Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition
Abstract
:1. Introduction
2. Search Methods for Relevant Literature
3. Discussion of Pharmacogenomics Implications on the Co-use of Conventional and Herbal Medicines
3.1. Brief Overview
Disease | Drug | Herbals | DMEs | Ref. |
---|---|---|---|---|
Malaria | Chloroquine Artesunate Amodiaquine Artemisinin Quinine Lumefantrine/Artemether | Phyllanthus amarus; Momordica charantia | CYP2C8,CYP2D6, CYP3A4 | [19] |
CYP2A6 | [20] | |||
CYP2C8 | ||||
CYP3A4 | ||||
CYP3A4 | [20] | |||
CYP3A4/5, CYP2B6, CYP2C9, CYP2C19 | [21] | |||
HIV | Efavirenz Lopinavir Zidovudine Stavudine* Ritonavir Nevirapine Emtricitabine* Tenofovir | Sutherlandia frutescens Hypoxis hemerocallidea Tridax procumbens | CYP2B6 | [22] |
CYP3A4 | [23] | |||
UDPGT | [24] | |||
NA | ||||
CYP3A4,CYP2D6 | [25] | |||
CYP3A4 | [26] | |||
NA | [27] | |||
Esterases | ||||
Hypertension | Atenolol * Lisinopril * Losartan Nifedipine Verapamil Amlodipine | Lactuca taraxicifolia | N/A | [28] |
N/A | [28] | |||
CYP2C9,CYP3A4 | [28,29] | |||
CYP3A4 | [28,30] | |||
CYP3A4 | [31] | |||
CYP3A4 | [32] |
3.2. A Focus on Malaria
3.2.1. Herbal Medicinal Herbal Plants Used in the Management and Treatment of Malaria
3.2.2. Conventional Drugs Used in the Management of Malaria and the Pharmacogenetics Landscape
3.3. HIV/AIDS Management
3.3.1. Scrounging for a Cure: the Use of Medicinal Herbal Plants in HIV/AIDS Management
3.3.2. FDA Approved ARVs and Pharmacogenetics Landscape
3.4. Hypertension Treatment
3.4.1. The Use of Medicinal Herbal Plants in Hypertension Management and Treatment
3.4.2. Anti-Hypertensive Drugs and Related Pharmacogenetics Observations
3.5. Tuberculosis and Bleeding Disorders
3.5.1. Herbal Management of Tuberculosis and Bleeding Disorders
3.5.2. Commonly Used Drugs to Combat Tuberculosis and Bleeding and Their Pharmacogenetic Outlook
3.6. The Combined Use of Conventional and Herbal Medicine and their Interaction with Polymorphisms in Pharmacokinetic and Pharmacodynamic Genes
3.7. Contestations in Knowledge Production: Issues in the Co-Existence of Conventional and Herbal Medicines
4. Conclusion and Outlook
Medicinal Plant | Purported Medicinal Value | DMEs Affected | Ref. |
---|---|---|---|
Sutherlandia frutescens | Natural immune booster and anti-oxidant | CYP1A2, CYP2A6, CYP2B6,CYP2C8,CYP2C9, CYP2C19, CYP2D6 | [13] [135] |
Hypoxis hemerocallidea | Natural immune booster, anti-inflammatory | CYP2E1, CYP3A4/5, CYP3A4,CYP3A5,CYP19, P-gp | [135] [136] |
Phyllanthus amarus | Anti-cancer, anti-hepatitis, anti-HIV, anti-malarial, anti-tumour | CYP1A2, CYP2C9, CYP3A4, CYP2D6, GSTA1-1, GSTM1-1, GSTP1-1 | [137] [138] |
Cassia siamea | Anti-oxidant, anti-tumor, antimalarial | CYP2C9, GSTM1-1, GSTP1-1 | [138] |
Momordica charantia | Anti-viral, anti-mutagenic, antidiabetic, anti-inflammatory anticancer, analgesic | CYP2C9, GSTA1-1, GSTM1-1, P-gp | [138] [139] [140] |
Cassia alata | Anti-inflammatory, anti-microbial, anti-platelet aggregation, anti-diabetic, anti-hypertensive, anti-malarial | CYP1A2, CYP2C9, CYP3A4, CYP2D6, GSTM1-1, GSTP1-1 | [137] [139] |
Tridax procumbens | Anti-bacterial, anti-protozoal, wound healing | CYP1A2, GSTM1-1 | [139] |
Lactuca taraxicifoli | Antioxidant, anti-inflammatory | CYP1A2, CYP2C9 | [137] |
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Gorman, G.S. Mechanisms and Implication of Drug-Herbal Interactions. J. Bioequiv. Availab. 2012, 4, 1–2. [Google Scholar] [CrossRef]
- Calixto, J.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res. 2000, 33, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Sial, A.A. Effect of Hydroalcoholic Extract of Cydonia oblonga Miller (Quince) on Sexual Behaviour of Wistar Rats. Adv. Pharmacol. Sci. 2014, 2014, 282–298. [Google Scholar] [CrossRef] [PubMed]
- WHO Traditional medicine. 2008 World Health Organization. Available online: http://www.who.int/mediacentre/factsheets/2003/fs134/en/ (accessed on 11 September 2015).
- Rosecrans, R.; Dohnal, J.C. The effect of complimentary and alternative medicine products on laboratory testing. Semin. Diagn. Pathol. 2009, 26, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.A.; Ernst, E. Safety of herbal supplements: A guide for cardiologists. Cardiovasc. Ther. 2010, 28, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E. The efficacy of herbal medicine—An overview. Fundam. Clin. Pharmacol. 2005, 19, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Assiri, A.S. Ricin poisoning causing death after ingestion of herbal medicine. Ann. Saudi. Med. 2012, 32, 315–317. [Google Scholar] [PubMed]
- Li, J.; Bluth, M.H. Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy. Pharmgenomics Pers. Med. 2011, 4, 11–33. [Google Scholar] [PubMed]
- Sim, S.C.; Kacevska, M.; Ingelman-Sundberg, M. Pharmacogenomics of drug-metabolizing enzymes: A recent update on clinical implications and endogenous effects. Pharmacogenomics J. 2012, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J. 2006, 8, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Taesotikul, T.; Nakajima, M.; Tassaneeyakul, W.; Yokoi, T. On the pharmacokinetics of midazolam and cytochrome P450 activities in rats. Xenobiotica 2012, 42, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Fasinu, P.S.; Gutmann, H.; Schiller, H.; James, A.D.; Bouic, P.J.; Rosenkranz, B. The potential of sutherlandia frutescens for herb-drug interaction. Drug Metab. Dispos. 2013, 41, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Chourey, S.; Narsinghani, T.; Soni, L.K. Effect of Allium Sativum on the pharmacokinetic of Metformin in rat plasma : A herb-drug interaction study. Der. Pharma. Chem. 2011, 3, 287–291. [Google Scholar]
- WHO|Global Burden of Disease 2010 Study published. World Health Organization. Available online: http://www.who.int/pmnch/media/news/2012/who_burdenofdisease/en/ (accessed on 11 September 2015).
- Southern African Development Community. The SADC Ministerial Consultative Meeting on Nutrition and HIV and AIDS: January 20–21, 2003; SADC HIV and AIDS Unit: Gaborone, Botswana, 2003; p. 134. [Google Scholar]
- Koffuor, G.A.; Dickson, R.; Gbedema, S.Y.; Ekuadzi, E.; Dapaah, G.; Otoo, F. The immunostimulatory and antimicrobial property of two herbal decoctions used in the management of HIV/AIDS in Ghana. Afr. J. Tradit. Complement Altern. Med. 2014, 11, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Dandara, C.; Swart, M.; Mpeta, B.; Wonkam, A.; Masimirembwa, C. Cytochrome P450 pharmacogenetics in African populations: Implications for public health. Expert Opin. Drug Metab. Toxicol. 2014, 10, 769–785. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organisation, World Malaria Report 2014. Available online: http://www.who.int/malaria/publications/world_malaria_report_2014/wmr2014_country_profiles (accessed on 16 April 2015).
- Li, X.Q.; Björkman, A.; Andersson, T.B.; Gustafsson, L.L.; Masimirembwa, C.M. Identification of human cytochrome P450s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur. J. Clin. Pharmacol. 2003, 59, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Coartem Novartis. Coartem (artemether/lumefantrine) tablets prescribing information. East Hanover, NJ, 2010. Available online: http://www.rxlist.com/coartem-drug/clinical-pharmacology.htm (Accessed on 15 April 2015).
- Ward, B.; Gorski, J.C.; Jones, D.R.; Hall, S.D.; Flockhart, D.; Desta, Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: Implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther. 2003, 306, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Van Waterschoot, R. B.; Ter Heine, R.; Wagenaar, E.; Van Der Kruijssen, C.M.M.; Rooswinkel, R.W.; Huitema, D.R.; Beijnen, J.H.; Schinke, A.H. Effects of cytochrome P450 3A (CYP3A) and the drug transporters p-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir. Br. J. Pharmacol. 2010, 160, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Veal, G.J.; Back, D.J. Metabolism of zidovudine. Gen. Pharmacol. 1995, 26, 1469–1475. [Google Scholar] [CrossRef]
- Denissen, J.F.; Grabowski, B.; Johnson, M.K.; Buko, A.M.; Kempf, D.J.; Thomas, S.B.; Surber, B.W. Metabolism and disposition of the HIV-1 protease inhibitor ritonavir (ABT-538) in rats, dogs, and humans. Drug Metab. Dispos. 1997, 25, 489–501. [Google Scholar] [PubMed]
- Soyinka, J.O.; Onyeji, C.O.; Omoruyi, S.I.; Owolabi, A.R.; Sarma, P.V.; Cook, J.M. Effects of concurrent administration of nevirapine on the disposition of quinine in healthy volunteers. J. Pharm. Pharmacol. 2009, 61, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Boffito, M.; Pozniak, A.; Kearney, B.P.; Higgs, C.; Mathias, A.; Zhong, L.; Jaymin, S. Lack of pharmacokinetic drug interaction between tenofovir disoproxil fumarate and nelfinavir mesylate. Antimicrob. Agents. Chemother. 2005, 49, 4386–4389. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Standard Treatment Guidelines, 6th ed.Ghana National Drugs Programme (GNDP): Accra, Ghana, 2010; pp. 99–100.
- Mccrea, J.; Cribb, A.; Rushmore, T.; Osborne, B.; Gillen, L.; Lo, M.; Waldman, S.; Bjornsson, T.; Spielberg, S.; Goldberg, M.R. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin. Pharmacol. Ther. 1999, 65, 348–352. [Google Scholar] [CrossRef]
- Martin, J.; Registrar, C.P.; Fay, M. Cytochrome P450 drug interactions : Are they clinically relevant. Drug Saf. 2001, 26, 13–21. [Google Scholar] [CrossRef]
- Seedat, Y.K.; Rayner, B.L. South African Hypertension Guideline 2011. S. Afr. Med. J. 2011, 102, 57–88. [Google Scholar] [PubMed]
- Nishio, S.; Watanabe, H.; Kosuge, K.; Uchida, S.; Hayashi, H.; Ohashi, K. Interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. Hypertens. Res. 2005, 28, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Chukwujekwu, J.C.; Lategan, C.A.; Smith, P.J.; Van Heerden, F.R.; Van Staden, J. Antiplasmodial and cytotoxic activity of isolated sesquiterpene lactones from the acetone leaf extract of Vernonia colorata. S. Afr. J. Bot. 2009, 75, 176–179. [Google Scholar] [CrossRef]
- Boulos, V.A.N.M.; Dutra, A.P.; Disanti, S.M.; Hiroma, M.S. Avaliação clínica do quinino para o tratamento da malária por Plasmodium falciparum. Revista da Sociedade Brasileira de Medicina Tropical 1997, 30, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Bharel, S.; Gulati, A.; Abdin, M.Z.; Srivastava, P.S.; Jain, S.K. Structure, biosynthesis and function of artemisinin. Fitoterapia 1996, 67, 387–402. [Google Scholar]
- Bugyei, K.A.; Boye, G.L.; Addy, M.E. Clinical efficacy of a tea-bag formulation of cryptolepis sanguinolenta root in the treatment of acute uncomplicated falciparum malaria. Ghana Med. J. 2010, 44, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ziblim, I.A.; Timothy, K.A.; Deo-anyi, EJ. Exploitation and use of medicinal plants, Northern Region,Ghana. J. Med. Plants Res. 2013, 7, 1984–1993. [Google Scholar]
- Agyare, C.; Asase, A.; Lechtenberg, M.; Niehues, M.; Deters, A.; Hensel, A. An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. J. Ethnopharmacol. 2009, 125, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Van Andel, T.; Myren, B.; van Onselen, S. Ghana’s herbal market. J. Ethnopharmacol. 2012, 140, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Asase, A.; Oteng-Yeboah, A.; Odamtten, G.T.; Simmonds, M.S.J. Ethnobotanical study of some Ghanaian anti-malarial plants. J. Ethnopharmacol. 2005, 99, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y-J.; Capistrano, R.; Dhooghe, L; Foubert, K.; Lemière, F.; Maregesi, S.; Baldé, A.; Apers, S.; Pieters, L. Herbal medicines and infectious diseases: Characterization by LC-SPE-NMR of some medicinal plant extracts used against malaria. Planta. Med. 2011, 77, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Bero, J.; Quetin-Leclercq, J. Natural products published in 2009 from plants traditionally used to treat malaria. Planta Med. 2011, 77, 631–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simelane, M.B.C.; Shonhai, A.; Shode, F.O.; Smith, P.; Singh, M.; Opoku, A.R. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules 2013, 18, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Pillay, P.; Maharaj, V.J.; Smith, P.J. Investigating South African plants as a source of new antimalarial drugs. J. Ethnopharmacol. 2008, 119, 438–454. [Google Scholar] [CrossRef] [PubMed]
- Schmelzer, G.H.; Gurib-Fakim, A.; Arroo, R.; Bosch, C.; Ruijter, H.; Simmonds, M.S.J. Plant Resources of Tropical Africa 11 (1): Medicinal Plants 1; Backhuys Publishers: Wageningen, Netherlands, 2008; p. 790. [Google Scholar]
- Hsu, E. Diverse biologies and experiential continuities: Did the ancient Chinese know that qinghao had anti-malarial properties? Can. Bull. Med. Hist. 2009, 26, 203–213. [Google Scholar] [PubMed]
- Hodel, E.M.S.; Csajka, C.; Ariey, F.; Guidi, M.; Kabanywanyi, A.M.; Duong, S.; Laurent, A. D.; Piero, O.; Hans-Peter, B.; Blaise, G. Effect of single nucleotide polymorphisms in cytochrome P450 isozyme and N-acetyltransferase 2 genes on the metabolism of artemisinin-based combination therapies in malaria patients from Cambodia and Tanzania. Antimicro. Agents Chemother. 2013, 7, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Paganotti, G.M.; Gallo, B.C.; Verra, F.; Sirima, B.S.; Nebié, I.; Diarra, A.; Modiano, D. Human genetic variation is associated with Plasmodium falciparum drug resistance. J. Infect. Dis. 2011, 204, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Paganotti, G.M.; Gramolelli, S.; Tabacchi, F.; Russo, G.; Modiano, D.; Coluzzi, M.; Romano, R. Distribution of human CYP2C8*2 allele in three different African populations. Malar. J. 2012, 11, 11–125. [Google Scholar] [CrossRef] [PubMed]
- Bains, R.K. African variation at Cytochrome P450 genes: Evolutionary aspects and the implications for the treatment of infectious diseases. Evol. Med. Public Health. 2013, 1, 118–134. [Google Scholar] [CrossRef] [PubMed]
- Mugusi, S.; Ngaimisi, E.; Janabi, M.; Minzi, O.; Bakari, M.; Riedel, K.D.; Burhenne, J.; Lindquist, L.; Mugusi, F.; Sandstrom, E.; Aklillu, E. Liver enzyme abnormalities and associated risk factors in HIV patients on efavirenz-based HAART with or without tuberculosis co-infection in Tanzania. PLoS ONE 2012, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sebit, M.B.; Chandiwana, S.K.; Latif, A.S.; Gomo, E.; Acuda, S.W.; Makoni, F.; Vushe, J. Neuropsychiatric aspects of HIV disease progression: Impact of traditional herbs on adult patients in Zimbabwe. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 451–456. [Google Scholar] [CrossRef]
- Unaids. Treatment 2015. Unaids. 2014, p. 44. Available online: www.unaids.org/.../unaids/.../2013/gr2013/UNAIDS_Treatment _2015 not available (accessed on 9 September 2015).
- King, R.; Homsy, J. Involving traditional healers in AIDS education and counselling in sub-Saharan Africa: A review. Aids 1997, 11, S217–S225. [Google Scholar] [PubMed]
- Asres, K.; Bucar, F.; Kartnig, T.; Witvrouw, M.; Pannecouque, C.; De Clercq, E. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother. Res. 2001, 15, 62–69. [Google Scholar] [CrossRef]
- Cos, P.; Hermans, N.; De, B.T.; Apers, S.; Sindambiwe, J.B.; Witvrouw, M.; De, C.E.; Vanden, B.D.; Pieters, L.; Vlietinck, A.J. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine 2002, 9, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Fairfield, K.M.; Eisenberg, D.M.; Davis, R.B.; Libman, H.; Phillips, R.S. Patterns of use, expenditures, and perceived efficacy of complementary and alternative therapies in HIV-infected patients. Arch. Intern. Med. 1998, 158, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Langlois-klassen, D.; Kipp, W.; Jhangri, G.S.; Rubaale, T. Use of Traditional Herbal Medicine by AIDS Patients in Kabarole District, Western Uganda. Am. J. Trop. Med. Hyg. 2007, 77, 757–763. [Google Scholar] [PubMed]
- Kisangau, D.P.; Lyaruu, H.V.M.; Hosea, K.M.; Joseph, C.C. Use of traditional medicines in the management of HIV/AIDS opportunistic infections in Tanzania: A case in the Bukoba rural district. J. Ethnobiol. Ethnomed. 2007, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chinsembu, K.C.; Hedimbi, M. Ethnomedicinal plants and other natural products with anti-HIV active compounds and their putative modes of action. Int. J. Biotechnol. Mol. Biol. Res. 2010, 1, 74–91. [Google Scholar]
- Noumi, E.; Manga, P.N. Traditional Medicines for HIV / AIDS and Opportunistic Infections in North-West Cameroon : Case of Skin Infections. Am. J. Trop. Med. Hyg. 2011, 1, 44–64. [Google Scholar]
- Mensah, C.M.; Gyasi, R.M. Use of Herbal Medicine in the Management of Malaria in the urban periphery of Ghana. J. Biol. Agric. Healthcare 2012, 3208, 113–123. [Google Scholar]
- Leteane, M.M; Ngwenya, B.N.; Muzila, M; Namushe, A.; Mwinga, J.; Musonda, R.; Moyo, S.; Mengestu, Y.B.; Abegazk, B.M.; Andrae-Marobela, K. Old plants newly discovered: Cassia sieberiana D.C. and Cassia abbreviata Oliv. Oliv. root extracts inhibit in vitro HIV-1c replication in peripheral blood mononuclear cells (PBMCs) by different modes of action. J. Ethnopharmacol. 2012, 141, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Malta, M.; da Silva, C.M.F.P.; Magnanini, M.M.; Wirtz, A.L.; Perissé, A.R.S.; Beyrer, C.; Steffanie, A. S.; Francisco, I.B. Improvement of HAART in Brazil, 1998–2008: A nationwide assessment of survival times after AIDS diagnosis among men who have sex with men. BMC Public Health 2015, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Skelton, M.M.; Kampira, E.E.; Wonkam, A.A.; Mhandire, K.K.; Kumwenda, J.J.; Duri, K.K.; Dandara, C. Frequency variation among sub-Saharan populations in virus restriction gene, BST-2 proximal promoter polymorphisms: Implications for HIV-1 prevalence differences among African countries. OMICS 2014, 18, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Tishkoff, S.A.; Reed, F.A.; Friedlaender, F.R.; Ehret, C.; Ranciaro, A.; Froment, A.; Hirbo, J.B.; Awomoyi, A.A.; Bodo, J.M.; Doumbo, O.; et al. The genetic structure and history of Africans and African Americans. Science 2009, 324, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Dandara, C.; Huzair, F.; Borda-Rodriguez, A.; Chirikure, S.; Okpechi, I.; Warnich, L.; Masimirembwa, C. H3Africa and the African life sciences ecosystem: Building sustainable innovation. OMICS 2014, 18, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Kwara, A.; Lartey, M.; Sagoe, K.W.; Xexemeku, F.; Kenu, E.; Oliver-Commey, J.; Boima, V.; Sagoe, A.; Boamah, I.; Greenblatt, D.J.; Court, M.H. Pharmacokinetics of efavirenz when co-administered with rifampin in TB/HIV co-infected patients: Pharmacogenetic effect of CYP2B6 variation. J. Clin. Pharmacol. 2008, 48, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Maimbo, M.; Kiyotani, K.; Mushiroda, T.; Masimirembwa, C.; Nakamura, Y. CYP2B6 genotype is a strong predictor of systemic exposure to efavirenz in HIV-infected Zimbabweans. Eur. J. Clin. Pharmacol. 2012, 68, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Ngaimisi, E.; Habtewold, A.; Minzi, O.; Makonnen, E.; Mugusi, S.; Amogne, W.; Yimer, G.; Riedel, K.D.; Janabi, M.; Aderaye, G.; et al. Importance of Ethnicity, CYP2B6 and ABCB1 Genotype for Efavirenz Pharmacokinetics and Treatment Outcomes: A Parallel-Group Prospective Cohort Study in Two Sub-Saharan Africa Populations. PLoS ONE 2013, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Powers, V.; Ward, J.; Gompels, M. CYP2B6 G516T genotyping in a UK cohort of HIV-positive patients: Polymorphism frequency and influence on efavirenz discontinuation. HIV Med. 2009, 10, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, E.R.; Grady, B.; Ritchie, M.D.; Ribaudo, H.J.; Acosta, E.P.; Morse, G.D.; Gulick, R.M.; Robbins, G.K.; Clifford, D.B.; Daar, E.S.; McLaren, P.; Haas, D.W. Genome-wide association study of plasma efavirenz pharmacokinetics in AIDS Clinical Trials Group protocols implicates several CYP2B6 variants. Pharmacogenet. Genomics 2012, 22, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Swart, M.; Soko, N.; Wonkam, A.; Huzair, F.; Dandara, C. A Global Health Diagnostic for Personalized Medicine in Resource-Constrained World Settings: A Simple PCR-RFLP Method for Genotyping CYP2B6 g.15582C > T and Science and Policy Relevance for Optimal Use of Antiretroviral Drug Efavirenz. OMICS 2015, 19, 332–338. [Google Scholar] [CrossRef]
- Swart, M.; Whitehorn, H.; Ren, Y.; Smith, P.; Ramesar, R. S.; Dandara, C. PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients. BMC Med. Genet. 2012, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarfo, F.S.; Zhang, Y.; Egan, D.; Tetteh, L.; Phillips, R.; Bedu-Addo, G.; Sarfo, M.A.; Khoo, S.; Owen, A.; Chadwick, D.R. Pharmacogenetic associations with plasma efavirenz concentrations and clinical correlates in a retrospective cohort of Ghanaian HIV-infected patients. J. Antimicrob. Chemother. 2014, 69, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Rollinger, J. M.; Langer, T.; Stuppner, H. Integrated in silico tools for exploiting the natural products’ bioactivity. Planta Med. 2006, 72, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Amir-Aslani, A. Toxicogenomic predictive modeling: Emerging opportunities for more efficient drug discovery and development. Technol. Forecast. Soc. Change 2008, 75, 905–932. [Google Scholar] [CrossRef]
- Bloom, D.E.; Cafiero, E.T.; Jané-Llopis, E.; Abrahams-Gessel, S.; Bloom, L.R.; Fathima, S.; Feigl, A.B.; Gaziano, T.; Mowafi, M.; Pandya, A.; et al. The Global Economic Burden of Non-communicable Diseases. World Economic Forum: Geneva, Switzerland, September 2011; pp. 1–48. [Google Scholar]
- Hendriks, M.E.; Wit, F.W.N.M.; Roos, M.T.L.; Brewster, L.M.; Akande, T.M.; de Beer, I.H.; Mfinanga, S.G.; Kahwa, A.M.; Gatongi, P.; Van Rooy, G.; et al. Hypertension in sub-Saharan Africa: Cross-sectional surveys in four rural and urban communities. PLoS ONE 2012, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, K. Health beliefs and prescription medication compliance among diagnosed hypertension clinic attenders in a rural South African Hospital. Curationis 2004, 27, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Oreagba, I.A.; Oshikoya, K.A.; Amachree, M. Herbal medicine use among urban residents in Lagos, Nigeria. BMC Complement. Altern. Med. 2011, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.J.; Bin, Y.S.; Kiat, H.; Chang, D.H.-T. The use of complementary and alternative medicine by people with cardiovascular disease: A systematic review. BMC Public Health. 2012, 12, 1–9. [Google Scholar]
- Gohar, F.; Greenfield, S.M.; Beevers, D.G.; Lip, G.Y.H.; Jolly, K. Self-care and adherence to medication: A survey in the hypertension outpatient clinic. BMC Complement. Altern. Med. 2008, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Abel, C.; Busia, K.; Med, H.H. An Exploratory Ethnobotanical Study of the Practice of Herbal Medicine by the Akan Peoples of Ghana Herbal Medicine in Ghana. Altern. Med. Rev. 2005, 10, 112–122. [Google Scholar] [PubMed]
- Kuatsienu, L.E.; Ansah, C.; Woode, E. Safety Assessment of the Ethanolic Leaf Extract of Launaea Taraxacifolia (Willd) of the Family Asteraceae in Rodents. Master’s Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2012. [Google Scholar]
- Adinortey, M.B.; Sarfo, J.K.; Quayson, E.T.; Weremfo, A.; Adinortey, C.A. Phytochemical Screening, Proximate and Mineral Composition of Launaea taraxacifolia Leaves. Res. J. Med. Plant 2012, 6, 171–179. [Google Scholar] [CrossRef]
- Danley, K. Letters of the Bush: A Case Study of Traditional Setswana Herbal Medicine. Graduate Institute Independent Study Project (ISP) Collection. 2006, p. 270. Available online: http://digitalcollections.sit.edu/isp_collection/270 (accessed 14 September 2015).
- Motlhanka, D.M.; Makhabu, S.W. Medicinal and edible wild fruit plants of Botswana as emerging new crop opportunities. J. Med. Plants Res. 2011, 5, 1836–1842. [Google Scholar]
- Simpson, D. Buchu-South Africa’s amazing herbal remedy. Scott. Med. J. 1998, 43, 189–191. [Google Scholar] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, H.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Danaei, G.; Finucane, M.M.; Lin, J.K.; Singh, G.M.; Paciorek, C.J.; Cowan, M.J.; Farzadfar, F.; Stevens, G.A.; Lim, S.S.; Riley, L.M.; Ezzati, M. National, regional, and global trends in systolic blood pressure since 1980: Systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 54 million participants. Lancet 2011, 377, 568–577. [Google Scholar] [CrossRef]
- Jolly, S.; Vittinghoff, E.; Chattopadhyay, A.; Bibbins-Domingo, K. Higher cardiovascular disease prevalence and mortality among younger blacks compared to whites. Am. J. Med. 2010, 123, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Zwieten, P.A. Angiotensin II receptor antagonists (AT1-blockers, ARBs, sartans): Similarities and differences. Neth. Heart J. 2006, 14, 381–387. [Google Scholar] [PubMed]
- Yin, T.; Maekawa, K.; Kamide, K.; Saito, Y.; Hanada, H.; Miyashita, K.; Kokubo, Y.; Akaiwa, Y.; Otsubo, R.; Nagatsuka, K.; et al. Genetic variations of CYP2C9 in 724 Japanese individuals and their impact on the antihypertensive effects of losartan. Hypertens. Res. 2008, 31, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, V.; Garcia, E.P.; O’Connor, D.T.; Brophy, V.H.; Alcaraz, J.; Richard, E.; Bakris, G.L.; Middleton, J.P.; Norris, K.C.; Wright, J.; Hiremath, L.; Contreras, G.; Appel, L.J.; Lipkowitz, M.S. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease and the AASK study investigators. Am. J. Nephrol. 2010, 31, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Sekino, K.; Kubota, T.; Okada, Y.; Yamada, Y.; Yamamoto, K.; Horiuchi, R.; Kimura, K.; Iga, T. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur. J. Clin. Pharmacol. 2003, 59, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, P.R.; Reeves, A.Z.; Powell, K.R.; Napier, R.J.; Swimm, A.I.; Sun, A.; Giesler, K.; Bommarius, B.; Shinnick, T.M.; Snyder, J.P.; et al. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis. Eur. J. Med. Chem. 2015, 92, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Dabo, E.; Adjei, O.; Meyer, C.G.; Horstmann, R.D.; Enimil, A.; Kruppa, T.F.; Bonsu, F.; Browne, E.N.L.; Amanua Chinbuah, M.; Osei, I.; et al. Mycobacterium tuberculosis drug resistance, Ghana. Emerg. Infect. Dis. 2006, 12, 1171–1172. [Google Scholar] [CrossRef] [PubMed]
- Semenya, S.S.; Maroyi, A. Medicinal plants used for the treatment of tuberculosis by Bapedi traditional healers in three districts of the Limpopo Province, South Africa. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Omoruyi, B. E.; Afolayan, A. J.; Bradley, G. The inhibitory effect of Mesembryanthemum edule (L.) bolus essential oil on some pathogenic fungal isolates. BMC Complement. Altern. Med. 2014, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A. Medicinal plants used to treat TB in Ghana. Int. J. Mycobacteriol. 2015, 4, 116–123. [Google Scholar] [CrossRef]
- Van Vuuren, S.F.; Naidoo, D. An antimicrobial investigation of plants used traditionally in southern Africa to treat sexually transmitted infections. J. Ethnopharmacol. 2010, 130, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Cordier, W.; Cromarty, D.; Botha, E.; Steenkamp, V. Effects of selected South African plant extracts on haemolysis and coagulation. Hum. Exp. Toxicol. 2012, 31, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Maroyi, A. Traditional use of medicinal plants in south-central Zimbabwe: Review and perspectives. J. Ethnobiol. Ethnomed. 2013, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Chigutsa, E.; Visser, M.E.; Swart, E.C.; Denti, P.; Pushpakom, S.; Egan, D.; et al. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: Dosing implications. Antimicrob. Agents Chemother. 2011, 55, 4122–4127. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.; Swaminathan, S. Role of pharmacogenomics in the treatment of tuberculosis: A review. Pharmgenomics Pers. Med. 2012, 5, 89–98. [Google Scholar] [PubMed]
- Dandara, C.; Masimirembwa, C.M.; Magimba, A.; Kaaya, S.; Sayi, J.; Sommers, D.K.; Snyman, J.R.; Hasler, J.A. Arylamine N-acetyltransferase (NAT2) genotypes in Africans: The identification of a new allele with nucleotide changes 481C > T and 590G > A. Pharmacogenetics 2003, 13, 55–58. [Google Scholar] [CrossRef]
- Ben Mahmoud, L.; Ghozzi, H.; Kamoun, A.; Hakim, A.; Hachicha, H.; Hammami, S.; Sahnoun, Z.; Zalila, N.; Makni, H.; Zeghal, K. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol. Biol. (Paris) 2012, 60, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y-S.; Chern, H-D.; Su, W-J.; Wu, J-C.; Chang, S-C.; Chiang, C-H.; Chang, F.Y.; Lee, S.D. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 2003, 37, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; Ghosh, S.K.; Sutradhar, D.; Sikdar, N.; Mazumder, S.; Barman, S. Predisposition of antituberculosis drug induced hepatotoxicity by cytochrome P450 2E1 genotype and haplotype in pediatric patients. J. Gastroenterol. Hepatol. 2006, 21, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Shin, J. Clinical pharmacogenomics of warfarin and clopidogrel. J. Pharm. Pract. 2012, 25, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, L.S.; Zhang, Z.Y. Human P450 metabolism of warfarin. Pharmacol. Ther. 1997, 73, 67–74. [Google Scholar] [CrossRef]
- Lee, C.R.; Goldstein, J.A.; Pieper, J.A. Cytochrome P450 2C9 polymorphisms: A comprehensive review of the in vitro and human data. Pharmacogenetics 2002, 12, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Kurtz, G.; Botton, M.R. Pharmacogenomics of warfarin in populations of African descent. Br. J. Clin. Pharmacol. 2013, 75, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Frueh, F.W.; Amur, S.; Mummaneni, P.; Epstein, R.S.; Aubert, R.E.; DeLuca, T.M.; Verbrugge, R.R.; Burckart, G.J.; Lesko, L.J. Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: Prevalence of related drug use. Pharmacotherapy 2008, 28, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Bhathena, A.; Ndjountché, L.; Pearce, R.E.; Abdel-Rahman, S.M.; Alander, S.W.; Bradford, L.D.; Rogan, P.K.; Leeder, J.S. Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans. Pharmacogenomics J. 2005, 5, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Dandara, C.; Masimirembwa, C.M.; Magimba, A.; Sayi, J.; Kaaya, S.; Sommers., D.K.; Snyman, J.R.; Hasler, J.A. Genetic polymorphism of CYP2D6 and CYP2C19 in east- and southern African populations including psychiatric patients. Eur. J. Clin. Pharmacol. 2001, 57, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Aklillu, E.; Persson, I.; Bertilsson, L.; Johansson, I.; Rodrigues, F.; Ingelman-Sundberg, M. Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J. Pharmacol. Exp. Ther. 1996, 278, 441–446. [Google Scholar] [PubMed]
- Chen, X.-W.; Serag, E.S.; Sneed, K.B.; Liang, J.; Chew, H.; Pan, S.-Y.; Zhou, S.F. Clinical herbal interactions with conventional drugs: From molecules to maladies. Curr. Med. Chem. 2011, 18, 4836–4850. [Google Scholar] [CrossRef] [PubMed]
- Bateman, J.; Chapman, R.D.; Simpson, D. Possible toxicity of herbal remedies. Scott. Med. J. 1998, 43, 7–15. [Google Scholar] [PubMed]
- Debas, H.T.; Laxminarayan, R.; Straus, S.E. Chapter 69: Complementary and Alternative Medicine. In Disease Control Priorities in Developing Countries, 2nd ed.; Jamison, D.T., Breman, J.G., Measham, A.R., Alleyne, G., Claeson, M., Evans, D.B., Jha, P., Mills, A., Musgrove, P., Eds.; World Bank: Washington, DC, USA, 2006; pp. 1281–1292. [Google Scholar]
- Zhang, A.L.; Xue, C.C.; Fong, H.H.S. Chapter 22: Integration of Herbal Medicine into Evidence-Based Clinical Practice. In Herbal Medicine:Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–15. [Google Scholar]
- Di, Y.M.; Li, C.G.; Xue, C.C.; Zhou, S.-F. Clinical drugs that interact with St. John’s wort and implication in drug development. Curr. Pharm. Des. 2008, 14, 1723–1742. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hamman, M.A.; Huang, S-M.; Lesko, L.J.; Hall, S.D. Effect of St John’s wort on the pharmacokinetics of fexofenadine. Clin. Pharmacol. Ther. 2002, 71, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Fugh-berman, A. Herb-drug interactions. Lancet 2000, 355, 134–138. [Google Scholar] [CrossRef]
- Thabrew, I.M.; Munasinghe, J. Effect of some herbal infusions consumed in Sri Lanka on the steady state blood levels and toxicity of carbamazepine and theophylline. Bol. Latinoam. Caribe. Plant Med. Aromat. 2008, 7, 127–136. [Google Scholar]
- Backon, J. Ginger: Inhibition of thromboxane synthetase and stimulation of prostacyclin: Relevance for medicine and psychiatry. Med. Hypotheses 1986, 20, 271–278. [Google Scholar] [CrossRef]
- Norred, C.L.; Finlayson, C.A. Hemorrhage after the preoperative use of complementary and alternative medicines. AANA J. 2000, 68, 217–220. [Google Scholar] [PubMed]
- Cortina, M.A.; Sodha, A.; Fazel, M.; Ramchandani, P.G. Prevalence of child mental health problems in sub-Saharan Africa: A systematic review. Arch. Pediatr. Adolesc. Med. 2012, 166, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Robertson, B.; Kottler, A. Cultural issues in the psychiatric assessment of Xhosa children and adolescents. S. Afr. Med. J. 1993, 83, 207–208. [Google Scholar] [PubMed]
- Taylor, J.L.S.; Rabe, T.; Mcgaw, L.J.; Jäger, A.K.; Van Staden, J. Towards the scientific validation of traditional medicinal plants. Plant Growth Regul. 2001, 34, 23–37. [Google Scholar] [CrossRef]
- Bae, J-W.; Kim, D-H.; Lee, W-W.; Kim, H-Y.; Son, C-G. Characterizing the human equivalent dose of herbal medicines in animal toxicity studies. J. Ethnopharmacol. 2015, 162, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Xu, C. Analysis of the international competitiveness of Chinese medicine industry based on the diamond model. Int. Bus. Res. 2010, 3, 165–171. [Google Scholar] [CrossRef]
- Mills, E.; Cooper, C.; Seely, D.; Kanfer, I. African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutr. J. 2005, 4, 10–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, V.D.P.; Foster, B.C.; Thor Arnason, J.; Mills, E.J.; Kanfer, I. In vitro evaluation of human cytochrome P450 and P-glycoprotein-mediated metabolism of some phytochemicals in extracts and formulations of African potato. Phytomedicine 2007, 14, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Appiah-Opong, R.; Commandeur, J.N.M.; van Vugt-Lussenburg, B.; Vermeulen, N.P.E. Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products. Toxicology 2007, 235, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Taesotikul, T.; Dumrongsakulchai, W.; Wattanachai, N.; Navinpipat, V.; Somanabandhu, A.; Tassaneeyakul, W.; Tassaneeyakul, W. Inhibitory effects of Phyllanthus amarus and its major lignans on human microsomal cytochrome P450 activities: Evidence for CYP3A4 mechanism-based inhibition. Drug Metab. Pharmacokinet. 2011, 26, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Agbonon, A.; Eklu-Gadegbeku, K.; Aklikokou, K.; Gbeassor, M.; Akpagana, K.; Tam, T.W.; Arnason, J.T.; Foster, B.C. In vitro inhibitory effect of West African medicinal and food plants on human cytochrome P450 3A subfamily. J. Ethnopharmacol. 2010, 128, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T.; Satsu, H.; Hatsugai, Y.; Aizawa, K.; Inakuma, T.; Nagata, S.; Sakuda, S.H.; Nagasawa, H.; Shimizu, M. Inhibitory effect of a bitter melon extract on the P-glycoprotein activity in intestinal Caco-2 cells. Br. J. Pharmacol. 2004, 143, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Shetti, S.; Kumar, C.D.; Sriwastava, N.K.; Sharma, I.P. Pharmacovigilance of herbal medicines: Current state and future directions. Pharmacogn. Mag. 2011, 7, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.; Graeme, L.; Pierre, D.; Elizabeth, W.; Kelvin, C. Pharmacovigilance of herbal medicine. J. Ethnopharmacol. 2012, 140, 513–518. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomford, N.E.; Dzobo, K.; Chopera, D.; Wonkam, A.; Skelton, M.; Blackhurst, D.; Chirikure, S.; Dandara, C. Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition. Pharmaceuticals 2015, 8, 637-663. https://doi.org/10.3390/ph8030637
Thomford NE, Dzobo K, Chopera D, Wonkam A, Skelton M, Blackhurst D, Chirikure S, Dandara C. Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition. Pharmaceuticals. 2015; 8(3):637-663. https://doi.org/10.3390/ph8030637
Chicago/Turabian StyleThomford, Nicholas E., Kevin Dzobo, Denis Chopera, Ambroise Wonkam, Michelle Skelton, Dee Blackhurst, Shadreck Chirikure, and Collet Dandara. 2015. "Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition" Pharmaceuticals 8, no. 3: 637-663. https://doi.org/10.3390/ph8030637
APA StyleThomford, N. E., Dzobo, K., Chopera, D., Wonkam, A., Skelton, M., Blackhurst, D., Chirikure, S., & Dandara, C. (2015). Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition. Pharmaceuticals, 8(3), 637-663. https://doi.org/10.3390/ph8030637