Oral Cavity Calprotectin and Lactoferrin Levels in Relation to Radiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Permission and Inclusion Criteria
2.2. Study Population
2.3. Periodontal Examination Procedure
2.4. Radiotherapy Treatment Procedure
2.5. Sample Collection
2.6. Calprotectin and Lactoferrin Analysis
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farnaud, S.; Evans, R.W. Lactoferrin—A multifunctional protein with antimicrobial properties. Mol. Immunol. 2003, 40, 395–405. [Google Scholar] [CrossRef]
- Shabani, F.; Farasat, A.; Mahdavi, M.; Gheibi, N. Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm Res. 2018, 67, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xu, J.; He, L.; Meng, H.; Hou, J. Calprotectin levels in gingival crevicular fluid and serum of patients with chronic periodontitis and type 2 diabetes mellitus before and after initial periodontal therapy. J. Periodontal. Res. 2021, 56, 121–130. [Google Scholar] [CrossRef]
- Majster, M.; Almer, S.; Boström, E.A. Salivary calprotectin is elevated in patients with active inflammatory bowel disease. Arch. Oral Biol. 2019, 107, 104528. [Google Scholar] [CrossRef]
- Ryckman, C.; Vandal, K.; Rouleau, P.; Talbot, M.; Tessier, P.A. Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 2003, 170, 3233–3242. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoff, C.; Nacken, W.; Benedyk, M.; Dagher, M.C.; Sopalla, C.; Doussiere, J. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. FASEB J. 2005, 19, 467–469. [Google Scholar] [CrossRef]
- Nisapakultorn, K.; Ross, K.F.; Herzberg, M.C. Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis. Infect. Immun. 2001, 69, 4242–4247. [Google Scholar] [CrossRef]
- Schincaglia, G.P.; Hong, B.Y.; Rosania, A.; Barasz, J.; Thompson, A.; Sobue, T.; Panagakos, F.; Burleson, J.A.; Dongari-Bagtzoglou, A.; Diaz, P.I. Clinical, Immune, and Microbiome Traits of Gingivitis and Peri-implant Mucositis. J. Dent. Res. 2017, 96, 47–55. [Google Scholar] [CrossRef]
- Nagano-Takebe, F.; Miyakawa, H.; Nakazawa, F.; Endo, K. Inhibition of initial bacterial adhesion on titanium surfaces by lactoferrin coating. Biointerphases 2014, 9, 029006. [Google Scholar] [CrossRef]
- Rosa, L.; Lepanto, M.S.; Cutone, A.; Ianiro, G.; Pernarella, S.; Sangermano, R.; Musci, G.; Ottolenghi, L.; Valenti, P. Lactoferrin and oral pathologies: A therapeutic treatment. Biochem. Cell Biol. 2021, 99, 81–90. [Google Scholar] [CrossRef]
- Mizuhashi, F.; Koide, K.; Toya, S.; Takahashi, M.; Mizuhashi, R.; Shimomura, H. Levels of the antimicrobial proteins lactoferrin and chromogranin in the saliva of individuals with oral dryness. J. Prosthet. Dent. 2015, 113, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Kido, J.; Nakamura, T.; Kido, R.; Ohishi, K.; Yamauchi, N.; Kataoka, M.; Nagata, T. Calprotectin in gingival crevicular fluid correlates with clinical and biochemical markers of periodontal disease. J. Clin. Periodontol. 1999, 26, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Ramenzoni, L.L.; Hofer, D.; Solderer, A.; Wiedemeier, D.; Attin, T.; Schmidlin, P.R. Origin of MMP-8 and Lactoferrin levels from gingival crevicular fluid, salivary glands and whole saliva. BMC Oral Health 2021, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef]
- Cohen, N.; Fedewa, S.; Chen, A.Y. Efpidemiology and Demographics of the Head and Neck Cancer Population. Oral Maxillofac. Surg. Clin. N. Am. 2018, 30, 381–395. [Google Scholar] [CrossRef]
- Wittekindt, C.; Wagner, S.; Mayer, C.S.; Klussmann, J.P. Basics of tumor development and importance of human papilloma virus (HPV) for head and neck cancer. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2012, 11, Doc09. [Google Scholar] [CrossRef]
- Marques, M.A.; Dib, L.L. Periodontal changes in patients undergoing radiotherapy. J. Periodontol. 2004, 75, 1178–1187. [Google Scholar] [CrossRef]
- Argyris, P.P.; Slama, Z.M.; Ross, K.F.; Khammanivong, A.; Herzberg, M.C. Calprotectin and the Initiation and Progression of Head and Neck Cancer. J. Dent. Res. 2018, 97, 674–682. [Google Scholar] [CrossRef]
- Hille, A.; Schmidt-Giese, E.; Hermann, R.M.; Herrmann, M.K.; Rave-Fränk, M.; Schirmer, M.; Christiansen, H.; Hess, C.F.; Ramadori, G. A prospective study of faecal calprotectin and lactoferrin in the monitoring of acute radiation proctitis in prostate cancer treatment. Scand. J. Gastroenterol. 2008, 43, 52–58. [Google Scholar] [CrossRef]
- Domnich, M.; Riedesel, J.; Pylaeva, E.; Kürten, C.; Buer, J.; Lang, S.; Jablonska, J. Oral Neutrophils: Underestimated Players in Oral Cancer. Front. Immunol. 2020, 11, 565683. [Google Scholar] [CrossRef]
- Sroussi, H.Y.; Epstein, J.B.; Bensadoun, R.J.; Saunders, D.P.; Lalla, R.V.; Migliorati, C.A.; Heaivilin, N.; Zumsteg, Z.S. Common oral complications of head and neck cancer radiation therapy: Mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med. 2017, 6, 2918–2931. [Google Scholar] [CrossRef] [PubMed]
- Proctor, G.B.; Shaalan, A.M. Disease-Induced Changes in Salivary Gland Function and the Composition of Saliva. J. Dent. Res. 2021, 100, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Richards, T.M.; Hurley, T.; Grove, L.; Harrington, K.J.; Carpenter, G.H.; Proctor, G.B.; Nutting, C.M. The effect of parotid gland-sparing intensity-modulated radiotherapy on salivary composition, flow rate and xerostomia measures. Oral Dis. 2017, 23, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Sakai, M.; Matsushita, T.; Hoshino, R.; Ono, H.; Ikai, K.; Sakai, T. Identification of the protective mechanisms of Lactoferrin in the irradiated salivary gland. Sci. Rep. 2017, 7, 9753. [Google Scholar] [CrossRef] [PubMed]
- Ainamo, J.; Bay, I. Parodontalindices for og i praksis [Periodontal indexes for and in practice]. Tandlaegebladet 1976, 80, 149–152. [Google Scholar]
- Silness, J.; Löe, H. Periodontal Disease in Pregnancy. II. Correlation between Oral Hygiene and Periodontal Condition. Acta Odontol. Scand. 1964, 22, 121–135. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89 (Suppl. 1), S159–S172, Correction in J. Periodontol. 2018, 89, 1475. [Google Scholar] [CrossRef]
- Larsen, A.; Hovdenak, N.; Karlsdottir, A.; Wentzel-Larsen, T.; Dahl, O.; Fagerhol, M.K. Faecal calprotectin and lactoferrin as markers of acute radiation proctitis: A pilot study of eight stool markers. Scand J. Gastroenterol. 2004, 39, 1113–1118. [Google Scholar] [CrossRef]
- Lalla, R.V.; Saunders, D.P.; Peterson, D.E. Chemotherapy or radiation-induced oral mucositis. Dent. Clin. N. Am. 2014, 58, 341–349. [Google Scholar] [CrossRef]
- Homa-Mlak, I.; Brzozowska, A.; Mlak, R.; Szudy-Szczyrek, A.; Małecka-Massalska, T. Neutrophil-to-Lymphocyte Ratio as a Factor Predicting Radiotherapy Induced Oral Mucositis in Head Neck Cancer Patients Treated with Radiotherapy. J. Clin. Med. 2021, 10, 4444. [Google Scholar] [CrossRef]
- Ahn, G.O.; Tseng, D.; Liao, C.H.; Dorie, M.J.; Czechowicz, A.; Brown, J.M. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc. Natl. Acad. Sci. USA 2010, 107, 8363–8368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hille, A.; Rave-Fränk, M.; Christiansen, H.; Herrmann, M.K.; Kertesz, T.; Hermann, R.M.; Wolff, H.A.; Schirmer, M.; Hess, C.F.; Ramadori, G. Faecal calprotectin and lactoferrin values during irradiation of prostate cancer correlate with chronic radiation proctitis: Results of a prospective study. Scand J. Gastroenterol. 2009, 44, 939–946. [Google Scholar] [CrossRef] [PubMed]
Age | Mean ± Stand. dev. | 55.9 ± 15 |
Gender | Male % | 80 |
Systemic status | Healthy % | 45 |
Type II diabetes mellitus % | 25 | |
Cardiovascular diseases % | 20 | |
Hypothyroidism | 15 | |
Chronic obstructive pulmonary disease % | 15 | |
Medication use | No medication % | 45 |
Metformin % | 25 | |
Levoythroxine sodium % | 15 | |
Ipratropium bromide % | 15 | |
Acetylsalicylic acid % | 10 | |
Atorvastatin % | 5 | |
Metoprolol % | 5 | |
Smoking | ≥10 cigarettes/day for more than 10 years, % | 100 |
Primary tumor type | Oropharyngeal CA % | 35 |
Nasopharynx CA % | 35 | |
Larynx CA % | 20 | |
Parotid CA % | 10 | |
Chemotherapy | Yes % | 45 |
Total radiotherapy dose (cGy) | Mean ± stand. dev. | 6514 ± 541 |
Number of Teeth Mean (Stand. dev.) | 20 (±6.06) |
Stage of Periodontitis | |
Stage I | 2 |
Stage II | 8 |
Stage III | 2 |
Stage IV | 8 |
Grade of Periodontitis | |
Grade A | 0 |
Grade B | 0 |
Grade C | 20 |
Bleeding on Probing (%) mean (stand. dev.) | 51.1 (±24.2) |
Clinical Attachment Level (%) at least one tooth | |
≥4 mm | 70 |
≥6 mm | 40 |
Probing Depth (%) at least one tooth | |
≥4 mm | 100 |
≥6 mm | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keskin, M.; Kompuinen, J.; Harmankaya, İ.; Karaçetin, D.; Nissilä, V.; Gürsoy, M.; Sorsa, T.; Gürsoy, U.K. Oral Cavity Calprotectin and Lactoferrin Levels in Relation to Radiotherapy. Curr. Issues Mol. Biol. 2022, 44, 4439-4446. https://doi.org/10.3390/cimb44100304
Keskin M, Kompuinen J, Harmankaya İ, Karaçetin D, Nissilä V, Gürsoy M, Sorsa T, Gürsoy UK. Oral Cavity Calprotectin and Lactoferrin Levels in Relation to Radiotherapy. Current Issues in Molecular Biology. 2022; 44(10):4439-4446. https://doi.org/10.3390/cimb44100304
Chicago/Turabian StyleKeskin, Mutlu, Jenna Kompuinen, İlknur Harmankaya, Didem Karaçetin, Verneri Nissilä, Mervi Gürsoy, Timo Sorsa, and Ulvi Kahraman Gürsoy. 2022. "Oral Cavity Calprotectin and Lactoferrin Levels in Relation to Radiotherapy" Current Issues in Molecular Biology 44, no. 10: 4439-4446. https://doi.org/10.3390/cimb44100304
APA StyleKeskin, M., Kompuinen, J., Harmankaya, İ., Karaçetin, D., Nissilä, V., Gürsoy, M., Sorsa, T., & Gürsoy, U. K. (2022). Oral Cavity Calprotectin and Lactoferrin Levels in Relation to Radiotherapy. Current Issues in Molecular Biology, 44(10), 4439-4446. https://doi.org/10.3390/cimb44100304