De Novo Assembly and Species-Specific Marker Development as a Useful Tool for the Identification of Scutellaria L. Species
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling and Genomic DNA Extraction
2.2. Polymerase Chain Reaction (PCR) Amplification
2.3. Sequel Library Construction
2.4. Preparation of Species-Specific Primers Using Barcode DNA
3. Results
3.1. Leaf Profiles of Five Species of Scutellaria L.
3.2. RNA-Seq-Based De Novo Assembly of Sample 3
3.3. K-Mer Analysis
3.4. Assembly Results
3.5. Self-Mapping Results
3.6. Blast Results
3.7. BUSCO Results
3.8. Gene Prediction and Annotation Results
3.9. Validation of Species-Specific Primers Using Barcode DNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.; Kim, S. The complete chloroplast genome of Scutellaria indica var. coccinea (Lamiaceae), an endemic taxon in Korea. Mitochondrial DNA. Part B Resour. 2019, 4, 2539–2540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.T.; Lee, S.T. Taxonomy of the genus Scutellaria (Lamiaceae) in Korea. Korean J. Plant Taxon. 1995, 25, 71–102. [Google Scholar] [CrossRef]
- Kim, C.-S.; Kim, S.-Y.; Byun, G.-O. A new record for Korean flora: Scutellaria tuberifera CY Wu & C. Chen (Lamiaceae). Korean J. Plant Taxon. 2011, 41, 249–252. [Google Scholar]
- Shang, X.; He, X.; Li, M.; Zhang, R.; Fan, P.; Zhang, Q.; Jia, Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2010, 128, 279–313. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.-H.; Lee, B.Y.; Kim, J.-S.; Kim, S. A new distribution record of Scutellaria barbata D. Don (Lamiaceae) and an erroneously identified Scutellaria in Korea. Korean J. Plant Taxon. 2018, 48, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-T.; Lee, S.-T. Fruit surface morphology of Scutellaria (Lamiaceae) in Korea and its taxonomic implication. Korean J. Plant Taxon. 1995, 25, 165. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, A.K.; Singh, S.; Singh, B.D. Next-Generation Sequencing (NGS) Tools and Impact in Plant Breeding. In Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools; Springer: Berlin/Heidelberg, Germany, 2015; pp. 563–612. [Google Scholar]
- Punia, A.; Yadav, R.; Arora, P.; Chaudhury, A. Molecular and morphophysiological characterization of superior cluster bean (Cymopsis tetragonoloba) varieties. J. Crop Sci. Biotechnol. 2009, 12, 143. [Google Scholar] [CrossRef]
- Pathak, R.; Singh, S.; Singh, M.; Henry, A. Molecular assessment of genetic diversity in cluster bean (Cyamopsis tetragonoloba) genotypes. J. Genet. 2010, 89, 243–246. [Google Scholar] [CrossRef]
- Kuravadi, N.A.; Tiwari, P.B.; Tanwar, U.K.; Tripathi, S.K.; Dhugga, K.S.; Gill, K.S.; Randhawa, G.S. Identification and characterization of EST-SSR markers in cluster bean (Cyamopsis spp.). Crop Sci. 2014, 54, 1097–1102. [Google Scholar] [CrossRef]
- Kuravadi, N.A.; Yenagi, V.; Rangiah, K.; Mahesh, H.; Rajamani, A.; Shirke, M.D.; Russiachand, H.; Loganathan, R.M.; Lingu, C.S.; Siddappa, S. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree. PeerJ 2015, 3, e1066. [Google Scholar] [CrossRef] [Green Version]
- Pathak, R. Clusterbean: Physiology, Genetics and Cultivation; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kumar, S.; Parekh, M.J.; Patel, C.B.; Zala, H.N.; Sharma, R.; Kulkarni, K.S.; Fougat, R.S.; Bhatt, R.K.; Sakure, A.A. Development and validation of EST-derived SSR markers and diversity analysis in cluster bean (Cyamopsis tetragonoloba). J. Plant Biochem. Biotechnol. 2016, 25, 263–269. [Google Scholar] [CrossRef]
- Taheri, S.; Lee Abdullah, T.; Yusop, M.R.; Hanafi, M.M.; Sahebi, M.; Azizi, P.; Shamshiri, R.R. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 2018, 23, 399. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kang, S.-J.; Shim, H.; Lee, S.-C.; Kim, N.-H.; Jang, W.; Park, J.Y.; Kang, J.H.; Lee, W.H.; Lee, T.J.; et al. Characterization of chloroplast genomes, nuclear ribosomal DNAs, and polymorphic SSR markers using whole genome sequences of two euonymus hamiltonianus phenotypes. Plant Breed. Biotechnol. 2019, 7, 50–61. [Google Scholar] [CrossRef]
- Lee, J.; Joh, H.J.; Kim, N.-H.; Lee, S.-C.; Jang, W.; Choi, B.S.; Yu, Y.; Yang, T.-J. High-throughput development of polymorphic simple sequence repeat markers using two whole genome sequence data in Peucedanum japonicum. Plant Breed. Biotechnol. 2017, 5, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Grover, A.; Sharma, P. Development and use of molecular markers: Past and present. Crit. Rev. Biotechnol. 2016, 36, 290–302. [Google Scholar] [CrossRef]
- Lenz, P.H.; Roncalli, V.; Hassett, R.P.; Wu, L.-S.; Cieslak, M.C.; Hartline, D.K.; Christie, A.E. De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)–the dominant zooplankter of the North Atlantic Ocean. PLoS ONE 2014, 9, e88589. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Goel, R.; Pande, V.; Asif, M.H.; Mohanty, C.S. De novo sequencing and comparative analysis of leaf transcriptomes of diverse condensed tannin-containing lines of underutilized Psophocarpus tetragonolobus (L.) DC. Sci. Rep. 2017, 7, 44733. [Google Scholar] [CrossRef] [Green Version]
- Kajitani, R.; Yoshimura, D.; Okuno, M.; Minakuchi, Y.; Kagoshima, H.; Fujiyama, A.; Kubokawa, K.; Kohara, Y.; Toyoda, A.; Itoh, T. Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions. Nat. Commun. 2019, 10, 1702. [Google Scholar] [CrossRef] [Green Version]
- English, A.C.; Richards, S.; Han, Y.; Wang, M.; Vee, V.; Qu, J.; Qin, X.; Muzny, D.M.; Reid, J.G.; Worley, K.C.; et al. Mind the gap: Upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 2012, 7, e47768. [Google Scholar] [CrossRef]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [Green Version]
- Cantarel, B.L.; Korf, I.; Robb, S.M.; Parra, G.; Ross, E.; Moore, B.; Holt, C.; Sanchez Alvarado, A.; Yandell, M. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008, 18, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M.; et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Kim, A.Y.; Jo, A.; Choi, H.; Cho, S.S.; Choi, C. Development of user-friendly method to distinguish subspecies of the Korean medicinal herb perilla frutescens using multiplex-PCR. Molecules 2017, 22, 665. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Choi, H.; Shin, J.; Jo, A.; Lee, K.E.; Cho, S.S.; Hwang, Y.P.; Choi, C. Molecular Discrimination of Cynanchum wilfordii and Cynanchum auriculatum by InDel Markers of Chloroplast DNA. Molecules 2018, 23, 1337. [Google Scholar] [CrossRef] [Green Version]
Raw Data Stats | Filtered Data Stats | |
---|---|---|
Total read bases | 147,017,334,834 | 112,735,647,909 |
Total reads | 973,24,734 | 749,527,438 |
GC (%) | 37.4 | 36.69 |
Q20 (%) | 95.51 | 98.91 |
Q30 (%) | 90.45 | 96.49 |
K-Mer Coverage | Heterozygosity | Genome Length | Genome Repeat Length | |
---|---|---|---|---|
21mer | 234.2 | 0.404 | 352,670,975 | 166,169,989 |
Contigs | Scaffolds | |
---|---|---|
No. | 19,561 | 14,625 |
Sum | 298,515,080 | 318,741,328 |
N50 | 42,020 | 78,430 |
Longest | 411,840 | 803,009 |
Shortest | 1000 | 1000 |
Average length | 15,260 | 21,794 |
Library Name | Total Reads | Mapped Reads | Coverage (%) | Depth | Ins. Size (Std.) |
---|---|---|---|---|---|
DNA | 749,527,438 | 655,896,731 (87.51%) | 94.65 | 276.51 | 475.88 (113.04) |
Status | Of BUSCOs | Percentage |
---|---|---|
Complete BUSCOs (C) | ||
Complete and single-copy BUSCOs (S) | 229 | 75.58% |
Complete and duplicated BUSCOs (D) | 50 | 16.50% |
Fragmented BUSCOs (F) | 4 | 1.32% |
Missing BUSCOs (M) | 20 | 6.60% |
Total BUSCO groups searched | 303 | 100.00% |
Sample | Contigs | Bases | Genes | CDSs | tRNAs | rRNAs |
---|---|---|---|---|---|---|
DNA | 14,625 | 318,741,328 | 23,814 | 22,788 | 670 | 356 |
Primer Name | Sequence (5′->3′) | Product Size | Tm (℃) | NCBI Accession of Target Genome | Locus | Target Species | |
---|---|---|---|---|---|---|---|
SL Primer | Forward | TGCTTACCTGCTTCCACAGG | 945 bp | 54 | KM526800.1 | CYC2B | Scutellaria indica L. |
Reverse | TCGGTGGCGACGTTATATGG | ||||||
SP Primer | Forward | GAAATTACTTTTAAATTCAT | 173 bp | 42 | KX060016.1 | trnH-PsbA | Scutellaria pekinensis var. transitra (Makino) H. Hara |
Reverse | GTAGTCTTTCCTAGACTTTA | ||||||
ST1 Primer | Forward | TTGTGGCATCACTAACCCCC | 491 bp | 54 | MZ714561 | AtpI_0 | Scutellaria indica var. tsusimensis (H. Hara) Ohwi |
Reverse | AGGGGTAGGCTGAACGTACT | ||||||
ST2 Primer | Forward | CGCATTCCTCCAGCCTATGT | 444 bp | 54 | MZ714562 | rbcL_3 | Scutellaria indica var. tsusimensis (H. Hara) Ohwi |
Reverse | ATCACGGCAGTAGTGTGCAA | ||||||
SD1 Primer | Forward | ATAACTTCCCTCTAGACTTA | 939 bp | 43 | KT750009.1 | - | Scutellaria barbata D. Don |
Reverse | TGAATTTCAATTATTTTTTC | ||||||
SD2 Primer | Forward | ACCCTTGATTCGCACACTGA | 77 bp | 55 | KX059898.1 | PsbK-PsbI | Scutellaria barbata D. Don |
Reverse | TGAGGAAACGGACGTAAGCC | ||||||
SB Primer | Forward | TCCCCAAAAAGTGGATCCCG | 218 bp | 55 | MF521633.1 | - | Scutellaria baicalensis Georgi |
Reverse | GGGCCTCATTGGTAAGTGCT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Kang, W.S.; Kim, J.S.; Na, C.-S.; Kim, S. De Novo Assembly and Species-Specific Marker Development as a Useful Tool for the Identification of Scutellaria L. Species. Curr. Issues Mol. Biol. 2021, 43, 2177-2188. https://doi.org/10.3390/cimb43030152
Choi H, Kang WS, Kim JS, Na C-S, Kim S. De Novo Assembly and Species-Specific Marker Development as a Useful Tool for the Identification of Scutellaria L. Species. Current Issues in Molecular Biology. 2021; 43(3):2177-2188. https://doi.org/10.3390/cimb43030152
Chicago/Turabian StyleChoi, Hakjoon, Wan Seok Kang, Jin Seok Kim, Chang-Su Na, and Sunoh Kim. 2021. "De Novo Assembly and Species-Specific Marker Development as a Useful Tool for the Identification of Scutellaria L. Species" Current Issues in Molecular Biology 43, no. 3: 2177-2188. https://doi.org/10.3390/cimb43030152
APA StyleChoi, H., Kang, W. S., Kim, J. S., Na, C. -S., & Kim, S. (2021). De Novo Assembly and Species-Specific Marker Development as a Useful Tool for the Identification of Scutellaria L. Species. Current Issues in Molecular Biology, 43(3), 2177-2188. https://doi.org/10.3390/cimb43030152