Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Mutational Pattern in the Fourth Pandemic Phase in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. RNA Extraction
2.3. qRT PCR
2.4. Typing qRT PCR Kits
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection Is Suspected. Available online: https://www.who.int/publications-detail-redirect/10665-332299 (accessed on 20 September 2021).
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Who Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 28 November 2021).
- Hμερήσιες Εκθέσεις COVID-19. (EODY COVID GR Daily Report). Available online: https://eody.gov.gr/epidimiologika-statistika-dedomena/ektheseis-COVID-19/ (accessed on 29 October 2021).
- COVID-19|Στατιστικά δεδομένα εμβολιασμού. (Vaccination statistical data). Available online: https://emvolio.gov.gr/vaccinationtracker (accessed on 28 October 2021).
- Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 22 November 2021).
- SARS-CoV-2 Variants of Concern as of 26 November 2021. Available online: https://www.ecdc.europa.eu/en/COVID-19/variants-concern (accessed on 28 November 2021).
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Hodcroft, E.B. Genetic Variants of SARS-CoV-2—What Do They Mean? JAMA 2021, 325, 529. [Google Scholar] [CrossRef] [PubMed]
- Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence That D614g Increases Infectivity of the COVID-19 Virus. Cell 2020, 182, 812–827. [Google Scholar] [CrossRef] [PubMed]
- Klumpp-Thomas, C.; Kalish, H.; Hicks, J.; Mehalko, J.; Drew, M.; Memoli, M.J.; Hall, M.D.; Esposito, D.; Sadtler, K. Effect of D614G Spike Variant on Immunoglobulin G, M, or a Spike Seroassay Performance. J. Infect. Dis. 2020, 223, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Plante, J.A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B.A.; Lokugamage, K.G.; Zhang, X.; Muruato, A.E.; Zou, J.; Fontes-Garfias, C.R.; et al. Spike Mutation D614G Alters SARS-CoV-2 Fitness. Nature 2020, 592, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Thao, T.T.; Hoffmann, D.; Taddeo, A.; Ebert, N.; Labroussaa, F.; Pohlmann, A.; King, J.; Steiner, S.; Kelly, J.N.; et al. SARS-CoV-2 Spike D614g Change Enhances Replication and Transmission. Nature 2021, 592, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.; Luebke, N.; Feldt, T.; Keitel, V.; Brandenburger, T.; Kindgen-Milles, D.; Lutterbeck, M.; Freise, N.F.; Schoeler, D.; Haas, R.; et al. Emergence of the E484K Mutation in SARS-CoV-2-Infected Immunocompromised Patients Treated with Bamlanivimab in Germany. Lancet Reg. Health-Eur. 2021, 8, 100164. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, C.K.; Franco, M.M.; Gräf, T.; de Lorenzo Barcia, C.A.; de Ávila Mendonça, R.N.; de Sousa, K.A.; Neiva, L.M.; Fosenca, V.; Mendes, A.V.; de Aguiar, R.S.; et al. Genomic Evidence of SARS-CoV-2 Reinfection Involving E484K Spike Mutation, Brazil. Emerg. Infect. Dis. 2021, 27, 1522–1524. [Google Scholar] [CrossRef] [PubMed]
- Sabino, E.C.; Buss, L.F.; Carvalho, M.P.; Prete, C.A.; Crispim, M.A.; Fraiji, N.A.; Pereira, R.H.; Parag, K.V.; da Silva Peixoto, P.; Kraemer, M.U.; et al. Resurgence of COVID-19 in Manaus, Brazil, despite High Seroprevalence. Lancet 2021, 397, 452–455. [Google Scholar] [CrossRef]
- Chen, R.E.; Zhang, X.; Case, J.B.; Winkler, E.S.; Liu, Y.; VanBlargan, L.A.; Liu, J.; Errico, J.M.; Xie, X.; Suryadevara, N.; et al. Resistance of SARS-CoV-2 Variants to Neutralization by Monoclonal and Serum-Derived Polyclonal Antibodies. Nat. Med. 2021, 27, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural Basis of Receptor Recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maison, D.P.; Ching, L.L.; Shikuma, C.M.; Nerurkar, V.R. Genetic Characteristics and Phylogeny of 969-BP S Gene Sequence of SARS-CoV-2 from Hawaii Reveals the Worldwide Emerging p681h Mutation. Hawai’i J. Health Soc. Welf. 2021, 80, 52. [Google Scholar]
- Variant of Concern 202012/01 Technical Briefing 2—gov.UK. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959361/Technical_Briefing_VOC202012-2_Briefing_2.pdf (accessed on 28 November 2021).
- Callaway, E. The Mutation That Helps Delta Spread like Wildfire. Nature 2021, 596, 472–473. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Johnson, B.A.; Xia, H.; Ku, Z.; Schindewolf, C.; Widen, S.G.; An, Z.; Weaver, S.C.; Menachery, V.D.; et al. Delta Spike P681R Mutation Enhances SARS-CoV-2 Fitness over Alpha Variant. BioRxiv 2021. [Google Scholar] [CrossRef]
- Wang, H.; Jean, S.; Eltringham, R.; Madison, J.; Snyder, P.; Tu, H.; Jones, D.M.; Leber, A.L. Mutation-Specific SARS-CoV-2 PCR Screen: Rapid and Accurate Detection of Variants of Concern and the Identification of a Newly Emerging Variant with Spike L452R Mutation. J. Clin. Microbiol. 2021, 59. [Google Scholar] [CrossRef] [PubMed]
- Twohig, K.A.; Nyberg, T.; Zaidi, A.; Thelwall, S.; Sinnathamby, M.A.; Aliabadi, S.; Seaman, S.R.; Harris, R.J.; Hope, R.; Lopez-Bernal, J.; et al. Hospital Admission and Emergency Care Attendance Risk for SARS-CoV-2 Delta (B.1.617.2) Compared with Alpha (B.1.1.7) Variants of Concern: A Cohort Study. Lancet Infect. Dis. 2021, 22, 35–42. [Google Scholar] [CrossRef]
- Starr, T.N.; Greaney, A.J.; Hilton, S.K.; Ellis, D.; Crawford, K.H.D.; Dingens, A.S.; Navarro, M.J.; Bowen, J.E.; Tortorici, M.A.; Walls, A.C.; et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and Ace2 Binding. Cell 2020, 182, 1295–1310.e20. [Google Scholar] [CrossRef] [PubMed]
Spike Mutation | (+) Specimens from Athens (%) | (+) Specimens from Greek Rural Areas (%) | (+) Specimens in Total (%) |
---|---|---|---|
N501Y | 148 (100) | 72 (100) | 220 (100) |
D614G | 129 (87.2) | 71 (98.6) | 212 (96.4) |
E484K | 16 (10.8) | 9 (12.5) | 25 (11.3) |
K417N/T | 18 (12.2) | 4 (5.6) | 58 (26.3) |
HV69-70DEL | 48 (32.4) | 14 (19.4) | 62 (28.1) |
P681R | 129 (87.2) | 71 (98.6) | 200 (90.1) |
P681H | 51 (34.5) | 14 (19.4) | 65 (29.5) |
L452R | 0 (0) | 0 (0) | 0 (0) |
WHO Label | Pango Lineage | Spike Mutations | Country First Detected | (+) Specimens from Athens (%) | (+) Specimens from Greek Rural Areas (%) |
---|---|---|---|---|---|
Alpha | B.1.1.7 | N501Y D614G P681H HV69-70del | UNITED KINGDOM | 49 (33.1%) | 13 (18.1%) |
Beta | B.1.135 | K417N E484K N501Y D614G | SOUTH AFRICA | 6 (4.1%) | 0 (0%) |
Gamma | P.1 | K417T E484K N501Y D614G | BRAZIL | 0 (0%) | 0 (0%) |
Delta | B.1.617.2 | D614G P681R | INDIA | 129 (87.2%) | 71 (98.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halvatsiotis, P.; Vassiliu, S.; Koulouvaris, P.; Chatzantonaki, K.; Asonitis, K.; Charvalos, E.; Siatelis, A.; Houhoula, D. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Mutational Pattern in the Fourth Pandemic Phase in Greece. Curr. Issues Mol. Biol. 2022, 44, 329-335. https://doi.org/10.3390/cimb44010024
Halvatsiotis P, Vassiliu S, Koulouvaris P, Chatzantonaki K, Asonitis K, Charvalos E, Siatelis A, Houhoula D. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Mutational Pattern in the Fourth Pandemic Phase in Greece. Current Issues in Molecular Biology. 2022; 44(1):329-335. https://doi.org/10.3390/cimb44010024
Chicago/Turabian StyleHalvatsiotis, Panagiotis, Sofia Vassiliu, Panagiotis Koulouvaris, Kalliopi Chatzantonaki, Konstantinos Asonitis, Ekatherina Charvalos, Argyris Siatelis, and Dimitra Houhoula. 2022. "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Mutational Pattern in the Fourth Pandemic Phase in Greece" Current Issues in Molecular Biology 44, no. 1: 329-335. https://doi.org/10.3390/cimb44010024
APA StyleHalvatsiotis, P., Vassiliu, S., Koulouvaris, P., Chatzantonaki, K., Asonitis, K., Charvalos, E., Siatelis, A., & Houhoula, D. (2022). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Mutational Pattern in the Fourth Pandemic Phase in Greece. Current Issues in Molecular Biology, 44(1), 329-335. https://doi.org/10.3390/cimb44010024