurtz, A.; Höcherl, K. COX-2 activity determines the level of renin expression but is dispensable for acute upregulation of renin expression in rat kidneys. Am. J. Physiol. Renal Physiol. 2007, 292, F1782–F1790. [Google Scholar]
- Patino, F.G.; Olivieri, J.; Allison, J.J.; Mikuls, T.R.; Moreland, L.; Kovac, S.H.; Juarez, L.; Person, S.; Curtis, J.; Saag, K.G. Nonsteroidal antiinflammatory drug toxicity monitoring and safety practices. J. Rheumatol. 2003, 30, 2680–2688. [Google Scholar]
- Risser, A.; Donovan, D.; Heintzman, J.; Page, T. NSAID prescribing precautions. Am. Fam. Physician 2009, 80, 1371–1378. [Google Scholar]
- Griffin, M.R.; Yared, A.; Ray, W.A. Nonsteroidal antiinflammatory drugs and acute renal failure in elderly persons. Am. J. Epidemiol. 2000, 151, 488–496. [Google Scholar]
- Atta, M.G.; Whelton, A. Acute renal papillary necrosis induced by ibuprofen. Am. J. Ther. 1997, 4, 55–60. [Google Scholar]
- Wolf, G.; Porth, J.; Stahl, R.A. Acute renal failure associated with rofecoxib. Ann. Intern. Med. 2000, 133, 394. [Google Scholar]
- Wolf, K.; Castrop, H.; Hartner, A.; Goppelt-Strübe, M.; Hilgers, K.F.; Kurtz, A. Inhibition of the renin-angiotensin system upregulates cyclooxygenase-2 expression in the macula densa. Hypertension 1999, 34, 503–507. [Google Scholar]
- Rainsford, K.D. Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology 2009, 17, 275–342. [Google Scholar]
- Weisbord, S.D.; Mor, M.K.; Resnick, A.L.; Hartwig, K.C.; Sonel, A.F.; Fine, M.J.; Palevsky, P.M. Prevention, incidence, and outcomes of contrast-induced acute kidney injury. Arch. Intern. Med. 2008, 168, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Basivireddy, J.; Jacob, M.; Pulimood, A.B.; Balasubramanian, K.A. Indomethacin-induced renal damage: role of oxygen free radicals. Biochem. Pharmacol. 2004, 67, 587–599. [Google Scholar]
- Basivireddy, J.; Jacob, M.; Balasubramanian, K.A. Indomethacin induces free radical-mediated changes in renal brush border membranes. Arch. Toxicol. 2005, 79, 441–450. [Google Scholar]
- Höcherl, K.; Schmidt, C.; Bucher, M. COX-2 inhibition attenuates endotoxin-induced downregulation of organic anion transporters in the rat renal cortex. Kidney Int. 2009, 75, 373–380. [Google Scholar]
- De Broe, M.E.; Elseviers, M.M. Over-the-counter analgesic use. J. Am. Soc. Nephrol. 2009, 20, 2098–2103. [Google Scholar]
- Atta, MG.; Whelton, A. Acute renal papillary necrosis induced by ibuprofen. Am. J. Ther. 1997, 4, 55–60. [Google Scholar]
- Wortmann, D.W.; Kelsch, R.C.; Kuhns, L.; Sullivan, D.B.; Cassidy, J.T. Renal papillary necrosis in juvenile rheumatoid arthritis. Pediatr. 1980, 97, 37–40. [Google Scholar]
- Mitchell, H.; Muirden, K.D.; Kincaid-Smith, P. Indamethacin-induced renal papillary necrosis in juvenile chronic arthritis. Lancet 1982, 2, 558–559. [Google Scholar]
- Erwin, L.; Boulton Jones, J.M. Benoxaprofen and papillary necrosis. Br. Med. J. (Clin. Res. Ed.) 1982, 285, 694. [Google Scholar] [CrossRef] [PubMed]
- Caruana, R.J.; Semble, E.L. Renal papillary necrosis due to naproxen. J. Rheumatol. 1984, 11, 90–91. [Google Scholar]
- Kovacevic, L.; Bernstein, J.; Valentini, R.P.; Imam, A.; Gupta, N.; Mattoo, T.K. Renal papillary necrosis induced by naproxen. Pediatr. Nephrol. 2003, 18, 826–829. [Google Scholar]
- McCredie, M.; Stewart, J.H. Does paracetamol cause urothelial cancer or renal papillary necrosis? Nephron 1988, 49, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Murray, T.G.; Stolley, P.D.; Anthony, J.C.; Schinnar, R.; Hepler-Smith, E.; Jeffreys, J.L. Epidemiologic study of regular analgesic use and end-stage renal disease. Arch. Intern. Med. 1983, 143, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Sandler, D.P.; Smith, J.C.; Weinberg, C.R.; Buckalew, V.M.; Dennis, V.W.; Blythe, W.B.; Burgess, W.P. Analgesic use and chronic renal disease. N. Engl. J. Med. 1989, 320, 1238–1243. [Google Scholar]
- Morlans, M.; Laporte, J.R.; Vidal, X.; Cabeza, D.; Stolley, P.D. End-stage renal disease and non-narcotic analgesics: a case-control study. Br. J. Clin. Pharmacol. 1990, 30, 717–723. [Google Scholar]
- Pommer, W.; Bronder, E.; Greiser, E.; Helmert, U.; Jesdinsky, H.J.; Klimpel, A.; Borner, K.; Molzahn, M. Regular analgesic intake and the risk of end-stage renal failure. Am. J. Nephrol. 1989, 9, 403–412. [Google Scholar]
- Steenland, N.K.; Thun, M.J.; Ferguson, C.W.; Port, F.K. Occupational and other exposures associated with male end-stage renal disease: a case/control study. Am. J. Public. Health 1990, 80, 153–157. [Google Scholar]
- Perneger, T.V.; Whelton, P.K.; Klag, M.J. Risk of kidney failure associated with the use of acetaminophen, aspirin, and nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 1994, 331, 1675–1679. [Google Scholar] [CrossRef] [PubMed]
- Rexrode, K.M.; Buring, J.E.; Glynn, R.J.; Stampfer, M.J.; Youngman, L.D.; Gaziano, J.M. Analgesic use and renal function in men. JAMA 2001, 286, 315–321. [Google Scholar]
- Fored, C.M.; Ejerblad, E.; Lindblad, P.; Fryzek, J.P.; Dickman, P.W.; Signorello, L.B.; Lipworth, L.; Elinder, C.G.; Blot, W.J.; McLaughlin, J.K.; Zack, M.M.; Nyrén, O. Acetaminophen, aspirin, and chronic renal failure. N. Engl. J. Med. 2001, 345, 1801–1808. [Google Scholar] [PubMed]
- Curhan, G.C.; Knight, E.L.; Rosner, B.; Hankinson, S.E.; Stampfer, M.J. Lifetime nonnarcotic analgesic use and decline in renal function in women. Arch. Intern. Med. 2004, 164, 1519–1524. [Google Scholar]
- Sandler, D.P.; Burr, F.R.; Weinberg, C.R. Nonsteroidal anti-inflammatory drugs and the risk for chronic renal disease. Ann. Intern. Med. 1991, 115, 165–172. [Google Scholar]
- Lafrance, J.P.; Miller, D.R. Selective and non-selective non-steroidal anti-inflammatory drugs and the risk of acute kidney injury. Pharmacoepidemiol. Drug Saf. 2009, 18, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Gooch, K.; Culleton, B.F.; Manns, B.J.; Zhang, J.; Alfonso, H.; Tonelli, M.; Frank, C.; Klarenbach, S.; Hemmelgarn, B.R. NSAID use and progression of chronic kidney disease. Am. J. Med. 2007, 120, 280.e1–280.e7. [Google Scholar] [CrossRef]
- Vonkeman, H.E.; van de Laar, M.A. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention. Semin. Arthritis Rheum. 2010, 39, 294–312. [Google Scholar]
- Praveen Rao, P.N. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharmaceut. Sci. 2008, 11, 81s–110s. [Google Scholar]
- Velázquez, C.; Rao, P.N.P.; McDonald, R.; Knaus, E.E. Novel nonsteroidal antiinflammatory drugs possessing a nitric oxide donor diazen-1-ium-1,2-diolate moiety: design, synthesis, biological evaluation, and nitric oxide release studies. J. Med. Chem. 2005, 48, 4061–4017. [Google Scholar] [PubMed]
- Wallace, J.L.; Viappiani, S.; Bolla, M. Cyclooxygenase-inhibiting nitric oxide donators for osteoarthritis. Trends Pharmacol. Sci. 2009, 30, 112–117. [Google Scholar]
- Samuelsson, B.; Morgenstern, R.; Jakobsson, P.J. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol. Rev. 2007, 59, 207–224. [Google Scholar]
- Xu, D.; Rowland, S.E.; Clark, P.; Giroux, A.; Côté, B.; Guiral, S.; Salem, M.; Ducharme, Y.; Friesen, R.W.; Méthot, N.; Mancini, J.; Audoly, L.; Riendeau, D. MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)-isophthalonitrile], a selective microsomal prostaglandin E synthase-1 inhibitor, relieves pyresis and pain in preclinical models of inflammation. J. Pharmacol. Exp. Ther. 2008, 326, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.; Rowland, S.E.; Denis, D.; Mathieu, M.C.; Stocco, R.; Poirier, H.; Burch, J.; Han, Y.; Audoly, L.; Therien, A.G.; et al. MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J. Pharmacol. Exp. Ther. 2008, 325, 425–434. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hörl, W.H. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals 2010, 3, 2291-2321. https://doi.org/10.3390/ph3072291
Hörl WH. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals. 2010; 3(7):2291-2321. https://doi.org/10.3390/ph3072291
Chicago/Turabian StyleHörl, Walter H. 2010. "Nonsteroidal Anti-Inflammatory Drugs and the Kidney" Pharmaceuticals 3, no. 7: 2291-2321. https://doi.org/10.3390/ph3072291
APA StyleHörl, W. H. (2010). Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals, 3(7), 2291-2321. https://doi.org/10.3390/ph3072291