Virtual Screening of Repurposed Drugs as Potential Spike Protein Inhibitors of Different SARS-CoV-2 Variants: Molecular Docking Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ligand Preparation
2.2. S1 Protein Retrieval and Homology Modelling
2.3. Molecular Docking
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdel-Moneim, A.S.; Abdelwhab, E.M.; Memish, Z.A. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021, 558, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, G.; Wang, X.; Wen, Z.; Shuai, L.; Luo, J.; Wang, C.; Sun, Z.; Liu, R.; Ge, J.; et al. SARS-CoV-2 uses metabotropic glutamate receptor subtype 2 as an internalization factor to infect cells. Cell Discov. 2021, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-19 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- WHO. Tracking SARS-CoV-2 Variants: WHO. 2021. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants (accessed on 7 June 2022).
- Saxena, S.K.; Kumar, S.; Ansari, S.; Paweska, J.T.; Maurya, V.K.; Tripathi, A.K.; Abdel-Moneim, A.S. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) Variant of Concern and its global perspective. J. Med. Virol. 2021, 94, 1738–1744. [Google Scholar] [CrossRef]
- Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 2020, 17, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Eweas, A.F.; Alhossary, A.A.; Abdel-Moneim, A.S. Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2. Front. Microbiol. 2020, 11, 592908. [Google Scholar] [CrossRef]
- Davies, S.P.; Mycroft-West, C.J.; Pagani, I.; Hill, H.J.; Chen, Y.H.; Karlsson, R.; Bagdonaite, I.; Guimond, S.E.; Stamataki, Z.; De Lima, M.A.; et al. The Hyperlipidaemic Drug Fenofibrate Significantly Reduces Infection by SARS-CoV-2 in Cell Culture Models. Front. Pharmacol. 2021, 12, 660490. [Google Scholar] [CrossRef]
- Hoffmann, M.; Hofmann-Winkler, H.; Smith, J.C.; Krüger, N.; Arora, P.; Sørensen, L.K.; Søgaard, O.S.; Hasselstrøm, J.B.; Winkler, M.; Hempel, T.; et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 2021, 65, 103255. [Google Scholar] [CrossRef]
- Sakr, Y.; Bensasi, H.; Taha, A.; Bauer, M.; Ismail, K. Camostat mesylate therapy in critically ill patients with COVID-19 pneumonia. Intensive Care Med. 2021, 47, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Musarrat, F.; Chouljenko, V.; Dahal, A.; Nabi, R.; Chouljenko, T.; Jois, S.D.; Kousoulas, K.G. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J. Med. Virol. 2020, 92, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Nojomi, M.; Yassin, Z.; Keyvani, H.; Makiani, M.J.; Roham, M.; Laali, A.; Dehghan, N.; Navaei, M.; Ranjbar, M. Effect of Arbidol (Umifenovir) on COVID-19: A randomized controlled trial. BMC Infect. Dis. 2020, 20, 954. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Bhosale, V.; Reddy, H.; Atam, V.; Faridi, M.; Fatima, J.; Shukla, V.; Khan, Z.A.; Khan, H.; Singh, V.; et al. Phase III, Randomized, Double-blind, Placebo controlled trial of Efficacy, Safety and Tolerability of Antiviral drug Umifenovir vs Standard care of therapy in non-severe COVID-19 patients. Int. J. Infect. Dis. 2022, 115, 62–69. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Zhang, Y.; Liu, Z.; Mu, X.; Gu, C.; Liu, J.; Li, Y.; Li, G.H.; Chen, J.F.; et al. Ceftazidime is a potential drug to inhibit SARS-CoV-2 infection in vitro by blocking spike protein-ACE2 interaction. Signal Transduct. Target. Ther. 2021, 6, 198. [Google Scholar] [CrossRef]
- Eid, R.A.; Elgendy, M.O.; El-Gendy, A.O.; Elgendy, S.O.; Belbahri, L.; Sayed, A.M.; Rateb, M.E. Efficacy of Ceftazidime and Cefepime in the Management of COVID-19 Patients: Single Center Report from Egypt. Antibiotics 2021, 10, 1278. [Google Scholar] [CrossRef]
- Xiao, S.; Cheng, G.; Yang, R.; Zhang, Y.; Lin, Y.; Ding, Y. Prediction on the number of confirmed Covid-19 with the FUDAN-CCDC mathematical model and its epidemiology, clinical manifestations, and prevention and treatment effects. Results Phys. 2021, 20, 103618. [Google Scholar] [CrossRef]
- Bitencourt-Ferreira, G.; Azevedo, W.F.D. Molegro virtual docker for docking. In Docking Screens for Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2019; pp. 149–167. [Google Scholar]
- Prajapat, M.; Shekhar, N.; Sarma, P.; Avti, P.; Singh, S.; Kaur, H.; Bhattacharyya, A.; Kumar, S.; Sharma, S.; Prakash, A.; et al. Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS-CoV-2. J. Mol. Graph. Model. 2020, 101, 107716. [Google Scholar] [CrossRef]
- Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
- Saxena, S.K.; Kumar, S.; Ansari, S.; Paweska, J.T.; Maurya, V.K.; Tripathi, A.K.; Abdel-Moneim, A.S. Transmission dynamics and mutational prevalence of the novel Severe acute respiratory syndrome coronavirus-2 Omicron Variant of Concern. J. Med. Virol. 2022, 94, 2160–2166. [Google Scholar] [CrossRef]
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 2021, 592, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, C.K.V.; Franco, M.M.; Gräf, T.; De Lorenzo Barcia, C.A.; De Ávila Mendonça, R.N.; De Sousa, K.A.F.; Neiva, L.M.C.; Fosenca, V.; Mendes, A.V.A.; De Aguiar, R.S.; et al. Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg. Infect. Dis. 2021, 27, 1522–1524. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, R.; Wang, M.; Wei, G.W. Mutations Strengthened SARS-CoV-2 Infectivity. J. Mol. Biol. 2020, 432, 5212–5226. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Steinkellner, G.; Köchl, K.; Gruber, K.; Gruber, C.C. Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2. Sci. Rep. 2021, 11, 4320. [Google Scholar] [CrossRef]
- Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596, 276–280. [Google Scholar] [CrossRef]
- Starr, T.N.; Greaney, A.J.; Dingens, A.S.; Bloom, J.D. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2021, 2, 100255. [Google Scholar] [CrossRef]
- Jensen, B.; Luebke, N.; Feldt, T.; Keitel, V.; Brandenburger, T.; Kindgen-Milles, D.; Lutterbeck, M.; Freise, N.F.; Schoeler, D.; Haas, R.; et al. Emergence of the E484K mutation in SARS-COV-2-infected immunocompromised patients treated with bamlanivimab in Germany. Lancet Reg. Health Eur. 2021, 8, 100164. [Google Scholar] [CrossRef]
- Grabowski, F.; Preibisch, G.; Giziński, S.; Kochańczyk, M.; Lipniacki, T. SARS-CoV-2 Variant of Concern 202012/01 Has about Twofold Replicative Advantage and Acquires Concerning Mutations. Viruses 2021, 13, 392. [Google Scholar] [CrossRef]
- Chen, J.; Gao, K.; Wang, R.; Wei, G.W. Revealing the Threat of Emerging SARS-CoV-2 Mutations to Antibody Therapies. J. Mol. Biol. 2021, 433, 167155. [Google Scholar] [CrossRef]
- Ortega, J.T.; Pujol, F.H.; Jastrzebska, B.; Rangel, H.R. Mutations in the SARS-CoV-2 spike protein modulate the virus affinity to the human ACE2 receptor, an in silico analysis. EXCLI J. 2021, 20, 585–600. [Google Scholar]
- Peiffer-Smadja, N.; Bridier-Nahmias, A.; Ferré, V.M.; Charpentier, C.; Garé, M.; Rioux, C.; Allemand, A.; Lavallée, P.; Ghosn, J.; Kramer, L.; et al. Emergence of E484K Mutation Following Bamlanivimab Monotherapy among High-Risk Patients Infected with the Alpha Variant of SARS-CoV-2. Viruses 2021, 13, 1642. [Google Scholar] [CrossRef] [PubMed]
- Laffeber, C.; De Koning, K.; Kanaar, R.; Lebbink, J.H.G. Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants. J. Mol. Biol. 2021, 433, 167058. [Google Scholar] [CrossRef] [PubMed]
- Weisblum, Y.; Schmidt, F.; Zhang, F.; DaSilva, J.; Poston, D.; Lorenzi, J.C.; Muecksch, F.; Rutkowska, M.; Hoffmann, H.-F.; Michailidis, E.; et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 2020, 9, e61312. [Google Scholar] [CrossRef]
- GISAID. EpiCoV Data. 2021. Available online: https://www.gisaid.org/about-us/acknowledgements/data-curation/ (accessed on 7 June 2022).
- Zígolo, M.A.; Goytia, M.R.; Poma, H.R.; Rajal, V.B.; Irazusta, V.P. Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools. Sci. Total Environ. 2021, 781, 146400. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.Y.; Shaaban, M.M.; Elwakil, B.H.; Hamed, M.T.; Rezki, N.; Aouad, M.R.; Zakaria, M.A.; Hagar, M. Anti-COVID-19 activity of some benzofused 1, 2, 3-triazolesulfonamide hybrids using in silico and in vitro analyses. Chemom. Intell. Lab. Syst. 2021, 217, 104421. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Meyerholz, D.K.; Bartlett, J.A.; McCray, P.B., Jr. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. mBio 2021, 12, e0097021-e. [Google Scholar] [CrossRef]
- Lee, J.W.; Bajwa, P.J.; Carson, M.J.; Jeske, D.R.; Cong, Y.; Elson, C.O.; Lytle, C.; Straus, D.S. Fenofibrate represses interleukin-17 and interferon-gamma expression and improves colitis in interleukin-10-deficient mice. Gastroenterology 2007, 133, 108–123. [Google Scholar] [CrossRef]
- Ehrlich, A.; Uhl, S.; Ioannidis, K.; Hofree, M.; TenOever, B.R.; Nahmias, Y. The SARS-CoV-2 Transcriptional Metabolic Signature in Lung Epithelium. 14 July 2020. Available online: https://www.scienceopen.com/document?vid=8338170d-565b-47dc-846f-70939eb0990d (accessed on 5 June 2022).
- Yamamoto, N.; Yang, R.; Yoshinaka, Y.; Amari, S.; Nakano, T.; Cinatl, J.; Rabenau, H.; Doerr, H.W.; Hunsmann, G.; Otaka, A.; et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun. 2004, 318, 719–725. [Google Scholar] [CrossRef]
- Mittal, L.; Kumari, A.; Srivastava, M.; Singh, M.; Asthana, S. Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. J. Biomol. Struct. Dyn. 2021, 39, 3662–3680. [Google Scholar] [CrossRef]
- Ohashi, H.; Watashi, K.; Saso, W.; Shionoya, K.; Iwanami, S.; Hirokawa, T.; Shirai, T.; Kanaya, S.; Ito, Y.; Kim, K.S.; et al. Multidrug treatment with nelfinavir and cepharanthine against COVID-19. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z.; Wu, T.; Pan, L.; Zuo, C.; Hu, Y.; Luo, X.; Jiang, L.; Xia, Z.; Xiao, X.; Liu, J.; et al. Modalities and mechanisms of treatment for coronavirus disease 2019. Front. Pharmacol. 2021, 2257. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov. 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Lu, Z.; Xu, T.; Chen, C.; Yang, G.; Zha, T.; Lu, J.; Xue, Y. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J. Infect. 2020, 81, e21–e23. [Google Scholar] [CrossRef] [PubMed]
Variant | Drug | Moldock Score | Protein–Ligand Interactions | H-Bonds | Interacting Amino Acids |
---|---|---|---|---|---|
Wuhan | Camostat | −94.755 | −96.285 | −11.548 | Arg346, Asn448, Asn450, Tyr451 |
Nafamostat mesylate | −104.846 | −135.335 | −9.582 | Arg403, Gln409, Lys417, Try453, Asn501, Tyr505 | |
Fenofibrate | −88.424 | −114.416 | −5.119 | Arg346, Asn448 | |
Alpha | Camostat | −106.873 | −120.232 | −8.657 | Arg451, Arg454, Ser466 |
Nafamostat mesylate | −94.498 | −119.399 | −3.438 | Arg451, Lys455 | |
Fenofibrate | −68.199 | −100.849 | −4.576 | Arg451, Arg454, Ser466 | |
Beta | Camostat | −88.193 | −103.546 | −10.498 | Arg400, Gln490, Ser491, Gly493, Tyr498., Tyr502 |
Nafamostat mesylate | −83.507 | −109.470 | −5.861 | Gln490, Ser491, Tyr502 | |
Fenofibrate | −75.096 | −103.255 | −1.057 | Arg400, Gly493, Tyr502 | |
Gamma | Camostat | −103.073 | −122.665 | −7.500 | Thr345, Ser443, Tyr451 |
Nafamostat mesylate | −142.398 | −171.688 | −18.337 | Thr345, Asn439, Leu441, Ser443, Asn450, Tyr451, Gln498 | |
Fenofibrate | −100.413 | −132.544 | Tyr451, Arg509 | ||
Delta | Camostat | −102.745 | −125.025 | −12.577 | Ser347, Arg353, Arg450, Arg464 |
Nafamostat mesylate | −102.641 | −129.476 | −10.112 | Thr343, Leu439, Asn448, Tyr449 | |
Fenofibrate | −95.604 | −130.153 | −7.797 | Ser347, Tyr449, Arg450 | |
Eta | Camostat | −119.353 | −137.223 | −8.394 | Arg451, Ser466, Gly479 |
Nafamostat mesylate | −100.437 | −118.492 | −2.951 | Lys455, Ile469, Gln471 | |
Fenofibrate | −112.297 | −141.414 | −5.000 | Arg454, Lys455 | |
Iota | Camostat | −118.221 | −138.393 | −5.271 | Arg457, Lys458, Ser459, Ser469 |
Nafamostat mesylate | −129.082 | −149.932 | −7.837 | Arg454, Ser469, Gln471, Gln474 | |
Fenofibrate | −109.585 | −135.721 | 0.000 | ----- | |
Kappa | Camostat | −91.036 | −101.483 | −6.946 | Gly447, Asn450, Tyr451 |
Nafamostat mesylate | −96.805 | −120.913 | −5.140 | Ala352, Leu441 | |
Fenofibrate | −98.021 | −128.495 | −7.943 | Ser349, Asn448, Tyr451, Arg452 | |
Lambda | Camostat | −119.514 | −144.252 | -−5.005 | Lys458, Thr470, Gln474, Asn481, Gly482 |
Nafamostat mesylate | −128.577 | −154.110 | −13.652 | Arg454, Ser459, Ser469, Ile472, Gln474 | |
Fenofibrate | −104.396 | −134.550 | −2.991 | Ser469, Gln474 | |
Mu | Camostat | −123.722 | −148.776 | −12.036 | Arg455, Arg458, Lys459, Ser460, Arg467, Ser470 |
Nafamostat mesylate | −127.883 | −148.680 | −7.204 | Arg455, Ser470, Glu472, Gln475 | |
Fenofibrate | −103.262 | −131.505 | −1.108 | Arg458, Lys459, Ser460 | |
Omicron | Camostat | −115.805 | −140.820 | −6.926 | Ser466, Thr467, Gly479 |
Nafamostat mesylate | −113.863 | −134.961 | −11.732 | Phe453, Ile469, Cys477, Gly479 | |
Fenofibrate | −114.814 | −139.328 | −3.202 | Arg451, Lys455, Gln471 |
Variant | Drug | Moldock Score | Protein–Ligand Interactions | H-Bonds | Interacting Amino Acids |
---|---|---|---|---|---|
Wuhan | Nelfinavir | −116.080 | −116.546 | −11.012 | Arg346, Phe347, Ser349, Asn450 |
Umifenovir | −103.073 | −96.644 | −2.500 | Tyr449 | |
Alpha | Nelfinavir | −100.709 | −121.857 | −6.122 | Arg454, Lys455, Ile469 |
Umifenovir | −113.226 | −116.466 | −2.706 | Arg451, Ser46 | |
Beta | Nelfinavir | −81.228 | −108.512 | −12.424 | Gln490, Ser491, Gln495, Tyr498 |
Umifenovir | −89.495 | −81.839 | −2.602 | Thr373, Arg405 | |
Gamma | Nelfinavir | −130.548 | −170.809 | −7.209 | Thr345, Arg346, Tyr451, Arg509 |
Umifenovir | −135.474 | −149.931 | −2.500 | Arg509 | |
Delta | Nelfinavir | −104.259 | −134.889 | −11.305 | Arg344, Phe345, Asn448, Tyr449 |
Umifenovir | −92.064 | −86.749 | −1.436 | Gln445 | |
Eta | Nelfinavir | −128.410 | −143.063 | −5.233 | Ile469, Gln471 |
Umifenovir | −125.948 | −128.545 | −2.500 | Asn391 | |
Iota | Nelfinavir | −125.109 | −144.609 | −13.345 | Arg454, Arg457, Ser459, Asp467, Ser469, Gln471 |
Umifenovir | −117.812 | −122.038 | −2.500 | Ser469 | |
Kappa | Nelfinavir | −113.164 | −133.359 | −12.661 | Asn354, Arg346, Phe347, Asn450, Arg452 |
Umifenovir | −99.971 | −102.968 | −2.500 | Tyr451 | |
Lambda | Nelfinavir | −125.793 | −163.020 | −10.182 | Lys458, Ile472, Gln474 |
Umifenovir | −101.866 | −116.982 | −5.360 | Lys458, Glu471 | |
Mu | Nelfinavir | −137.991 | −146.459 | −12.536 | Arg458, Lys459, Ser460, Glu466 |
−124.324 | −127.631 | −2.500 | Ser470 | ||
Omicron | Nelfinavir | −132.578 | −149.554 | −8.435 | Arg451, Lys455, Asp464, Ser466, Glu468, Gln471 |
Umifenovir | −132.726 | −131.339 | −4.698 | Ser466, Gln471 |
Variant | Drug | Moldock Score | Protein–Ligand Interactions | H-Bonds | Interacting Amino Acids |
---|---|---|---|---|---|
Wuhan | Cefoperazone | −144.371 | −146.031 | −18.708 | Thr345, Arg346, Ser349, Tyr351, Leu441, Asp442, Asn448, Asn450, Arg509 |
Ceftazidime | −118.597 | −137.029 | −17.625 | Arg346, Tyr351, Asp442, Asn448, Asn450, Tyr451 | |
Alpha | Cefoperazone | −125.588 | −130.783 | −9.288 | Arg451, Arg454, Asp464, Ser466, Glu468 |
Ceftazidime | −110.150 | −114.360 | −18.519 | Arg400, Glu403, Tyr446, Tyr498, Tyr502 | |
Beta | Cefoperazone | −109.913 | −105.625 | −23.514 | Arg400, Ser491, Gly493, Tyr498, Tyr502 |
Ceftazidime | −109.963 | −128.651 | −8.750 | Thr373, Arg405, Tyr505 | |
Gamma | Cefoperazone | −185.011 | −179.208 | −27.519 | Arg346, Ser438, Ser443 Lys444, Asn450, Tyr451, Arg509 |
Ceftazidime | −144.263 | −179.684 | −20.501 | Thr345, Asp442, Ser443, Lys444, Asn450, Tyr451 | |
Delta | Cefoperazone | −137.162 | −125.012 | −16.197 | Tyr349, Asn448, Arg450, Thr468, Ser492 |
Ceftazidime | −101.435 | −146.149 | −22.839 | Arg344, Ser347, Tyr349, Asn448, Tyr449, Arg450 | |
Eta | Cefoperazone | −161.781 | −166.069 | −14.727 | Arg454, Lys455, Arg463, Glu468, Gln471 |
Ceftazidime | −140.189 | −155.757 | −15.701 | Arg451, Ser466, Glu468, Gln471 | |
Iota | Cefoperazone | −148.607 | −167.276 | −11.618 | Arg454, Arg457, Lys458, Ser459, Asn460, Lys462 |
Ceftazidime | −135.460 | −153.084 | −4.952 | Arg457, Lys458, Ser459, Ser469 | |
Kappa | Cefoperazone | −146.317 | −160.266 | −31.556 | Thr345, Arg346, Ser349, Tyr351, Leu441, Asp442, Asn450, Arg452, Arg509 |
Ceftazidime | −130.048 | −135.518 | −15.420 | Arg346, Leu441, Asn448, Tyr451 | |
Lambda | Cefoperazone | −164.939 | −167.338 | −22.592 | Arg454, Phe456, Arg457, Lys458, Ser459, Glu471, Gln474 |
Ceftazidime | −118.877 | −139.884 | −12.483 | Lys458, Ser459, Ser469, Glu471 | |
Mu | Cefoperazone | −146.632 | −138.655 | −10.715 | Arg455, Arg458, Lys459, Arg467, Ile469, Ser470, Glu472 |
Ceftazidime | −123.135 | −128.116 | −4.888 | Arg458, Lys459, Ser470 | |
Omicron | Cefoperazone | −171.673 | −178.048 | −19.746 | Arg451, Arg454, Lys455, Ser456, Asp464, Ser466, Gln471, Gly479 |
Ceftazidime | −138.695 | −155.598 | −9.885 | Arg451, Phe453, Lys455, Ser466, Gln471 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eweas, A.F.; Osman, H.-E.H.; Naguib, I.A.; Abourehab, M.A.S.; Abdel-Moneim, A.S. Virtual Screening of Repurposed Drugs as Potential Spike Protein Inhibitors of Different SARS-CoV-2 Variants: Molecular Docking Study. Curr. Issues Mol. Biol. 2022, 44, 3018-3029. https://doi.org/10.3390/cimb44070208
Eweas AF, Osman H-EH, Naguib IA, Abourehab MAS, Abdel-Moneim AS. Virtual Screening of Repurposed Drugs as Potential Spike Protein Inhibitors of Different SARS-CoV-2 Variants: Molecular Docking Study. Current Issues in Molecular Biology. 2022; 44(7):3018-3029. https://doi.org/10.3390/cimb44070208
Chicago/Turabian StyleEweas, Ahmad F., Hosam-Eldin H. Osman, Ibrahim A. Naguib, Mohammed A. S. Abourehab, and Ahmed S. Abdel-Moneim. 2022. "Virtual Screening of Repurposed Drugs as Potential Spike Protein Inhibitors of Different SARS-CoV-2 Variants: Molecular Docking Study" Current Issues in Molecular Biology 44, no. 7: 3018-3029. https://doi.org/10.3390/cimb44070208
APA StyleEweas, A. F., Osman, H. -E. H., Naguib, I. A., Abourehab, M. A. S., & Abdel-Moneim, A. S. (2022). Virtual Screening of Repurposed Drugs as Potential Spike Protein Inhibitors of Different SARS-CoV-2 Variants: Molecular Docking Study. Current Issues in Molecular Biology, 44(7), 3018-3029. https://doi.org/10.3390/cimb44070208