Molecular Determination of Vascular Endothelial Growth Factor, miRNA-423 Gene Abnormalities by Utilizing ARMS-PCR and Their Association with Fetal Hemoglobin Expression in the Patients with Sickle Cell Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Criteria of Patients
2.2. Sample Collection
2.3. Genomic DNA Extraction
2.4. Genotyping for microRNA-423 rs6505162 C>A and VEGF-2578 C>A
2.5. Allele Genotyping of miR-423-rs6505162 C>A
2.6. Allele Genotyping of VEGF-2578 C>A
2.7. Statistical Analysis
3. Results
3.1. Laboratory Characteristics of Patients with SCD
3.2. The Hardy-Weinberg Equilibrium Analysis
3.3. Statistical Comparisons between SCD Patients and Controls for microRNA-423 C>A Genotypes
3.4. Association of VEGF-2578 C>A Genotypes between SCD Patients and Controls
3.5. Multivariate Analysis of microRNA-423C>A Polymorphism between SCD Patients and Healthy Controls
3.6. Association of VEGF-2578 C>A Gene Variation with SCD Susceptibility Utilizing Multivariate Analysis
3.7. Association of HbA1, HbA2, HbF and HbS with miR-423 rs6505162 Genotypes in SCD Patients
4. Discussion
4.1. Role of ARMS-PCR for SNP Studies
4.2. Steps for Optimization of ARMS-PCR Primers
4.3. Association of miR-423 rs6505162 C>A Genotypes and Fetal Hemoglobin in Sickle Cell Disease
4.4. Hemoglobin Variables and microRNA-423 Genotypes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Ali, A.K.; Alsulaiman, A.; Alzahrani, A.J.; Obeid, O.T.; Vatte, C.B.; Cyrus, C.; Alnafie, A.N.; Alali, R.A.; Alfarhan, M.; Mozeleski, B.; et al. Prevalence and diversity of haplotypes of sickle cell disease in the Eastern Province of Saudi Arabia. Hemoglobin 2020, 44, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Abu-Duhier, F.; Mir, R. GSTT1 (rs4025935) null genotype is associated with increased risk of sickle cell disease in the populations of Tabuk-Northwestern region of Saudi Arabia. Hematology 2017, 22, 172–177. [Google Scholar]
- Khaled, A.; Almaghaslah, D.; Mutiq, R.; Alshehri, W. Sickle cell disease patients’ health-related quality of life in the southern region of Saudi Arabia. Int. J. Clin. Pract. 2021, 75, e13775. [Google Scholar]
- Piccin, A.; Murphy, C.; Eakins, E.; Rondinelli, M.B.; Daves, M.; Vecchiato, C.; Wolf, D.; Mc Mahon, C.; Smith, O.P. Insight into the complex pathophysiology of sickle cell anaemia and possible treatment. Piccin. Eur. J. Haematol. 2019, 102, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Al-Ali, A.K.; Alsulaiman, A.; Alfarhan, M.; Safaya, S.; Vatte, C.B.; Albuali, W.M.; Qutub, H.O.; Alzahrani, A.J.; Milton, J.N.; Steinberg, M.H. Sickle cell disease in the Eastern Province of Saudi Arabia: Clinical and laboratory features. Am. J. Hematol. 2021, 96, E117–E121. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Alshehri, B.M.; Alaidarous, M.; Banawas, S.S.; Dukhyil, A.A.A.B.; Alturki, M.K. Prevalence of Hemoglobinopathies (beta-Thalassemia and Sickle Cell Trait) in the Adult Population of Al Majma’ah, Saudi Arabia. Hemoglobin 2020, 44, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Jastaniah, W. Epidemiology of sickle cell disease in Saudi Arabia. Ann. Saudi. Med. 2011, 31, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.M. Sickle cell disease in Saudi Arabia: A challenge or not. J. Epidemiol. Glob. Health 2017, 7, 99–101. [Google Scholar]
- Mir, R.; Al Balawi, I.A.; Duhier, F.M.A. Involvement of microRNA-423 Gene variability in breast cancer progression in Saudi Arabia. Asian Pac. J. Cancer Prev. 2018, 19, 2581–2589. [Google Scholar]
- Jha, C.K.; Mir, R.; Elfaki, I.; Khullar, N.; Rehman, S.; Javid, J.; Banu, S.; Chahal, S.M.S. Potential impact of MicroRNA-423 gene variability in coronary artery disease. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 67–74. [Google Scholar]
- Piccin, A.; Fleming, P.; Eakins, E.; McGovern, E.; Smith, O.P.; McMahon, C. Sickle cell disease and dental treatment. J. Ir. Dent. Assoc. 2008, 54, 75–79. [Google Scholar] [PubMed]
- Zhang, H.; Zhang, Y.; Zhao, X.; Ma, X.; Yan, W.; Wang, W.; Zhao, Z.; Yang, Q.; Sun, X.; Luan, H.; et al. Association of two microRNA polymorphisms miR-27 rs895819 and miR-423 rs6505162 with the risk of cancer. Oncotarget 2017, 8, 46969–46980. [Google Scholar] [CrossRef] [PubMed]
- Light, D.R. Can natural variation in erythroid microRNA-29b be translated to sickle cell disease severity? Br. J. Haematol. 2019, 186, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Saki, N.; Abroun, S.; Soleimani, M.; Kavianpour, M.; Shahjahani, M.; Mohammadi-Asl, J.; Hajizamani, S. MicroRNA Expression in beta-Thalassemia and Sickle Cell Disease: A Role in The Induction of Fetal Hemoglobin. Cell J. 2016, 17, 583–592. [Google Scholar]
- Chen, S.Y.; Wang, Y.; Telen, M.J.; Chi, J. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS ONE 2008, 3, e2360. [Google Scholar] [CrossRef]
- Sangokoya, C.; Telen, M.J.; Chi, J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 2010, 116, 4338–4348. [Google Scholar] [CrossRef]
- Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. 1999, 77, 527–543. [Google Scholar] [CrossRef]
- Lubin, B.H. Sickle cell disease and the endothelium. N. Engl. J. Med. 1997, 337, 1623–1625. [Google Scholar] [CrossRef]
- Solovey, A.; Gui, L.; Ramakrishnan, S.; Steinberg, M.H.; Hebbel, R.P. Sickle cell anemia as a possible state of enhanced anti-apoptotic tone: Survival effect of vascular endothelial growth factor on circulating and unanchored endothelial cells. Blood 1999, 93, 3824–3830. [Google Scholar] [CrossRef]
- Piccin, A.; Murphy, C.; Eakins, E.; Kunde, J.; Corvetta, D.; Di Pierro, A.; Negri, G.; Guido, M.; Sainati, L.; Mc Mahon, C.; et al. Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia. J. Extracell Vesicles 2015, 4, 28414. [Google Scholar] [CrossRef]
- Hebbel, R.P. Adhesive interactions of sickle erythrocytes with endothelium. J. Clin. Investig. 1997, 100, S83–S86. [Google Scholar] [PubMed]
- Al-Habboubi, H.H.; Mahdi, N.; Abu-Hijleh, T.M.; Abu-Hijleh, F.M.; Sater, M.S.; Almawi, W.Y. The relation of vascular endothelial growth factor (VEGF) gene polymorphisms on VEGF levels and the risk of vasoocclusive crisis in sickle cell disease. Eur. J. Haematol. 2012, 89, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Sales, R.R.; Nogueira, B.L.; Tosatti, J.A.G.; Gomes, K.B.; Luizon, M.R. Do genetic polymorphisms affect fetal hemoglobin (HbF) levels in patients with sickle cell anemia treated with hydroxyurea? A systematic review and pathway analysis. Front. Pharmacol. 2022, 12, 779497. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Tayeb, F.J.; Barnawi, J.; Jalal, M.M.; Saeedi, N.H.; Hamadi, A.; Altayar, M.A.; Alshammari, S.E.; Mtiraoui, N.; Ali, M.E.; et al. Biochemical characterization and molecular determination of estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) polymorphic gene variations and their association with the risk of polycystic ovary syndrome. Int. J. Environ. Res. Public Health 2022, 19, 3114. [Google Scholar] [CrossRef] [PubMed]
- Lacerra, G.; Fiorito, M.; Musollino, G.; Noce, F.D.; Esposito, M.; Nigro, V.; Gaudiano, C.; Carestia, C. Sequence variations of the a-globin genes: Scanning of high CG content genes with DHPLC and DGDGGE. Hum. Mutat. 2004, 24, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.J.; Li, L.Y.; Li, X.R.; Lu, G.X. Rapid prenatal gene diagnosis for β-thalassemia by amplification refractory mutation system (ARMS). Chin. J. Obstet. Gynecol. 2000, 35, 359–360. [Google Scholar]
- Moghadam, M.; Karimi, M.; Dehghani, S.J.; Dehbozorgian, J.; Montazeri, S.; Javanmardi, E.; Asadzade, R.; Amiri, A.; Saghatoleslam, Z.; Sotodegan, F.; et al. Effectiveness of β-thalassemia prenatal diagnosis in Southern Iran: A cohort study. Prenat. Diagn. 2015, 35, 1238–1242. [Google Scholar] [CrossRef]
- Chiu, R.W.; Murphy, M.F.; Fidler, C.; Zee, B.C.; Wainscoat, J.S.; Lo, Y.M. Determination of RhD zygosity: Comparison of a double amplification refractory mutation system approach and a multiplex real-time quantitative PCR approach. Clin. Chem. 2001, 47, 667–672. [Google Scholar] [CrossRef]
- Newton, C.R.; Heptinstall, L.E.; Summers, C.; Super, M.; Schwarz, M.; Anwar, R.; Graham, A.; Smith, J.C.; Markham, A.F. Amplification refractory mutation system for prenatal diagnosis and carrier assessment in cystic fibrosis. Lancet 1989, 2, 1481–1483. [Google Scholar] [CrossRef]
- Mir, R.; Elfaki, I.; Jha, C.; Javid, J.; Rehman, S.; Banu, S.; Mir, M.M.; Babakr, A.T.; Chahal, S.M.S. Molecular evaluation of MicroRNA-146 Gene variability (rs2910164 C> G) and its association with increased susceptibility to coronary artery disease. Microrna 2020, 9, 363–372. [Google Scholar] [CrossRef]
- Mir, R.; Elfaki, I.; Duhier, F.M.A.; Alotaibi, M.A.; AlAlawy, A.I.; Barnawi, J.; Babakr, A.T.; Mir, M.M.; Mirghani, H.; Hamadi, A.; et al. Molecular Determination of mirRNA-126 rs4636297, Phosphoinositide-3-Kinase Regulatory Subunit 1-Gene Variability rs7713645, rs706713 (Tyr73Tyr), rs3730089 (Met326Ile) and Their Association with Susceptibility to T2D. J. Pers. Med. 2021, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Abu-Duhier, F.M.; Albalawi, I.A. Molecular Evaluation of HIF-1α gene variation and determination of its frequency and association with breast cancer susceptibility in Saudi Arabia. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 544–553. [Google Scholar] [CrossRef]
- Mir, R.; Jha, C.K.; Elfaki, I.; Rehman, S.; Javid, J.; Khullar, N.; Banu, S.; Chahal, S.M.S. MicroRNA-224 (rs188519172 A>G) Gene Variability is Associated with a Decreased Susceptibility to Coronary Artery Disease: A Case-Control Study. Microrna 2019, 8, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.J.; Shrivastava, A.C.; Shrikhande, A.V. Prenatal diagnosis of sickle cell disease by the technique of PCR. Indian J. Hematol. Blood Transfus. 2015, 31, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Aquino, R.; Protzel, A.; Rivera, J.; Abarca, H.; Dueñas, M.; Nestarez, C.; Purizaga, N.; Diringer, B. Frequency of the most common mutations of the CFTR gene in peruvian patients with cystic fibrosis using the ARMS-PCR technique. Rev. Peru Med. Exp. Salud Pública 2017, 34, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; Shah, N.D.; Ray, H.; Khatri, N.B.; Vaghasia, K.K.; Raval, R.J.; Shah, S.C.; Rao, M.V. Mutation analysis of β-thalassemia in East-Western Indian population: A recent molecular approach. Appl. Clin. Genet. 2017, 10, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Dinney, C.P.; Ye, Y.; Zhu, Y.; Grossman, H.B.; Wu, X. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res. 2008, 68, 2530–2537. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, F.; Xu, B. Polymorphisms of microRNA genes and their association with breast cancer risk. Zhonghua zhong liu za zhi [Chin. J. Oncol.] 2015, 37, 501–507. [Google Scholar]
- Umar, M.; Upadhyay, R.; Prakash, G.; Kumar, S.; Ghoshal, U.C.; Mittal, B. Evaluation of common genetic variants in pre-microRNA in susceptibility and prognosis of esophageal cancer. Mol. Carcinog. 2013, 52 (Suppl. S1), 10–18. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, L.; You, W.; Cui, X.; Chen, Y.; Hu, J.; Liu, W.; Li, S.; Song, X.; Wei, Y.; et al. Genetic variation in miR-100 rs1834306 is associated with decreased risk for esophageal squamous cell carcinoma in Kazakh patients in northwest China. Int. J. Clin. Exp. Pathol. 2015, 8, 7332. [Google Scholar]
- Smith, R.A.; Jedlinski, D.J.; Gabrovska, P.N.; Weinstein, S.R.; Haupt, L.; Griffiths, L.R. A genetic variant located in miR-423 is associated with reduced breast cancer risk. Cancer Genom. -Proteom. 2012, 9, 115–118. [Google Scholar]
- Wang, Y.; Vogelsang, M.; Schäfer, G.; Matejcic, M.; Parker, M.I. MicroRNA polymorphisms and environmental smoke exposure as risk factors for oesophageal squamous cell carcinoma. PLoS ONE 2013, 8, e78520. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, H.; Cui, Z.; Ren, Y.; Li, X.; Wu, W.; Guan, P.; Qian, B.; Rothman, N.; Lan, Q.; et al. Interaction between polymorphisms in pre-MiRNA genes and cooking oil fume exposure on the risk of lung cancer in Chinese non-smoking female population. PLoS ONE 2015, 10, e0128572. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jia, Z.F.; Cao, D.H.; Wu, Y.H.; Sun, Z.W.; Cao, X.Y. Association of the miR-146a rs2910164 polymorphism with gastric cancer susceptibility and prognosis. Future Oncol. 2016, 12, 2215–2226. [Google Scholar] [CrossRef] [PubMed]
- Nariman-Saleh-Fam, Z.; Bastami, M.; Somi, M.H.; Behjati, F.; Mansoori, Y.; Daraei, A.; Saadatian, Z.; Nariman-Saleh-Fam, L.; Mahmoodzadeh, H.; Makhdoumi, Y.; et al. miRNA-related polymorphisms in miR-423 (rs6505162) and PEX6 (rs1129186) and risk of esophageal squamous cell carcinoma in an Iranian cohort. Genet. Test. Mol. Biomark. 2017, 21, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Li, L.; Xiong, S.W.; Zhang, T.; Jia, W.; Zhu, J.; Zhao, Z.; Xia, H.; He, J.; Liu, G.C. miR-423 rs6505162 C> A polymorphism contributes to decreased Wilms tumor risk. J. Cancer 2018, 9, 2460. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Chen, D.; Wu, X.; Chen, M. Influence of microRNA-related polymorphisms on clinical outcomes in coronary artery disease. Am. J. Transl. Res. 2015, 7, 393–400. [Google Scholar]
- Morales, S.; Gulppi, F.; Gonzalez-Hormazabal, P.; Fernandez-Ramires, R.; Bravo, T.; Reyes, J.M.; Gomez, F.; Waugh, E.; Jara, L. Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, Pre-miR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. BMC Genet. 2016, 17, 109. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M.; Xu, S.; Pan, Y.; Zhang, Y.; Huang, H.; Xu, L. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl. Acad. Sci. USA 2011, 108, 1519–1524. [Google Scholar]
- Bauer, D.E.; Orkin, S.H. Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr. Opin. Pediatr. 2011, 23, 1–8. [Google Scholar] [CrossRef]
- Das, S.S.; Chakravorty, N. Identification of deleterious SNPs and their effects on BCL11A, the master regulator of fetal hemoglobin expression. Genomics 2020, 112, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Juzenas, S.; Venkatesh, G.; Hübenthal, M.; Hoeppner, M.P.; Du, Z.G.; Paulsen, M.; Rosenstiel, P.; Senger, P.; Hofmann-Apitius, M.; Keller, A.; et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res. 2017, 45, 9290–9301. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chin, K.; Aerbajinai, W.; Kumkhaek, C.; Li, H.; Rodgers, G.P. Hydroxyurea-inducible SAR1 gene acts through the gialpha/JNK/Jun pathway to regulate gamma-globin expression. Blood 2014, 124, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.L.; Steward, S.; Howard, T.A.; Mortier, N.; Smeltzer, M.; Wang, Y.D.; Ware, R.E. Epigenetic and molecular profiles of erythroid cells after hydroxyurea treatment in sickle cell anemia. Blood 2011, 118, 5664–5670. [Google Scholar] [CrossRef] [PubMed]
- Fornari, T.A.; Lanaro, C.; Ferreira, R.; Donate, P.B.; Passos, G.; Conran, N.; Saad, S.T.O.; Costa, F.F. HPFH and delta-beta thalassemia have different profiles of micrornas and transcription factors. Blood 2013, 122, 186. [Google Scholar] [CrossRef]
- Byon, J.C.; Papayannopoulou, T. MicroRNAs: Allies or foes in erythropoiesis? J. Cell Physiol. 2012, 227, 7–13. [Google Scholar] [CrossRef]
- Duraisingh, M.T.; Lodish, H.F. Sickle cell MicroRNAs inhibit the malaria parasite. Cell Host Microbe 2012, 12, 127–128. [Google Scholar] [CrossRef]
Direction | Primer Sequence | AT | Product Size |
---|---|---|---|
Primer Sequence of miR-423 C>A Genotyping | |||
miR-423 FO | 5′-TTTTCCCGGATGGAAGCCCGAAGTTTGA-3′ | 62 °C | 336 bp |
miR-423 RO | 5′-TTTTGCGGCAACGTATACCCCAATTTCC-3′ | ||
miR-423FI (T allele) | 5′-TGAGGCCCCTCAGTCTTGCTTCCCAA-3′ | 228 bp | |
miR-423 RI (C allele) | 5′-CAAGCGGGGAGAAACTCAAGCGCGAGG-3′ | 160 bp | |
Primer Sequence of VEGF-2578 C>A Genotyping | |||
VEGF FO | 5-CCTTTTCCTCATAAGGGCCTTAG-3 | 58 °C | 353 bp |
VEGF RO | 5-AGGAAGCAGCTTGGAAAAATTC-3 | ||
FI A VEGF (A allele) | 5-TAGGCCAGACCCTGGCAA-3 | 149 bp | |
RI C VEGF (G allele) | 5-GTCTGATTATCCACCCAGATCG-3 | 243 bp |
Variables | Mean ± SD | Range (Min–Max) |
---|---|---|
RBC (×1012/L) | 5.14 ± 0.76 | 3.64–7.15 |
WBC (×109/L) | 8.18 ± 1.67 | 3.77–17.00 |
MCV (fL) | 80.92 ± 6.07 | 66.01–92.01 |
Hematocrit (%) | 40.96 ± 5.09 | 19.01–52.9 |
Hemoglobin (g/dL) | 14.45 ± 1.88 | 5.90–18.25 |
Platelets (×109/L) | 351.92 ± 66.84 | 191.01–456.01 |
RDW (%) | 12.73 ± 1.24 | 11.01–18.01 |
HbA1 (%) | 63.3 ± 13.44 | 3.15–97.60 |
HbA2 (%) | 3.36 ± 0.57 | 2.50–26.20 |
HbF (%) | 0.64 ± 0.57 | 0.00–14.80 |
HbS (%) | 35.6 ± 3.30 | 26.00–84.40 |
Subjects | N | CC | CA | AA | Df Degree of Freedom | χ2 Chi Square | C | A | p Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 127 | 18 (14.17%) | 61 (48%) | 54 (42.51%) | 2 | 6.74 | 0.34 | 0.66 | 0.034 |
Controls | 160 | 30 (18.75%) | 92 (57.5%) | 38 (23.75%) | 0.47 | 0.53 |
Subjects | N | CC | CT | TT | Df | χ2 | C | T | p Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 105 | 43 (41%) | 49 (47%) | 13 (12%) | 2 | 6.13 | 0.65 | 0.35 | 0.013 |
Controls | 105 | 54 (51%) | 24 (23%) | 25 (26%) | 0.50 | 0.37 | |||
Df-degree of freedom | Chi square test χ2 |
Genotypes | Healthy Controls | SAD Cases | OR (95% CI) | Risk Ratio (RR) | p-Value | ||
---|---|---|---|---|---|---|---|
(N = 160) | % | (N = 127) | % | ||||
Codominant inheritance model | |||||||
miRNA-423-CC | 30/160 | 18.75% | 18/127 | 14.17% | 1 (ref.) | 1 (ref.) | |
miRNA-423-CA | 92/160 | 57.5% | 69/127 | 54.33% | 1.10 (0.566–2.15) | 1.03 (0.80–1.34) | 0.76 |
miRNA-423-AA | 38/160 | 23.75% | 58/127 | 45.67% | 2.36 (1.15–4.84) | 1.51 (1.090–2.09) | 0.018 |
Dominant ant inheritance model | |||||||
miR-423-CC | 30/160 | 18.75% | 18/133 | 13.53% | 1 (ref.) | 1 (ref.) | |
miR-423-(CA + AA) | 130/160 | 81.25% | 115/133 | 86.47% | 1.47 (0.78–2.78) | 1.17 (0.91–1.51) | 0.23 |
Recessive ant inheritance model | |||||||
miR-423-(CC + CA) | 122/160 | 76.25% | 79/133 | 59.4% | 1 (ref.) | 1 (ref.) | |
miR-423-AA | 38/160 | 23.75% | 54/133 | 40.6% | 2.19 (1.32–3.62) | 1.46 (1.12–1.92) | 0.002 |
Allele | |||||||
miR-423-C | 152/320 | 47.5% | 97/266 | 36.5% | 1 (ref.) | 1 (ref.) | |
miR-423-A | 168/320 | 52% | 169/266 | 63.5% | 1.57 (1.13–2.19) | 1.22 (1.05–1.41) | 0.007 |
Genotypes | Healthy Controls | SCD Cases | OR (95% CI) | Risk Ratio (RR) | p-Value |
---|---|---|---|---|---|
(N = 105) | (N = 105) | ||||
Codominant ant inheritance model | |||||
VEGF-2578-CC | 54 | 43 | 1 (ref.) | 1(ref.) | |
VEGF-2578-CA | 24 | 49 | 2.56 (1.36–4.82) | 1.69 (1.16–2.45) | 0.003 |
VEGF-2578-AA | 25 | 13 | 0.65 (0.29–1.42) | 0.84 (0.63–1.130) | 0.28 |
Dominant ant inheritance model | |||||
VEGF-2578-CC | 54 | 43 | 1 (ref.) | 1 (ref.) | |
VEGF-2578 (CA + AA) | 49 | 52 | 1.33 (0.76–2.33) | 1.14 (0.87–1.50) | 0.314 |
Recessive ant inheritance model | |||||
VEGF-2578(CC + CA) | 78 | 62 | 1 (ref.) | 1 (ref.) | |
VEGF-2578-AA | 25 | 13 | 0.65 (0.30–1.38) | 0.82 (0.63–1.07) | 0.26 |
Allele | |||||
VEGF-2578-C | 132 | 105 | 1 (ref.) | 1 (ref.) | |
VEGF-2578-A | 69 | 65 | 1.18 (0.77–1.81) | 1.08 (0.88–1.32) | 0.44 |
MiR-423 Genotypes | HbA1 (Mean ± SD) | p Value | HbA2 (Mean ± SD) | p Value | HbF (Mean ± SD) | p Value | HbS (Mean ± SD) | p Value |
---|---|---|---|---|---|---|---|---|
CC (18) | 63.3 ± 8.1 | 0.54 | 3.36 ± 0.57 | 0.45 | 0.64 ± 0.57 | 0.49 | 35.6 ± 3.3 | 0.35 |
CA (61) | 59.8 ± 14.8 | 3.74 ± 2.90 | 0.98 ± 2.3 | 38.1 ± 11.0 | ||||
AA (48) | 65.9 ± 11.8 | 4.40 ± 4.50 | 0.59 ± 0.95 | 36.1 ± 4.1 |
Country | Controls | CC | CA | AA | References |
---|---|---|---|---|---|
IRAN | 300 | 141 (47%) | 123 (41%) | 36 (12%) | [45] |
China | 530 | 342 (64.53%) | 170 (32.8%) | 18 (3.40%) | [46] |
Japan | 623 | 412 (66.13%) | 190 (30.5%) | 21 (3.37%) | [47] |
South America | 807 | 284 (35%) | 385 (48%) | 138 (17%) | [48] |
Australia | 174 | 42 (24.14%) | 80 (45.98%) | 52 (29.89%) | [41] |
South Africa | 572 | 12 (2.1%) | 184 (32.2%) | 376 (65.7%) | [42] |
Our study | 160 | 30 (18.75%) | 92 (57.5%) | 38 (23.75%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamadi, A.; Mir, R.; Mahzari, A.; Hakami, A.; Almotairi, R.; Dobie, G.; Hamdi, F.; Nahari, M.H.; Alhefzi, R.; Alasseiri, M.; et al. Molecular Determination of Vascular Endothelial Growth Factor, miRNA-423 Gene Abnormalities by Utilizing ARMS-PCR and Their Association with Fetal Hemoglobin Expression in the Patients with Sickle Cell Disease. Curr. Issues Mol. Biol. 2022, 44, 2569-2582. https://doi.org/10.3390/cimb44060175
Hamadi A, Mir R, Mahzari A, Hakami A, Almotairi R, Dobie G, Hamdi F, Nahari MH, Alhefzi R, Alasseiri M, et al. Molecular Determination of Vascular Endothelial Growth Factor, miRNA-423 Gene Abnormalities by Utilizing ARMS-PCR and Their Association with Fetal Hemoglobin Expression in the Patients with Sickle Cell Disease. Current Issues in Molecular Biology. 2022; 44(6):2569-2582. https://doi.org/10.3390/cimb44060175
Chicago/Turabian StyleHamadi, Abdullah, Rashid Mir, Ali Mahzari, Abdulrahim Hakami, Reema Almotairi, Gasim Dobie, Fawaz Hamdi, Mohammed Hassan Nahari, Razan Alhefzi, Mohammed Alasseiri, and et al. 2022. "Molecular Determination of Vascular Endothelial Growth Factor, miRNA-423 Gene Abnormalities by Utilizing ARMS-PCR and Their Association with Fetal Hemoglobin Expression in the Patients with Sickle Cell Disease" Current Issues in Molecular Biology 44, no. 6: 2569-2582. https://doi.org/10.3390/cimb44060175
APA StyleHamadi, A., Mir, R., Mahzari, A., Hakami, A., Almotairi, R., Dobie, G., Hamdi, F., Nahari, M. H., Alhefzi, R., Alasseiri, M., Hakami, N. Y., Al Sadoun, H., Al-Amer, O. M., Barnawi, J., & Madkhali, H. A. (2022). Molecular Determination of Vascular Endothelial Growth Factor, miRNA-423 Gene Abnormalities by Utilizing ARMS-PCR and Their Association with Fetal Hemoglobin Expression in the Patients with Sickle Cell Disease. Current Issues in Molecular Biology, 44(6), 2569-2582. https://doi.org/10.3390/cimb44060175