Characterization of Gastric Tissue-Resident T Cells in Autoimmune and Helicobacter pylori-Associated Gastritis
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Lymphocyte Composition in Patients with Autoimmune, Active, and Inactive Gastritis Patients
2.3. Potential Autoimmune Gastritis Diagnostic Marker
3. Discussion
4. Materials and Methods
4.1. Diagnosis of Autoimmune Gastritis, Active Gastritis, and Inactive Gastritis
4.2. Biopsy Sample Acquisition and Flow Cytometry
4.3. Analysis
4.4. Ethics Approval
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Livzan, M.A.; Gaus, O.V.; Mozgovoi, S.I.; Bordin, D.S. Chronic autoimmune gastritis: Modern diagnostic principles. Diagnostics 2021, 11, 2113. [Google Scholar] [CrossRef]
- Kamada, T.; Maruyama, Y.; Monobe, Y.; Haruma, K. Endoscopic features and clinical importance of autoimmune gastritis. Dig. Endosc. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Rustgi, S.D.; Bijlani, P.; Shah, S.C. Autoimmune gastritis, with or without pernicious anemia: Epidemiology, risk factors, and clinical management. Ther. Adv. Gastroenterol. 2021, 14, 17562848211038771. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.C.; Piazuelo, M.B.; Kuipers, E.J.; Li, D. AGA Clinical practice update on the diagnosis and management of atrophic gastritis: Expert review. Gastroenterology 2021, 161, 1325–1332.e7. [Google Scholar] [CrossRef] [PubMed]
- Htut, T.W.; Thein, K.Z.; Oo, T.H. Pernicious anemia: Pathophysiology and diagnostic difficulties. J. Evid. Based Med. 2021, 14, 161–169. [Google Scholar] [CrossRef]
- Conti, L.; Annibale, B.; Lahner, E. Autoimmune gastritis and gastric microbiota. Microorganisms 2020, 8, 1827. [Google Scholar] [CrossRef]
- Lenti, M.V.; Rugge, M.; Lahner, E.; Miceli, E.; Toh, B.H.; Genta, R.M.; De Block, C.; Hershko, C.; Di Sabatino, A. Autoimmune gastritis. Nat. Rev. Dis. Primers 2020, 6, 56. [Google Scholar] [CrossRef]
- Boeriu, A.; Dobru, D.; Fofiu, C.; Brusnic, O.; Onişor, D.; Mocan, S. Gastric neuroendocrine neoplasms and precursor lesions: Case reports and literature review. Medicine 2022, 101, e28550. [Google Scholar] [CrossRef]
- Hoft, S.G.; Noto, C.N.; DiPaolo, R.J. Two distinct etiologies of gastric cancer: Infection and autoimmunity. Front. Cell Dev. Biol. 2021, 9, 752346. [Google Scholar] [CrossRef]
- Botello, A.; Herrán, M.; Salcedo, V.; Rodríguez, Y.; Anaya, J.M.; Rojas, M. Prevalence of latent and overt polyautoimmunity in autoimmune thyroid disease: A systematic review and meta-analysis. Clin. Endocrinol. 2020, 93, 375–389. [Google Scholar] [CrossRef]
- Hirata, Y. Endoscopy opens the door to a new era of autoimmune gastritis research. Dig. Endosc. 2020, 32, 323–325. [Google Scholar] [CrossRef] [Green Version]
- Iwamuro, M.; Matsueda, K.; Takahashi, T.; Omote, S.; Tanaka, T.; Ennishi, D.; Otsuka, F.; Yoshino, T.; Okada, H. An endoscopic biopsy specimen contains adequate lymphocytes for flow cytometric analysis of light chain expression in the gastrointestinal mucosa. Ann. Clin. Lab. Sci. 2020, 50, 348–353. [Google Scholar]
- Iwamuro, M.; Takahashi, T.; Watanabe, N.; Omote, S.; Matsueda, K.; Tanaka, T.; Ennishi, D.; Otsuka, F.; Yoshino, T.; Okada, H. Technique for single-step lymphocyte isolation from an endoscopic biopsy specimen for the diagnosis of gastrointestinal lymphoma. MethodsX 2020, 7, 101095. [Google Scholar] [CrossRef]
- Iwamuro, M.; Takahashi, T.; Watanabe, N.; Okada, H. Isolation of lymphocytes from the human gastric mucosa. World J. Methodol. 2021, 11, 199–207. [Google Scholar] [CrossRef]
- Matsueda, K.; Iwamuro, M.; Takahashi, T.; Omote, S.; Nishida, K.; Tanaka, T.; Ennishi, D.; Otsuka, F.; Yoshino, T.; Okada, H. Feasibility of flow cytometric analysis of restricted light chain in endoscopic biopsy specimens from patients with gastrointestinal tract B cell lymphoma: A pilot study. BMC Res. Notes 2019, 12, 571. [Google Scholar] [CrossRef]
- Iwamuro, M.; Takahashi, T.; Watanabe, N.; Tanaka, T.; Inokuchi, T.; Hiraoka, S.; Otsuka, F.; Okada, H. Enriched CD45RA-CD62L+ central memory T and decreased CD3+CD56+ natural killer T lymphocyte subsets in the rectum of ulcerative colitis patients. Int. J. Immunopathol. Pharmacol. 2022, 36, 20587384211051982. [Google Scholar] [CrossRef]
- Iwamuro, M.; Takahashi, T.; Watanabe, N.; Abe, M.; Sakae, H.; Kono, Y.; Kanzaki, H.; Tanaka, T.; Kawano, S.; Otsuka, F.; et al. Site-specific differences in T lymphocyte composition of the gastric mucosa after Helicobacter pylori eradication. Medicine 2022, in press. [Google Scholar]
- Bamford, K.B.; Fan, X.; Crowe, S.E.; Leary, J.F.; Gourley, W.K.; Luthra, G.K.; Brooks, E.G.; Graham, D.Y.; Reyes, V.E.; Ernst, P.B. Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 1998, 114, 482–492. [Google Scholar] [CrossRef]
- Rocha, G.A.; de Melo, F.F.; Cabral, M.M.D.A.; de Brito, B.B.; da Silva, F.A.F.; Queiroz, D.M.M. Interleukin-27 is abrogated in gastric cancer, but highly expressed in other Helicobacter pylori-associated gastroduodenal diseases. Helicobacter 2020, 25, e12667. [Google Scholar] [CrossRef]
- Bockerstett, K.A.; Petersen, C.P.; Noto, C.N.; Kuehm, L.M.; Wong, C.F.; Ford, E.L.; Teague, R.M.; Mills, J.C.; Goldenring, J.R.; DiPaolo, R.J. Interleukin 27 protects from gastric atrophy and metaplasia during chronic autoimmune gastritis. Cell Mol. Gastroenterol. Hepatol. 2020, 10, 561–579. [Google Scholar] [CrossRef]
- Candon, S.; McHugh, R.S.; Foucras, G.; Natarajan, K.; Shevach, E.M.; Margulies, D.H. Spontaneous organ-specific Th2-mediated autoimmunity in TCR transgenic mice. J. Immunol. 2004, 172, 2917–2924. [Google Scholar] [CrossRef] [Green Version]
- Huter, E.N.; Stummvoll, G.H.; DiPaolo, R.J.; Glass, D.D.; Shevach, E.M. Cutting edge: Antigen-specific TGF beta-induced regulatory T cells suppress Th17-mediated autoimmune disease. J. Immunol. 2008, 181, 8209–8213. [Google Scholar] [CrossRef] [Green Version]
Autoimmune Gastritis | Active Gastritis | Inactive Gastritis | |
---|---|---|---|
Age, mean ± SD, years (range) | 63.2 ± 13.8 (40–78) | 64.1 ± 13.1 (43–78) | 68.5 ± 10.6 (44–82) |
Sex | |||
Men | 5 | 5 | 10 |
Women | 9 | 5 | 10 |
No. | Age | Sex | Anti-Parietal Cell Antibody | Anti-Intrinsic Factor Antibody | Gastrin (pg/mL) | Vitamin B12 (pg/mL) | Folic Acid (ng/mL) | Iron (μg/dL) | Pepsinogen I (ng/ml) | Pepsinogen I/II Ratio | H. pylori Infection |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 67 | F | 80 | Negative | 5964 | 120 | 17.35 | 76 | 5.6 | 0.6 | Uninfected |
2 | 64 | F | >160 | Positive | 2300 | 419 | 9.8 | 85 | 21.6 | 1.4 | Uninfected |
3 | 43 | M | 40 | Negative | 2374 | 369 | NA | 63 | 7.4 | 1 | Eradicated |
4 | 73 | M | 20 | Negative | NA | <100 | 16.9 | 94 | 6.3 | 0.6 | Eradicated |
5 | 73 | M | 10 | ± | 3237 | <100 | NA | 92 | 4 | 0.8 | Uninfected |
6 | 45 | F | 80 | Negative | 3787 | 1038 | 9.74 | 125 | 6.2 | 0.6 | Uninfected |
7 | 48 | F | >160 | Negative | NA | 394 | 10.5 | 102 | 28.7 | 1.1 | Eradicated |
8 | 40 | F | 80 | Negative | 4714 | 123 | 8.26 | 29 | NA | NA | Uninfected |
9 | 53 | F | >160 | Negative | 1167 | 238 | 14.2 | 64 | 3 | 0.3 | Uninfected |
10 | 73 | F | >160 | Negative | 1448 | 1758 | 11.4 | 108 | 5.8 | 0.8 | Eradicated |
11 | 69 | M | Negative | Positive | 1484 | 49 | 8.8 | 52 | NA | NA | Uninfected |
12 | 78 | F | 40 | Positive | NA | <100 | 13.9 | 224 | 3.7 | 0.3 | Eradicated |
13 | 73 | M | 10 | Negative | 9900 | 321 | 17.86 | 125 | 3.5 | 0.6 | Uninfected |
14 | 77 | F | 40 | Positive | 785 | 114 | 13.4 | 57 | 5.1 | 1 | Eradicated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kametaka, D.; Iwamuro, M.; Takahashi, T.; Hirabata, A.; Hamada, K.; Kono, Y.; Kanzaki, H.; Kawano, S.; Tanaka, T.; Otsuka, F.; et al. Characterization of Gastric Tissue-Resident T Cells in Autoimmune and Helicobacter pylori-Associated Gastritis. Curr. Issues Mol. Biol. 2022, 44, 2443-2452. https://doi.org/10.3390/cimb44060167
Kametaka D, Iwamuro M, Takahashi T, Hirabata A, Hamada K, Kono Y, Kanzaki H, Kawano S, Tanaka T, Otsuka F, et al. Characterization of Gastric Tissue-Resident T Cells in Autoimmune and Helicobacter pylori-Associated Gastritis. Current Issues in Molecular Biology. 2022; 44(6):2443-2452. https://doi.org/10.3390/cimb44060167
Chicago/Turabian StyleKametaka, Daisuke, Masaya Iwamuro, Takahide Takahashi, Araki Hirabata, Kenta Hamada, Yoshiyasu Kono, Hiromitsu Kanzaki, Seiji Kawano, Takehiro Tanaka, Fumio Otsuka, and et al. 2022. "Characterization of Gastric Tissue-Resident T Cells in Autoimmune and Helicobacter pylori-Associated Gastritis" Current Issues in Molecular Biology 44, no. 6: 2443-2452. https://doi.org/10.3390/cimb44060167
APA StyleKametaka, D., Iwamuro, M., Takahashi, T., Hirabata, A., Hamada, K., Kono, Y., Kanzaki, H., Kawano, S., Tanaka, T., Otsuka, F., Kawahara, Y., & Okada, H. (2022). Characterization of Gastric Tissue-Resident T Cells in Autoimmune and Helicobacter pylori-Associated Gastritis. Current Issues in Molecular Biology, 44(6), 2443-2452. https://doi.org/10.3390/cimb44060167