TRPV1 Antagonists and Chronic Pain: Beyond Thermal Perception
Abstract
:Non-Standard Abbreviations
WHO | World Health Organization |
TRPV1 | Transient Receptor Potential Vanilloid 1 |
CFA | Complete Freund’s Adjuvant |
DRG | Dorsal Root Ganglion |
SNL | Spinal Nerve Ligation |
PSNL | Partial Sciatic Nerve Ligation |
L | Lumbar |
CCI | Chronic Constriction Injury |
CGRP | Calcitonin Gene-Related Peptide |
MIA | Mono-Iodoacetate |
siRNA | Small Interfering RNA |
RNAi | RNA Interference |
BCTC | N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamide |
CNS | Central Nervous System |
i.t. | Intrathecal |
HbSS | Human Sickle Hemoglobin |
OA | Osteoarthritis |
1. Introduction
2. Expression Changes in TRPV1 Channels in Chronic Pain Conditions
3. Behavioral Changes in Chronic Pain Conditions
4. Allelic Variations in TRPV1 Channels
5. Conclusions
Conflict of Interest
References and Notes
- Coda, B.; Bonica, J. General considerations of acute pain. In Bonica’s Management of Pain, 3rd; Loeser, J., Butler, S.H., Chapman, C.R., Turk, D.C., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; pp. 222–240. [Google Scholar]
- Miller, L.R.; Cano, A. Comorbid chronic pain and depression: Who is at risk? J. Pain 2009, 10, 619–627. [Google Scholar]
- Stahl, S.M.; Muntner, N.; Ball, S. Chronic Pain and Fibromyalgia. Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Guo, A.; Vulchanova, L.; Wang, J.; Li, X.; Elde, R. Immunocytochemical localization of the vanilloid receptor 1 (VR1): Relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur. J. Neurosci. 1999, 11, 946–958. [Google Scholar] [CrossRef]
- Doly, S.; Fischer, J.; Salio, C.; Conrath, M. The vanilloid receptor-1 is expressed in rat spinal dorsal horn astrocytes. Neurosci. Lett. 2004, 357, 123–126. [Google Scholar] [CrossRef]
- Maione, S.; Starowicz, K.; Cristino, L.; Guida, F.; Palazzo, E.; Luongo, L.; Rossi, F.; Marabese, I.; de Novellis, V.; di Marzo, V. Functional interaction between TRPV1 and μ-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia. J. Neurophysiol. 2009, 101, 2411–2422. [Google Scholar]
- Breese, N.M.; George, A.C.; Pauers, L.E.; Stucky, C.L. Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 2005, 115, 37–49. [Google Scholar] [CrossRef]
- Ji, R.R.; Samad, T.A.; Jin, S.X.; Schmoll, R.; Woolf, C.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002, 36, 57–68. [Google Scholar] [CrossRef]
- Engler, A.; Aeschlimann, A.; Simmen, B.R.; Michel, B.A.; Gay, R.E.; Gay, S.; Sprott, H. Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem. Biophys. Res. Commun. 2007, 359, 884–888. [Google Scholar] [CrossRef]
- Akbar, A.; Yiangou, Y.; Facer, P.; Brydon, W.G.; Walters, J.R.; Anand, P.; Ghosh, S. Expression of the TRPV1 receptor differs in quiescent inflammatory bowel disease with or without abdominal pain. Gut 2010, 59, 767–774. [Google Scholar] [CrossRef]
- Yiangou, Y.; Facer, P.; Dyer, N.H.; Chan, C.L.; Knowles, C.; Williams, N.S.; Anand, P. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 2001, 357, 1338–1339. [Google Scholar]
- Guarino, M.P.; Cheng, L.; Ma, J.; Harnett, K.; Biancani, P.; Altomare, A.; Panzera, F.; Behar, J.; Cicala, M. Increased TRPV1 gene expression in esophageal mucosa of patients with non-erosive and erosive reflux disease. Neurogastroenterol. Motil. 2010, 22, 746–751. [Google Scholar] [CrossRef]
- Shieh, K.R.; Yi, C.H.; Liu, T.T.; Tseng, H.L.; Ho, H.C.; Hsieh, H.T.; Chen, C.L. Evidence for neurotrophic factors associating with TRPV1 gene expression in the inflamed human esophagus. Neurogastroenterol. Motil. 2010, 22, 971–977. [Google Scholar] [CrossRef]
- Poli-Neto, O.B.; Filho, A.A.; Rosa e Silva, J.C.; Barbosa, H. de F.; Candido Dos Reis, F.J.; Nogueira, A.A. Increased capsaicin receptor TRPV1 in the peritoneum of women with chronic pelvic pain. Clin. J. Pain 2009, 25, 218–222. [Google Scholar] [CrossRef]
- Mitchell, J.E.; Campbell, A.P.; New, N.E.; Sadofsky, L.R.; Kastelik, J.A.; Mulrennan, S.A.; Compton, S.J.; Morice, A.H. Expression and characterization of the intracellular vanilloid receptor (TRPV1) in bronchi from patients with chronic cough. Exp. Lung Res. 2005, 31, 295–306. [Google Scholar] [CrossRef]
- Groneberg, D.A.; Niimi, A.; Dinh, Q.T.; Cosio, B.; Hew, M.; Fischer, A.; Chung, K.F. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am. J. Respir. Crit. Care Med. 2004, 170, 1276–1280. [Google Scholar] [CrossRef]
- Sikand, P.; Premkumar, L.S. Potentiation of glutamatergic synaptic transmission by protein kinase C-mediated sensitization of TRPV1 at the first sensory synapse. J. Physiol. 2007, 581, 631–647. [Google Scholar] [CrossRef]
- Sugiura, T.; Tominaga, M.; Katsuya, H.; Mizumura, K. Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol. 2002, 88, 544–548. [Google Scholar]
- Zhang, X.; Huang, J.; McNaughton, P.A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 2005, 24, 4211–4223. [Google Scholar] [CrossRef]
- Chuang, H.H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S.E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 2001, 411, 957–962. [Google Scholar] [CrossRef]
- Premkumar, L.S.; Ahern, G.P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000, 408, 985–990. [Google Scholar] [CrossRef]
- Ferreira, J.; da Silva, G.L.; Calixto, J.B. Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br. J. Pharmacol. 2004, 141, 787–794. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, J.-H.; Kang, K.K.; Hwang, S.-Y.; Choi, K.D.; Oh, U. Sensitization of vanilloid receptor involves an increase in the phosphorylated form of the channel. Arch. Pharmacal Res. 2005, 28, 405–412. [Google Scholar] [CrossRef]
- Anand, P.; Bley, K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011, 107, 490–502. [Google Scholar] [CrossRef]
- Nolano, M.; Simone, D.A.; Wendelschafer-Crabb, G.; Johnson, T.; Hazen, E.; Kennedy, W.R. Topical capsaicin in humans: Parallel loss of epidermal nerve fibers and pain sensation. Pain 1999, 81, 135–145. [Google Scholar] [CrossRef]
- Gavva, N.R. Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol. Sci. 2008, 29, 550–557. [Google Scholar] [CrossRef]
- Round, P.; Priestley, A.; Robinson, J. An investigation of the safety and pharmacokinetics of the novel TRVP1 antagonist XEN-D0501 in healthy subjects. Br. J. Clin. Pharmacol. 2011, 72, 921–931. [Google Scholar] [CrossRef]
- Rowbotham, M.C.; Nothaft, W.; Duan, W.R.; Wang, Y.; Faltynek, C.; McGaraughty, S.; Chu, K.L.; Svensson, P. Oral and cutaneous thermosensory profile of selective TRPV1 inhibition by ABT-102 in a randomized healthy volunteer trial. Pain 2011, 152, 1192–1200. [Google Scholar]
- Maier, C.; Baron, R.; Tölle, T.R.; Binder, A.; Birbaumer, N.; Birklein, F.; Gierthmühlen, J.; Flor, H.; Geber, C.; Huge, V.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1,236 patients with different neuropathic pain syndromes. Pain 2010, 150, 439–450. [Google Scholar] [CrossRef]
- Hudson, L.J.; Bevan, S.; Wotherspoon, G.; Gentry, C.; Fox, A.; Winter, J. VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur. J. Neurosci. 2001, 13, 2105–2114. [Google Scholar] [CrossRef]
- Fukuoka, T.; Tokunaga, A.; Tachibana, T.; Dai, Y.; Yamanaka, H.; Noguchi, K. VR1, but not P2X(3), increases in the spared L4 DRG in rats with L5 spinal nerve ligation. Pain 2002, 99, 111–120. [Google Scholar] [CrossRef]
- Mitrirattanakul, S.; Ramakul, N.; Guerrero, A.V.; Matsuka, Y.; Ono, T.; Iwase, H.; Mackie, K.; Faull, K.F.; Spigelman, I. Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain 2006, 126, 102–114. [Google Scholar] [CrossRef]
- Rashid, M.H.; Inoue, M.; Kondo, S.; Kawashima, T.; Bakoshi, S.; Ueda, H. Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J. Pharmacol. Exp. Ther. 2003, 304, 940–948. [Google Scholar]
- Christoph, T.; Gillen, C.; Mika, J.; Grünweller, A.; Schäfer, M.K.; Schiene, K.; Frank, R.; Jostock, R.; Bahrenberg, G.; Weihe, E.; et al. Antinociceptive effect of antisense oligonucleotides against the vanilloid receptor VR1/TRPV1. Neurochem. Int. 2007, 50, 281–290. [Google Scholar] [CrossRef]
- Vilceanu, D.; Honore, P.; Hogan, Q.H.; Stucky, C.L. Spinal nerve ligation in mouse upregulates TRPV1 heat function in injured IB4-positive nociceptors. J. Pain 2010, 11, 588–599. [Google Scholar] [CrossRef]
- Kanai, Y.; Nakazato, E.; Fujiuchi, A.; Hara, T.; Imai, A. Involvement of an increased spinal TRPV1 sensitization through its up-regulation in mechanical allodynia of CCI rats. Neuropharmacology 2005, 49, 977–984. [Google Scholar] [CrossRef]
- Im, H.J.; Kim, J.S.; Li, X.; Kotwal, N.; Sumner, D.R.; van Wijnen, A.J.; Davis, F.J.; Yan, D.; Levine, B.; Henry, J.L.; et al. Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model. Arthritis Rheum. 2010, 62, 2995–3005. [Google Scholar] [CrossRef]
- Puttfarcken, P.S.; Han, P.; Joshi, S.K.; Neelands, T.R.; Gauvin, D.M.; Baker, S.J.; Lewis, L.G.; Bianchi, B.R.; Mikusa, J.P.; Koenig, J.R.; et al. A-995662 [(R)-8-(4-methyl-5-(4-(trifluoromethyl)phenyl)oxazol-2-ylamino)-1,2,3,4-tetrahydronaphthalen-2-ol], a novel, selective TRPV1 receptor antagonist, reduces spinal release of glutamate and CGRP in a rat knee joint pain model. Pain 2010, 150, 319–326. [Google Scholar] [CrossRef]
- Sagar, D.R.; Staniaszek, L.E.; Okine, B.N.; Woodhams, S.; Norris, L.M.; Pearson, R.G.; Garle, M.J.; Alexander, S.P.; Bennett, A.J.; Barrett, D.A.; et al. Tonic modulation of spinal hyperexcitability by the endocannabinoid receptor system in a rat model of osteoarthritis pain. Arthritis Rheum. 2010, 62, 3666–3676. [Google Scholar] [CrossRef]
- Fernihough, J.; Gentry, C.; Bevan, S.; Winter, J. Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci. Lett. 2005, 388, 75–80. [Google Scholar] [CrossRef]
- Cho, W.G.; Valtschanoff, J.G. Vanilloid receptor TRPV1-positive sensory afferents in the mouse ankle and knee joints. Brain Res. 1219, 59–65. [Google Scholar]
- Schuelert, N.; Zhang, C.; Mogg, A.J.; Broad, L.M.; Hepburn, D.L.; Nisenbaum, E.S.; Johnson, M.P.; McDougall, J.J. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain. Osteoarthr. Cartil. 2010, 18, 1536–1543. [Google Scholar]
- Colvin, L.; Fallon, M. Challenges in cancer pain management-bone pain. Eur. J. Cancer 2008, 44, 1083–1090. [Google Scholar] [CrossRef]
- Delaney, A.; Fleetwood-Walker, S.M.; Colvin, L.A.; Fallon, M. Translational medicine: Cancer pain mechanisms and management. Br. J. Anaesth. 2008, 101, 87–94. [Google Scholar] [CrossRef]
- Kerba, M.; Wu, J.S.; Duan, Q.; Hagen, N.A.; Bennett, M.I. Neuropathic pain features in patients with bone metastases referred for palliative radiotherapy. J. Clin. Oncol. 2010, 28, 4892–4897. [Google Scholar] [CrossRef]
- Rossi, F.; Bellini, G.; Luongo, L.; Torella, M.; Mancusi, S.; de Petrocellis, L.; Petrosino, S.; Siniscalco, D.; Orlando, P.; Scafuro, M.; et al. The endovanilloid/endocannabinoid system: A new potential target for osteoporosis therapy. Bone 2011, 48, 997–1007. [Google Scholar]
- Ghilardi, J.R.; Röhrich, H.; Lindsay, T.H.; Sevcik, M.A.; Schwei, M.J.; Kubota, K.; Halvorson, K.G.; Poblete, J.; Chaplan, S.R.; Dubin, A.E.; et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci. 2005, 25, 3126–3131. [Google Scholar]
- Niiyama, Y.; Kawamata, T.; Yamamoto, J.; Omote, K.; Namiki, A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience 2007, 148, 560–572. [Google Scholar] [CrossRef]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 306–313. [Google Scholar]
- Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405, 183–187. [Google Scholar]
- Pabbidi, R.M.; Cao, D.S.; Parihar, A.; Pauza, M.E.; Premkumar, L.S. Direct role of streptozotocin in inducing thermal hyperalgesia by enhanced expression of transient receptor potential vanilloid 1 in sensory neurons. Mol. Pharmacol. 2008, 73, 995–1004. [Google Scholar]
- Pogatzki-Zahn, E.M.; Shimizu, I.; Caterina, M.; Raja, S.N. Heat hyperalgesia after incision requires TRPV1 and is distinct from pure inflammatory pain. Pain 2005, 115, 296–307. [Google Scholar] [CrossRef]
- Christoph, T.; Bahrenberg, G.; de Vry, J.; Englberger, W.; Erdmann, V.A.; Frech, M.; Kögel, B.; Röhl, T.; Schiene, K.; Schröder, W.; et al. Investigation of TRPV1 loss-of-function phenotypes in transgenic shRNA expressing and knockout mice. Mol. Cell. Neurosci. 2008, 37, 579–589. [Google Scholar] [CrossRef]
- Christoph, T.; Grünweller, A.; Mika, J.; Schäfer, M.K.; Wade, E.J.; Weihe, E.; Erdmann, V.A.; Frank, R.; Gillen, C.; Kurreck, J. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem. Biophys. Res. Commun. 2006, 350, 238–243. [Google Scholar] [CrossRef]
- Walker, K.M.; Urban, L.; Medhurst, S.J.; Patel, S.; Panesar, M.; Fox, A.J.; McIntyre, P. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 2003, 304, 56–62. [Google Scholar] [CrossRef]
- Pomonis, J.D.; Harrison, J.E.; Mark, L.; Bristol, D.R.; Valenzano, K.J.; Walker, K. N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 2003, 306, 387–393. [Google Scholar] [CrossRef]
- Honore, P.; Wismer, C.T.; Mikusa, J.; Zhu, C.Z.; Zhong, C.; Gauvin, D.M.; Gomtsyan, A.; El Kouhen, R.; Lee, C.H.; Marsh, K.; et al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther. 2005, 314, 410–421. [Google Scholar] [CrossRef]
- Joshi, S.K.; Honore, P.; Hernandez, G.; Schmidt, R.; Gomtsyan, A.; Scanio, M.; Kort, M.; Jarvis, M.F. Additive antinociceptive effects of the selective Nav1.8 blocker A-803467 and selective TRPV1 antagonists in rat inflammatory and neuropathic pain models. J. Pain 2009, 10, 306–315. [Google Scholar] [CrossRef]
- Palazzo, E.; Luongo, L.; de Novellis, V.; Berrino, L.; Rossi, F.; Maione, S. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol. Pain 2010, 6, 66. [Google Scholar] [CrossRef]
- Honore, P.; Chandran, P.; Hernandez, G.; Gauvin, D.M.; Mikusa, J.P.; Zhong, C.; Joshi, S.K.; Ghilardi, J.R.; Sevcik, M.A.; Fryer, R.M.; et al. Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia. Pain 2009, 142, 27–35. [Google Scholar] [CrossRef]
- Cui, M.; Honore, P.; Zhong, C.; Gauvin, D.; Mikusa, J.; Hernandez, G.; Chandran, P.; Gomtsyan, A.; Brown, B.; Bayburt, E.K.; et al. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 2006, 26, 9385–9393. [Google Scholar]
- McGaraughty, S.; Chu, K.L.; Brown, B.S.; Zhu, C.Z.; Zhong, C.; Joshi, S.K.; Honore, P.; Faltynek, C.R.; Jarvis, M.F. Contributions of central and peripheral TRPV1 receptors to mechanically evoked and spontaneous firing of spinal neurons in inflamed rats. J. Neurophysiol. 2008, 100, 3158–3166. [Google Scholar] [CrossRef]
- Chu, K.; Chandran, P.; Joshi, S.K.; Jarvis, P.R.; McGaraughty, S. TRPV1-related modulation of spinal neuronal activity and behavior in a rat model of osteoarthritic pain. Brain Res. 1369, 158–166. [Google Scholar]
- Hillery, C.A.; Kerstein, P.C.; Vilceanu, D.; Barabas, M.E.; Retherford, D.; Brandow, A.M.; Wandersee, N.J.; Stucky, C.L. Transient receptor potential vanilloid 1 mediates pain in mice with severe sickle cell disease. Blood 2011, 118, 3376–3383. [Google Scholar]
- Xu, H.; Tian, W.; Fu, Y.; Oyama, T.T.; Anderson, S.; Cohen, D.M. Functional effects of nonsynonymous polymorphisms in the human TRPV1 gene. Am. J. Physiol. Renal. Physiol. 2007, 293, F1865–F1876. [Google Scholar] [CrossRef]
- Kim, H.; Neubert, J.K.; San Miguel, A.; Xu, K.; Krishnaraju, R.K.; Iadarola, M.J.; Goldman, D.; Dionne, R.A. Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain 2004, 109, 488–496. [Google Scholar] [CrossRef]
- Kim, H.; Mittal, D.P.; Iadarola, M.J.; Dionne, R.A. Genetic predictors for acute experimental cold and heat pain sensitivity in humans. J. Med. Genet. 2006, 43, e40. [Google Scholar] [CrossRef]
- Valdes, A.M.; de Wilde, G.; Doherty, S.A.; Lories, R.J.; Vaughn, F.L.; Laslett, L.L.; Maciewicz, R.A.; Soni, A.; Hart, D.J.; Zhang, W.; et al. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis. Ann. Rheum. Dis. 2011, 70, 1556–1561. [Google Scholar]
- Binder, A.; May, D.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, R.D.; Berthele, A.; Faltraco, F.; Flor, H.; Gierthmühlen, J.; et al. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS One 2011, 6, e17387. [Google Scholar]
- van Esch, A.A.; Lamberts, M.P.; te Morsche, R.H.; van Oijen, M.G.; Jansen, J.B.; Drenth, J.P. Polymorphisms in gene encoding TRPV1-receptor involved in pain perception are unrelated to chronic pancreatitis. BMC Gastroenterol. 2009, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Hayes, P.; Meadows, H.J.; Gunthorpe, M.J.; Harries, M.H.; Duckworth, D.M.; Cairns, W.; Harrison, D.C.; Clarke, C.E.; Ellington, K.; Prinjha, R.K.; et al. Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain 2000, 88, 205–215. [Google Scholar] [CrossRef]
- Park, J.J.; Lee, J.; Kim, M.A.; Back, S.K.; Hong, S.K.; Na, H.S. Induction of total insensitivity to capsaicin and hypersensitivity to garlic extract in human by decreased expression of TRPV1. Neurosci. Lett. 2007, 411, 87–91. [Google Scholar] [CrossRef]
- Hong, S.; Wiley, J.W. Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J. Biol. Chem. 2005, 280, 618–627. [Google Scholar]
- Pabbidi, R.M.; Yu, S.Q.; Peng, S.; Khardori, R.; Pauza, M.E.; Premkumar, L.S. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol. Pain. 2008, 4, 9. [Google Scholar] [CrossRef]
- Wilson-Gerwing, T.D.; Dmyterko, M.V.; Zochodne, D.W.; Johnston, J.M.; Verge, V.M. Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. J. Neurosci. 2005, 25, 758–767. [Google Scholar] [CrossRef]
Appendix
Reference | Species | Model | Changes in Expression |
---|---|---|---|
[10] | human | IBD | In rectosigmoid biopsies from IBD patients with pain, TRPV1 expression was significantly (4 to 5-fold) higher compared with controls and IBD patients without pain. In IBD patients with pain, TRPV1 expression correlated with abdominal pain severity. |
[7] | mouse | CFA | CFA inflammation increased TRPV1 expression 3-fold in IB4-positive DRG neurons. In these neurons, capsaicin-sensitivity increased 3-fold and proton-sensitivity increased nearly 2-fold. |
[41] | mouse | normal | TRPV1 is localized within periosteum of periarticular bone, the articular capsule and vasculature of joints. TRPV1 expression occurs in 43% and 39% of DRG neurons innervating joint afferents the ankle and knee, respectively. |
[34] | rat | SNL | TRPV1 expression decreased in ligated L5 and L6 but not in the non-ligated L4 DRG and dorsal spinal cord. |
[5] | rat mouse | normal | TRPV1 expression is seen in lamina I and II of the L4 dorsal spinal horn and in spinal glial cells but not in TRPV1 KO mice. |
[9] | human | OA/RA | TRPV1 is expressed in synovial fibroblasts from OA and RA patients (no comparison with non-OA/RA patients). |
[40] | rat human | MIAOA | Following MIA, TRPV1 expressing DRG neurons is increased (72%) compared to control (54%); occasional TRPV1 positive fibers are observed in rat and human knee joints |
[31] | rat | SNL | TRPV1 immunoreactivity and mRNA was higher in the L4 DRG ipsilateral (~37–45%) compared to contralateral (~25–32%) 1 d to 28 d after SNL. Expression correlated with heat hypersensitivity. |
[47] | mouse | BCP | TRPV1 expression was localized on sensory femur DRG neurons. No expression changes were observed in neurons of sarcoma-bearing femurs. |
[16] | human | chronic cough | TRPV1 expression of bronchial epithelial nerves in patients with chronic cough was 4-fold higher than controls. Patients with chronic cough were 30-fold more sensitive to the tussive effects of capsaicin. |
[12] | human | esophageal reflux | TRPV1 mRNA and protein is increased 2- to 3-fold in the esophageal mucosa of patients with non-erosive reflux disease and erosive esophagitis compared to controls. |
[4] | rat | rhizSNL | TRPV1 expression was observed in DRG of small to medium diameter neurons and lamina I/II. After rhiz, expression decreased distal and increased proximal to SNL lesion. |
[73] | rat | STZ | DRGs from STZ neurons demonstrated decreased homogenate TRPV1 immunoreactivity (−10%), increased plasma membrane TRPV1 (+151%), TRPV1 phosphorylation (+256%), capsaicin-induced currents (+45%) and pH-evoked currents (+43%) 4–8 weeks after STZ. |
[30] | rat | AXO, PSNL, SNL | TRPV1 expression 2 weeks after AXO, PSNL, and SNL was decreased in DRGs of damaged nerves (except proximal to lesion), increased in DRG of undamaged neurons and increased 3-fold in A-fibers. |
[36] | rat | CCI | TRPV1 expression increased by 149% and 167% in the ipsilateral spinal cord 7 d and 14 d, respectively, after CCI injury. No changes in expression were observed at earlier time points (1 d or 3 d) or in the contralateral spinal cord (14 d). Capsaicin-evoked CGRP release was significantly higher (170%) in spinal cord slices from CCI animals compared to sham animals. |
[15] | human | chronic cough | TRPV1 expression is higher in airways from patients with chronic cough compared to controls. |
[32] | rat | SNL | Percentage of CB1 neurons co-labeled with TRPV1 increased from 25% to 59% 2 weeks after SNL |
[48] | mouse | BCP | TRPV1 mRNA and protein increased 190% and 290%, respectively, in the DRGs of sarcoma-treated mice compared to sham controls. |
[51] | mouse | STZ | In dissociated DRG neurons from STZ-treated mice, peak capsaicin-induced currents where significantly higher (1.9-fold) in thermally hypersensitive mice and significantly lower (0.6-fold) in thermally hyposensitive mice compared to age-matched controls. [3H]-RTX binding in DRG and paw skin was significantly increased (2.6 and 1.8-fold, respectively) in thermally hypersensitive mice and significantly lower (0.3 and 0.5-fold, respectively) in thermally hyposensitive mice compared to age-matched controls. |
[74] | mouse | STZ | STZ has direct action on neurons, which up-regulates TRPV1 expression and increases capsaicin-induced currents |
[14] | human | CPP | TRPV1 expression was 7-fold higher in pelvic tissues from patients with CPP compared to controls, which was not due to an increase in neuronal fibers. |
[33] | mouse | PSNL | In neonatal capsaicin-treated mice, TRPV1 expression is absent but increases in A-fiber DRG neurons after PSNL |
[46] | human | OA | TRPV1 mRNA is increased 5-fold in osteoclasts from osteoporotic and osteoporotic women compared to normal menopausal women. Capsaicin was less potent and produced a decreased Ca2+ response in osteoclasts from osteoporotic and osteoporotic women compared to normal menopausal women. |
[42] | rat | MIA | TRPV1 is expressed in DRG neurons and knee joint synovium of control and MIA-treated rats. No quantitative differences between groups evaluated. |
[13] | human | GERD | TRPV1 mRNA and protein were significantly increased in patients with erosive esophagitis compared to asymptomatic and healthy control patients. |
[35] | mouse | SNL | Injury increased the percentage of heat sensitive small-diameter IB4 positive isolated DRG neurons (13% control vs. 56% SNL) and conversely decreased the percentage of heat sensitive small-diameter IB4 negative isolated DRG neurons (66% control vs. 34% SNL). A-425619 blocked heat sensitivity in both subsets of DRG neurons. |
[75] | rat | CCI | CCI increases TRPV1 protein but not mRNA in DRGs 7 d after surgery. |
[11] | human | IBD | TRPV1 expression was 2-fold higher in patients with IBD compared to healthy controls. |
Reference | Model | Species | Compound (Dose; Route; Frequency; Duration) | Stimulus and Effects |
---|---|---|---|---|
[54] | CCI | rat | siRNA (1 μg; i.th.) | Decreased CCI-cold (acetone) hypersensitivity by 50% and blocked capsaicin-induced behaviors. |
[34] | SNL | rat | AS ODN (45 μg b.i.d.; i.th.) | Partially reversed SNL tactile (e-von Frey) hypersensitivity. |
[34] | SNL | rat | thioxo-BCTC (2.15–21.5 mg/kg; i.v.) | Reduced tactile (e-vonFrey) hypersensitivity by ~70% at high dose (ED50 value of 10.6 mg/kg). |
[53] | SNL | mouse | TRPV1 shRNAtg | TRPV1 shRNAtg mice did not develop tactile (e-von Frey or von Frey) hypersensitivity and had significantly decreased latencies on the 48 ºC and 58 ºC hotplate. |
[63] | MIA | Rat | A-889425 (10–300 μmol/kg; p.o.); (10–30 μmol/kg; i.v.) | A-889425 completely reversed MIA-induced impaired grip strength and attenuated evoked and spontaneous firing by 44% and 61%, respectively, compared to baseline. |
[61] | MIA | rat | A-784168 (3–30 μmol/kg; p.o.); (10–100 nmol; i.th.)
A-795614 (30–300 μmol/kg; p.o.); (10–100 nmol; i.th.) | A-784168 significantly reversed MIA-induced weight bearing differences with an ED50 value of 8 μmol/kg, p.o and 22 nmol, i.th. A-795614 significantly reversed MIA-induced weight bearing differences with an ED50 value of 280 μmol/kg, p.o. and 26 nmol, i.th. |
[47] | BCP | mouse | JNJ-17203212 (30 mg/kg; s.c.; b.i.d for 8–12 d) | TRPV1 KO and JNJ-17203212 attenuated spontaneous (~50%) and palpation-induced (~50%) flinching. JNJ-17203212 attenuated palpitation-induced increases in spinal lamina I-II c-Fos expression (7.5 cFos-IR) compared to vehicle (17.5 cFos-IR). |
[64] | SCD | mouse | A-425619 (100 μM/kg; i.p.) | A-425619 significantly attenuated tactile (von Frey) hypersensitivity (30–90 min) in mice expressing human sickle hemoglobin in erythroid cells compared to vehicle treated mice. Electrophysiology ex vivo skin preparations from mice had C- and high threshold Aδ-fiber sensitization to mechanical force that was attenuated by A-425619. |
[57] | MIA CCI SNL | ratmouse | A-425619 (30–300 μmol/kg; i.p.) | A-425619 reversed MIA weight-bearing to 47% of normal weight distribution and reversed von Frey tactile hypersensitive 2 weeks after SNL (36% reversal) or CCI (36% reversal) surgery. |
[60] | MIABCP | ratmouse | ABT-102 (3–100 μmol/kg, p.o.; single dose or
b.i.d. for 12 d) A-993610 (μmol/kg, p.o. single dose or b.i.d. for 12 d) | Acutely, ABT-102 significantly reversed MIA-induced difference in weight bearing (ED50 = 30 μmol/kg) and grip strength (ED50 = 10 μmol/kg). ABT-102 significantly reversed CBP-induced spontaneous guarding by 85%, decreased ambulation by 85% and palpation induced pain by 65%.
Doses of ABT-102 that had minimal effects acutely were more effective following chronic administration and significantly reversed MIA-induced decreased grip strength, bone cancer decreased spontaneous ambulation, ongoing pain and palpation evoked pain. Similar improvements in pain behaviors were observed after acute and chronic A-993610. Effects were not due to drug accumulation. |
[58] | SNL | rat | A-425619 (3–30 mg/kg; i.p.)
A-840257 (3–30 mg/kg; i.p.) | A-425619 and A-840257 lacked effects on von Frey tactile hypersensitivity in the SNL model of neuropathic pain. |
[36] | CCI | rat | BCTC (30–300 nmol; p.o.) | 100 and 300 nmol BCTC produced a modest, though significant reversal of CCI-induced tactile (von Frey) hypersensitivity 30 min (but not 60 or 120 min) after administration. |
[62] | CFA | A-889425 (10–100 μmol; i.p.) | A-889425 significantly attenuated CFA-induced tactile hypersensitivity at 30 and 100 μmol. Electrophysiology recordings from WDR neurons had significantly greater spontaneous and evoked firing, which was attenuated by A-889425 administration. | |
[48] | BCP | mouse | I-RTX (0.03–1 μmol; i.p.) | I-RTX significantly decreased spontaneous flinching, attenuated decreased ambulation and reversed weight-bearing differences during ambulation in sarcoma-treated mice. |
[56] | PSNL | rat | BCTC (1–30 mg/kg; p.o.) | BCTC partial attenuated PSNL von Frey tactile hypersensitivity (~50%) with significant reversal at 10 and 30 mg/kg. |
[38] | MIA | rat | A-995662 (3–100 μmol/kg; p.o.; single dose or b.i.d. for 12 d) | Acute doses of A-995662 significantly reversed MIA-induced decreased grip strength. An acutely sub-effective (22% reversal) dose significantly restored grip force (91% reversal) after chronic administration. The duration of effectiveness was longer than the detection of compound in brain or plasma. |
[35] | SNL | mouse | A-425619 (200 μmol/kg; i.p.) | A-425619 completely attenuated SNL-induced radiant heat thermal hypersensitivity. |
[55] | CFA, PSNL | guinea pig, rat, mouse | capsazepine (10–100 mg/kg; s.c.) | Rodent species were insensitive to capsazepine reversal of hypersensitivity in inflammatory and neuropathic models. In guinea pigs, capsazepine produced an 80% reversal of PSNL-induced mechanical hypersensitivity. |
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Brandt, M.R.; Beyer, C.E.; Stahl, S.M. TRPV1 Antagonists and Chronic Pain: Beyond Thermal Perception. Pharmaceuticals 2012, 5, 114-132. https://doi.org/10.3390/ph5020114
Brandt MR, Beyer CE, Stahl SM. TRPV1 Antagonists and Chronic Pain: Beyond Thermal Perception. Pharmaceuticals. 2012; 5(2):114-132. https://doi.org/10.3390/ph5020114
Chicago/Turabian StyleBrandt, Michael R., Chad E. Beyer, and Stephen M. Stahl. 2012. "TRPV1 Antagonists and Chronic Pain: Beyond Thermal Perception" Pharmaceuticals 5, no. 2: 114-132. https://doi.org/10.3390/ph5020114
APA StyleBrandt, M. R., Beyer, C. E., & Stahl, S. M. (2012). TRPV1 Antagonists and Chronic Pain: Beyond Thermal Perception. Pharmaceuticals, 5(2), 114-132. https://doi.org/10.3390/ph5020114