Effect of Radium-223 on the Gut Microbiota of Prostate Cancer Patients: A Pilot Case Series Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Study Design and Sampling
2.3. DNA Extraction and Microbiota Composition Analysis
2.4. Statistical Analysis
3. Results
3.1. Gut Microbiota Composition of Prostate Cancer Patients and Healthy Individuals
3.2. Ra-223 Therapy Impacted the Gut Microbiota of Prostate Cancer Patients
3.3. The Gut Microbiome of Prostate Cancer Patients Was Not Associated with Clinical Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Massari, F.; Mollica, V.; Di Nunno, V.; Gatto, L.; Santoni, M.; Scarpelli, M.; Cimadamore, A.; Lopez-Beltran, A.; Cheng, L.; Battelli, N.; et al. The Human Microbiota and Prostate Cancer: Friend or Foe? Cancers 2019, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.Y.; Yang, Y.C.; Wang, C.I.; Hsiao, P.W.; Chiang, H.I.; Chen, T.W. Increase in Akkermansiaceae in Gut Microbiota of Prostate Cancer-Bearing Mice. Int. J. Mol. Sci. 2021, 22, 9626. [Google Scholar] [CrossRef] [PubMed]
- Katongole, P.; Sande, O.J.; Joloba, M.; Reynolds, S.J.; Niyonzima, N. The human microbiome and its link in prostate cancer risk and pathogenesis. Infect. Agent Cancer 2020, 15, 53. [Google Scholar] [CrossRef]
- Roy, S.; Trinchieri, G. Microbiota: A key orchestrator of cancer therapy. Nat. Rev. Cancer 2017, 17, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Javier-DesLoges, J.; McKay, R.R.; Swafford, A.D.; Sepich-Poore, G.D.; Knight, R.; Parsons, J.K. The microbiome and prostate cancer. Prostate Cancer Prostatic Dis. 2021, 25, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Golombos, D.M.; Ayangbesan, A.; O’Malley, P.; Lewicki, P.; Barlow, L.; Barbieri, C.E.; Chan, C.; DuLong, C.; Abu-Ali, G.; Huttenhower, C.; et al. The Role of Gut Microbiome in the Pathogenesis of Prostate Cancer: A Prospective, Pilot Study. Urology 2018, 111, 122–128. [Google Scholar] [CrossRef]
- Deleemans, J.M.; Chleilat, F.; Reimer, R.A.; Henning, J.-W.; Baydoun, M.; Piedalue, K.-A.; McLennan, A.; Carlson, L.E. The chemo-gut study: Investigating the long-term effects of chemotherapy on gut microbiota, metabolic, immune, psychological and cognitive parameters in young adult Cancer survivors; study protocol. BMC Cancer 2019, 19, 1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernigoni, N.; Zagato, E.; Calcinotto, A.; Troiani, M.; Mestre, R.P.; Calì, B.; Attanasio, G.; Troisi, J.; Minini, M.; Mosole, S.; et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 2021, 374, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Poeppel, T.D.; Handkiewicz-Junak, D.; Andreeff, M.; Becherer, A.; Bockisch, A.; Fricke, E.; Geworski, L.; Heinzel, A.; Krause, B.J.; Krause, T.; et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 824–845. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai, T.; Rahman, F.; Smith, A.M. The Microbiome and Radiation Induced-Bowel Injury: Evidence for Potential Mechanistic Role in Disease Pathogenesis. Nutrients 2018, 10, 1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manichanh, C.; Varela, E.; Martinez, C.; Antolin, M.; Llopis, M.; Dore, J.; Giralt, J.; Guarner, F.; Malagelada, J.R. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am. J. Gastroenterol. 2008, 103, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Ling, Z.; Yang, Z.; Kiela, P.R.; Wang, T.; Wang, C.; Cao, L.; Geng, F.; Shen, M.; Ran, X.; et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: A pilot study. PLoS ONE 2015, 10, e0126312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, Y.D.; Kim, H.J.; Seo, J.G.; Kang, S.W.; Bae, J.W. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS ONE 2013, 8, e82659. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Shen, L.; Shi, W.; Xia, F.; Zhang, H.; Wang, Y.; Zhang, J.; Wang, Y.; Sun, X.; Zhang, Z.; et al. Gut Microbiome Components Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Prospective, Longitudinal Study. Clin. Cancer Res. 2021, 27, 1329–1340. [Google Scholar] [CrossRef]
- Sahly, N.; Moustafa, A.; Zaghloul, M.; Salem, T.Z. Effect of radiotherapy on the gut microbiome in pediatric cancer patients: A pilot study. PeerJ 2019, 7, e7683. [Google Scholar] [CrossRef] [PubMed]
- Terry, S.Y.A.; Nonnekens, J.; Aerts, A.; Baatout, S.; de Jong, M.; Cornelissen, B.; Pouget, J.P. Call to arms: Need for radiobiology in molecular radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1588–1590. [Google Scholar] [CrossRef] [PubMed]
- Pouget, J.P.; Lozza, C.; Deshayes, E.; Boudousq, V.; Navarro-Teulon, I. Introduction to radiobiology of targeted radionuclide therapy. Front. Med. (Lausanne) 2015, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Hernandez, L.A.; Ruiz-Briseno, M.D.R.; Sanchez-Reyes, K.; Alvarez-Zavala, M.; Vega-Magana, N.; Lopez-Iniguez, A.; Diaz-Ramos, J.A.; Martinez-Ayala, P.; Soria-Rodriguez, R.A.; Ramos-Solano, M.; et al. Alterations in bacterial communities, SCFA and biomarkers in an elderly HIV-positive and HIV-negative population in western Mexico. BMC Infect. Dis. 2019, 19, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhoutte, T.; Huys, G.; Brandt, E.; Swings, J. Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol. Ecol. 2004, 48, 437–446. [Google Scholar] [CrossRef]
- Matsuki, T.; Watanabe, K.; Fujimoto, J.; Takada, T.; Tanaka, R. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl. Environ. Microbiol. 2004, 70, 7220–7228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratz, S.W.; Currie, V.; Richardson, A.J.; Duncan, G.; Holtrop, G.; Farquharson, F.; Louis, P.; Pinton, P.; Oswald, I.P. Porcine Small and Large Intestinal Microbiota Rapidly Hydrolyze the Masked Mycotoxin Deoxynivalenol-3-Glucoside and Release Deoxynivalenol in Spiked Batch Cultures In Vitro. Appl. Environ. Microbiol. 2018, 84, e02106–e02117. [Google Scholar] [CrossRef] [Green Version]
- El Alam, M.B.; Sims, T.T.; Kouzy, R.; Biegert, G.W.G.; Jaoude, J.; Karpinets, T.V.; Yoshida-Court, K.; Wu, X.; Delgado-Medrano, A.Y.; Mezzari, M.P.; et al. A prospective study of the adaptive changes in the gut microbiome during standard-of-care chemoradiotherapy for gynecologic cancers. PLoS ONE 2021, 16, e0247905. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Peris, P.; Velasco, C.; Lozano, M.A.; Moreno, Y.; Paron, L.; de la Cuerda, C.; Breton, I.; Camblor, M.; Garcia-Hernandez, J.; Guarner, F.; et al. Effect of a mixture of inulin and fructo-oligosaccharide on Lactobacillus and Bifidobacterium intestinal microbiota of patients receiving radiotherapy: A randomised, double-blind, placebo-controlled trial. Nutr. Hosp. 2012, 27, 1908–1915. [Google Scholar] [CrossRef] [PubMed]
- Sheikh Sajjadieh, M.R.; Kuznetsova, L.V.; Bojenko, V.B. Dysbiosis in ukrainian children with irritable bowel syndrome affected by natural radiation. Iran. J. Pediatr. 2012, 22, 364–368. [Google Scholar] [PubMed]
- Nayak, T.; Sengupta, I.; Dhal, P.K. A new era of radiation resistance bacteria in bioremediation and production of bioactive compounds with therapeutic potential and other aspects: An in-perspective review. J. Environ. Radioact. 2021, 237, 106696. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Hernandez, C.; Courbert, C.; Simonucci, C.; David, S.; Vogel, T.M.; Larose, C. Community structure and functional genes in radionuclide contaminated soils in Chernobyl and Fukushima. FEMS Microbiol. Lett. 2019, 21, fnz180. [Google Scholar] [CrossRef] [PubMed]
- Che, B.; Zhang, W.; Xu, S.; Yin, J.; He, J.; Huang, T.; Li, W.; Yu, Y.; Tang, K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front. Oncol. 2021, 11, 805459. [Google Scholar] [CrossRef] [PubMed]
- Liss, M.A.; White, J.R.; Goros, M.; Gelfond, J.; Leach, R.; Johnson-Pais, T.; Lai, Z.; Rourke, E.; Basler, J.; Ankerst, D.; et al. Metabolic Biosynthesis Pathways Identified from Fecal Microbiome Associated with Prostate Cancer. Eur. Urol. 2018, 74, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hu, L.; Chang, S.; Ma, L.; Li, X.; Yang, Z.; Du, C.; Qu, X.; Zhang, C.; Wang, S. Total body irradiation-induced colon damage is prevented by nitrate-mediated suppression of oxidative stress and homeostasis of the gut microbiome. Nitric. Oxide 2020, 102, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Oliveira, A.; Soares, R.; Barata, P. The Effects of Ionizing Radiation on Gut Microbiota, a Systematic Review. Nutrients 2021, 13, 3025. [Google Scholar] [CrossRef] [PubMed]
- Yamanouchi, K.; Tsujiguchi, T.; Sakamoto, Y.; Ito, K. Short-term follow-up of intestinal flora in radiation-exposed mice. J. Radiat. Res. 2019, 60, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sghir, A.; Gramet, G.; Suau, A.; Rochet, V.; Pochart, P.; Dore, J. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 2000, 66, 2263–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lay, C.; Rigottier-Gois, L.; Holmstrøm, K.; Rajilic, M.; Vaughan, E.E.; de Vos, W.M.; Collins, M.D.; Thiel, R.; Namsolleck, P.; Blaut, M.; et al. Colonic microbiota signatures across five northern European countries. Appl. Environ. Microbiol. 2005, 71, 4153–4155. [Google Scholar] [CrossRef] [Green Version]
- Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef] [PubMed]
Study Ref. | Primers | Target | Sequence | Gram | Phylum | Order |
---|---|---|---|---|---|---|
[21] | 534/358 | 16S | ATTACCGCGGCTGCTGG | Bacterial (universal) | ||
CCTACGGGAGGCAGCAG | ||||||
[22] | Firm | Firmicutes | GGAGYATGTGGTTTAATTCGAAGCA | Gram + | Firmicutes | |
AGCTGACGACAACCATGCAC | ||||||
[23] | Lac | Lactobacillus spp. | AGCAGTAGGGAATCTTCCA | Lactobacilliales | ||
CATTYCACCGCTACACATG | ||||||
[24] | Atopo | Atopobacter spp. | GGGTTGAGAGACCGACC | |||
CGGRGCTTCTTCTGCAGG | ||||||
[24] | Ccoc | Clostridium coccoides | AAATGACGGTACCTGACTAA | Clostridialles | ||
CTTTGAGTTTCATTCTTGCGAA | ||||||
[24] | Clept | Clostridium leptum | GCACAAGCAGTGGAGT | |||
CTTCCTCCGTTTTGTCAA | ||||||
[22] | Act | Actinobacteria | TACGGCCGCAAGGCTA | Actinobacteria | ||
TCRTCCCCACCTTCCTCCG | ||||||
[23] | Bifid | Bifidobacterium spp. | CTCCTGGAAACGGGTGG | |||
GGTGTTCTTCCCGATATCTACA | ||||||
[22] | Bact | Bacteroidetes | GGARCATGTGGTTTAATTCGATGAT | Gram − | Bacteroidetes | |
AGCTGACGACAACCATGCAG | ||||||
[24] | Bfra | Bacteroides fragilis | ATAGCCTTTCGAAAGRAAGAT | |||
CCAGTATCAACTGCAATTTTA | ||||||
[25] | Prevo-F/BacPre-R | Prevotella spp. | CRCRCRGTAAACGATGGATG | |||
TTGAGTTTCACCGTTGCCGG | ||||||
[22] | Prot | Proteobacteria | TCGTCAGCTCGTGTYGTGA | Proteobacteria | ||
CGTAAGGGCCATGATG | ||||||
[25] | Ent | Enterobacteria | GACCTCGCGAGAGCA | |||
CCTACTTCTTTTGCAACCCA |
Patient ID | Ra-223 (MBq) | Fecal Sample (mSv/h) | Age (y) | BMI | Number of Drugs | Gleason | Metastases Location | Previous Radiotherapy | Previous Relevant Treatments | Clinical Indices | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSA (ng/mL) | ALP (U/L) | LDH (U/L) | Glucose (mg/dL) | Calcium (mEq/L) | Albumin (g/L) | Urea (mg/dL) | ||||||||||
1 | 3894 | 0.41 | 79 | 25.51 | 1 | 8 | Bone | No | Enzalutamide, Docetaxel | 160.7 | 410 | 415 | 79 | 4.8 | 43.1 | 45 |
2 | 3218 | 0.54 | 68 | 20.76 | 5 | 9 | Bone Lymph nodes | Yes | Abiraterone, Docetaxel | 133.5 | 283 | 726 | 132 | 4.8 | 39.3 | 39 |
3 | 4463 | 1.21 | 77 | 24.76 | 4 | 7 | Bone | Yes (2001, 2016) | Enzalutamide | 2,3 | 64 | 127 | 101 | 5.1 | 43.1 | 45 |
C1 | 45 | 29.84 | 1 | |||||||||||||
C2 | 38 | 25.50 | 0 |
Before/After Ra-223 Treatment | Prostate Cancer Patients/Controls | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Taxa | FC Range (Min–Max) | FC Mean | STDEV | p-Value | FC Range (Min–Max) | FC Mean | STDEV | p-Value | ||
Firmicutes | 0.77 | 1.64 | 1.11 | 0.47 | 0.729 | 0.67 | 1.07 | 0.86 | 0.20 | 0.904 |
Bacteroidetes | 0.12 | 0.56 | 0.38 | 0.23 | 0.387 | 0.05 | 1.42 | 0.76 | 0.69 | 0.674 |
Proteobacteria | 1.92 | 4.62 | 3.71 | 1.55 | 0.173 | 4.16 | 24.72 | 11.63 | 11.37 | 0.035 |
Actinobacteria | 0.48 | 2.48 | 1.31 | 1.04 | 0.742 | 0.58 | 1.55 | 1.06 | 0.48 | 0.641 |
Prevotella | 0.01 | 0.72 | 0.30 | 0.37 | 0.349 | 0.01 | 3.69 | 1.37 | 2.03 | 0.779 |
Lactobacillus | 0.02 | 0.89 | 0.41 | 0.44 | 0.664 | 0.00 | 1.04 | 0.59 | 0.53 | 0.954 |
Bifidobacterium | 0.16 | 0.39 | 0.31 | 0.13 | 0.311 | 0.39 | 1.34 | 1.01 | 0.54 | 0.808 |
Atopobacter | 1.03 | 2.90 | 2.24 | 0.95 | 0.738 | 1.38 | 2.09 | 1.82 | 0.39 | 0.132 |
Clostridium leptum | 0.71 | 1.31 | 0.97 | 0.31 | 0.731 | 0.21 | 0.55 | 0.42 | 0.18 | 0.354 |
Clostridium coccoides | 0.35 | 0.55 | 0.43 | 0.11 | 0.201 | 0.13 | 0.63 | 0.37 | 0.25 | 0.334 |
Bacteroides fragilis | 0.01 | 0.27 | 0.10 | 0.14 | 0.326 | 0.01 | 2.98 | 1.02 | 1.70 | 0.834 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, A.; Oliveira, A.; Guedes, C.; Fernandes, R.; Soares, R.; Barata, P. Effect of Radium-223 on the Gut Microbiota of Prostate Cancer Patients: A Pilot Case Series Study. Curr. Issues Mol. Biol. 2022, 44, 4950-4959. https://doi.org/10.3390/cimb44100336
Fernandes A, Oliveira A, Guedes C, Fernandes R, Soares R, Barata P. Effect of Radium-223 on the Gut Microbiota of Prostate Cancer Patients: A Pilot Case Series Study. Current Issues in Molecular Biology. 2022; 44(10):4950-4959. https://doi.org/10.3390/cimb44100336
Chicago/Turabian StyleFernandes, Ana, Ana Oliveira, Carla Guedes, Rúben Fernandes, Raquel Soares, and Pedro Barata. 2022. "Effect of Radium-223 on the Gut Microbiota of Prostate Cancer Patients: A Pilot Case Series Study" Current Issues in Molecular Biology 44, no. 10: 4950-4959. https://doi.org/10.3390/cimb44100336
APA StyleFernandes, A., Oliveira, A., Guedes, C., Fernandes, R., Soares, R., & Barata, P. (2022). Effect of Radium-223 on the Gut Microbiota of Prostate Cancer Patients: A Pilot Case Series Study. Current Issues in Molecular Biology, 44(10), 4950-4959. https://doi.org/10.3390/cimb44100336