Bioactive Compounds and Adipocyte Browning Phenomenon
Abstract
:1. Introduction
WAT | BAT | BeAT | Authors | |
---|---|---|---|---|
Anatomical location | Subcutaneous and visceral | Adrenal, interscapular, and neck area in human infants | WAT deposits and supraclavicular region | [4,8] |
Morphology | Large adipocytes | Small adipocytes | Small adipocytes | [9,10] |
Lipid droplets | Large | Multiple and small | Multiple and small | [8,9,10] |
Origin/development | Progenitor Pdgfr-α | Progenitor Myf5+ | Progenitor Pdgfr-α+ | [4,8] |
Primary function | Energy storing | Heat production | Heat production | [11] |
Endocrine signals/adopokines | Adiponectin, Adipsin, Omentin, IL-4, IL-6, IL-10, Leptine, Resistin, Visfatin, Chemerin, TNF-α, MCP-1 | FGF-21, NRG-4, Myostatin, IGF-1, CXCL-14, BMP-8b, VEGF-A, T3, IL-6, GDF-15, Adiponectin, S100b, NGF and EPDR1 | IGFBP-2, METRNL, IL-6, GDF-15 and SLIT2-C | [9,12] |
Mitochondrial UCP1 | Low/high upon stimulation | Low/high upon stimulation | Low/high upon stimulation | [13] |
Expressed genes | Asc1, Fabp4, Fbxo31, Leptin, Lpl, Mpzl2, Nr1H3, Nrip1, Rb1, Rbl1, Resis-tin, Serpina3K, Tcf21 and Wdnm1 | Bmp7, Efb2, Ednrb, Eva1, Mir133B, Mir206, Myf5, Pdk4, Prex1 and Zic1 | Aqp7, Asc1, Car4, Cd137, Cd40, Cited1, Ear2, Shox2, Slc27A1, Sp100, Tbx1 and Tmem26 | [4] |
Mitochondrial biogenesis | Low | High | Medium | [14] |
Activated hyperplasia or hypertrophy | In prolonged positive energy balance conditions, adipocytes expand cell size (hypertrophy) and number (hyperplasia). | An increase in thermogenic activity derived from physical activity has been reported; however, it has not been related to tissue expansion. | Not reported | [15,16,17] |
Insulin resistance | Led by sustained low-grade inflammatory process. | Negative | Negative | [14,15,17] |
2. Adipocyte Browning Phenomenon
3. In-Vitro Studies of Adipocyte Browning
Compound/Extract | Concentration Range Evaluated | Results | Authors |
---|---|---|---|
Compound K (bacterial gingenoside) | 5 μM | Inhibits adipocyte maturation from pre-adipocyte to white adipocyte, decreases adipogenesis and lipid accumulation. | [28] |
Ginsenoside Rb1 | 0.01, 0.1, 1, 10 and 100 μM | Improves glucose intake and induction of thermogenic genes involved in browning process. | [29] |
Albiflorin | 10 and 20 µ | Decreases lipid accumulation and reduces adipogenic-related gene expression | [30] |
Farmesol | 0.5 and 2 µM | Decreases lipid accumulation and adipogenic-related genes, and induces thermogenic activity | [31] |
β-Lapachone | 0.5, 1 and 2 µM | Decreases lipid accumulation and induces thermogenic genes involved in browning process. | [32] |
Caffeine | 1 µM | Increases oxygen consumption and thermogenic genes. | [33] |
Ginsenoside Rg3 | 20 and 40 µM | Induction of thermogenic genes in mature differentiated white adipocytes. | [34] |
Magnolol | 1, 5, 10 and 20 µM | Induction of thermogenic genes involved in browning process during pre-adipocyte maturation process. | [37] |
δ-Tocopherol | 10, 50 and 100 μM | Induction of thermogenic genes involved in browning process in mature differentiated white adipocytes. | [39] |
Thymol | 20 μM | Promotes mitochondrial biogenesis and increases lipid oxidation. | [40] |
Trans-anethole | 1, 10, 50 and 100 μM | Decreases adipogenesis and lipogenesis during pre-adipocyte maturation process | [41] |
Cyanidin-3-glucoside | 50 and 100 µM | Increases multilocular lipid droplets and mitochondrial biogenesis. | [44] |
Gallotannins | 2.5, 5, 10 and 20 mg/mL | Induction of thermogenic genes involved in browning process in pre-adipocytes and during pre-adipocyte maturation process. | [42] |
Resveratrol | 10, 20 and 40 µM | Induction of thermogenic genes and decrease in lipid accumulation in mature differentiated white adipocytes. | [43] |
Lycopene | 1, 2, 4 and 10 μM | Induction of thermogenic genes and decrease the lipid accumulation. | [45] |
Grape pomace | 30 µM | Increases the β-adrenergic pathway and mitochondrial biogenesis. | [47] |
Raspberry ketone | 50 and 100 µM | Induction of thermogenic genes and mitochondrial biogenesis. | [48] |
Strawberry extract (Fragaria x ananassa) | 0, 10, 50 and 100 µg/mL | Inhibits adipocyte maturation from pre-adipocyte to white adipocyte. | [46] |
4. Adipocyte Mono-Culture 3T3-L1 and hAMSc Cell Line Studies
5. Adipocyte Browning In Vivo and Clinical Studies
6. Macrophage Polarization on fat Browning by Dietary Compounds
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACOT11 | Acyl CoA thiolesterase. |
ADBR | Beta adrenergic receptor |
AHR | Aryl hydrocarbon receptor. |
AKT | Serine threonine kinase. |
AMPK | AMP-activated protein kinase. |
APOL7C | Apolipoprotein L7c. |
ATCC | American Type Culture Collection. |
Atg’s | Genes related to autophagy. |
Beclin1 | Beclin 1. |
BMP7 | Bone morphogenetic protein 7. |
BMP-8b | Bone morphogenetic protein 8b. |
C/EBPα | CCAAT alpha enhancer binding protein. |
CIDEA | Activator of cell death A. |
COX7A1 | Cytochrome C oxidase 7A1 polypeptide. |
CPT1B | Carnitine palmitoyltransferase 1. |
CXCL-14 | C-X-C Motif Chemokine Ligand 14 |
DAPL1 | Protein associated with apoptosis 1. |
DIO2 | Iodothyronine deiodinase 2. |
ELOVL3 | Fatty acid elongase 3. |
EPDR-1 | Ependymin-related 1. |
EPSTI1 | Epithelial stromal interaction protein 1. |
EVA1 | Zero myelin protein type 2. |
FGF-21 | Fibroblast growth factor 21. |
GDF-15 | Growth differentiation factor 15. |
GM-CSF | Macrophage-colony stimulating factor. |
GRAP2 | GRB2-related adapter protein 2. |
HOXC8 | Homeobox C8. |
IGF1 | Insulin growth factor type 1. |
IGFBP-2 | Insulin-like growth factor binding protein 2. |
Keap1 | Kelch-type ECH-associated protein 1. |
LC3II | Autophagosomal marker lysosomal exchanger. |
LHX8 | LIM homebox 8 protein. |
MEST | Specific transcript of the mesoderm. |
mTOR | Mammalian cell rapamycin target. |
mTORC1 | Mechanistic target of rampamycin complex 1. |
NF-κB | Nuclear factor enhancer of the kappa light chains of activated B cells. |
Nrf2 | Factor related to erythroid nuclear factor 2. |
NFG | Nerve growth factor |
NRG-4 | Neuregulin 4. |
PI3K | Phosphoinositol 3 kinase. |
PDK4 | Pyruvate dehydrogenase lipoamide isoenzyme kinase 4. |
PGC-1α | Peroxisome proliferator activated receptor coactivating protein 1α. |
PLIN1 | Perilipin 1. |
PPAR-γ | Peroxisome proliferator activated gamma receptor. |
PRDM16 | Histone-lysine N-methyltransferase. |
Rb | Retinoblastoma protein. |
RIP140 | Nuclear receptor interaction protein 1. |
S100B | S100 Calcium Binding Protein B. |
SCL27A2 | Fatty acid transporter protein 2. |
SLIT2-c | Slit homolog 2 protein precursor. |
SNCG | Gamma-synuclein. |
STAP1 | Signal transduction adapter protein 1. |
STAT | Signal transducer and activator of transcription protein. |
TCF21 | Transcription factor 21. |
TLE3 | Transcriptional corepressor 3. |
TLR4 | Toll-like receptor 4. |
TNF-α | Tumor necrosis factor |
UCP-1 | Uncoupling protein 1. |
VEGF-A | Vascular endothelial growth factor A |
ZIC1 | Protein 1 zinc finger. |
References
- Cappa, D.F. Tejido Adiposo: Anatomía y Estructura Básica-Darío Cappa Capacitaciones. PubliCE 2012, 2012, 1–9. [Google Scholar]
- Snyder WCook, M.J.; Nasset, E.S.; Karhausen, L.R.; Howells, G.P.; Tipton, I.H. Report of the task group on reference men. In International Commission on Radiological Protection; Report of the Task Group on Reference Man; ICRP Publication 23; Pergamon Press: Oxford, UK, 1975; Volume 23, pp. 419–420. [Google Scholar]
- Parlee, S.D.; Lentz, S.I.; Mori, H.; MacDougald, O.A. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol. 2014, 537, 93–122. [Google Scholar]
- Harms, M.; Seale, P. Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 2013, 19, 1252–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosalski, R.; Guzik, T.J. Perivascular adipose tissue inflammation in vascular disease. Br. J. Pharmacol. 2017, 174, 3496–3513. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention (CDCP). Available online: https://www.cdc.gov/obesity/strategies/index.html (accessed on 10 January 2022).
- World Health Organization (WHO). Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 9 January 2022).
- Pilkington, A.-C.; Paz, H.A.; Wankhade, U.D. Beige adipose tissue identification and marker Specificity—Overview. Front. Endocrinol. 2021, 12, 599134. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.K.; Zhou, Z.; Zhang, J.; Zeng, R.; Wu, J.; Eitzman, D.T.; Chen, Y.E.; Chang, L. Perivascular adipose tissue in vascular function and disease: A review of current research and animal models. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1621–1630. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef]
- Chatterjee, T.K.; Stoll, L.L.; Denning, G.M.; Harrelson, A.; Blomkalns, A.L.; Idelman, G.; Rothenberg, F.G.; Neltner, B.; Romig-Martin, S.A.; Dickson, E.W. Proinflammatory phenotype of perivascular adipocytes: Influence of high-fat feeding. Circ. Res. 2009, 104, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Villacorta, L.; Li, R.; Hamblin, M.; Xu, W.; Dou, C.; Zhang, J.; Wu, J.; Zeng, R.; Chen, Y.E. Loss of perivascular adipose tissue on peroxisome proliferator–activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 2012, 126, 1067–1078. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Ahmad, B.; Vohra, M.S.; Saleemi, M.A.; Serpell, C.J.; Fong, I.L.; Wong, E.H. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie 2021, 184, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Bargut, T.C.L.; Souza-Mello, V.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Browning of white adipose tissue: Lessons from experimental models. Horm. Mol. Biol. Clin. Investig. 2017, 31, 1. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, J.; Dai, H.; Duan, Y.; An, Y.; Shi, L.; Lv, Y.; Li, H.; Wang, C.; Ma, Q. Brown and beige adipose tissue: A novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021, 10, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [Green Version]
- Aldiss, P.; Betts, J.; Sale, C.; Pope, M.; Budge, H.; Symonds, M.E. Exercise-induced ‘browning’of adipose tissues. Metabolism 2018, 81, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Blüher, M. Adipose tissue inflammation: A cause or consequence of obesity-related insulin resistance? Clin. Sci. 2016, 130, 1603–1614. [Google Scholar] [CrossRef]
- Montanari, T.; Pošćić, N.; Colitti, M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: A review. Obes. Rev. 2017, 18, 495–513. [Google Scholar] [CrossRef]
- Seale, P.; Bjork, B.; Yang, W.; Kajimura, S.; Chin, S.; Kuang, S.; Scime, A.; Devarakonda, S.; Conroe, H.M.; Erdjument-Bromage, H. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Bielczyk-Maczynska, E. White adipocyte plasticity in physiology and disease. Cells 2019, 8, 1507. [Google Scholar] [CrossRef] [Green Version]
- Rui, L. Brown and beige adipose tissues in health and disease. Compr. Physiol. 2017, 7, 1281. [Google Scholar]
- Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.-H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150, 366–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovic, N.; Walden, T.B.; Shabalina, I.G.; Timmons, J.A.; Cannon, B.; Nedergaard, J. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 2010, 285, 7153–7164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Cohen, P.; Spiegelman, B.M. Adaptive thermogenesis in adipocytes: Is beige the new brown? Genes Dev. 2013, 27, 234–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoraş, A.; Amalinei, C.; Balan, R.A.; Giuşcă, S.E.; Avădănei, E.R.; Lozneanu, L.; Căruntu, I.-D. Adipocytes spectrum—From homeostasia to obesity and its associated pathology. Ann. Anat.-Anat. Anz. 2018, 219, 102–120. [Google Scholar] [CrossRef]
- Xu, L.; Nagata, N.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Chen, G.; Mayoux, E.; Kaneko, S.; Ota, T. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 2017, 20, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.-W.; Wang, C.-Z.; Yuan, C.-S. Ginsenosides from American ginseng: Chemical and pharmacological diversity. Phytochemistry 2011, 72, 689–699. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Yoon, M. Compound K, a novel ginsenoside metabolite, inhibits adipocyte differentiation in 3T3-L1 cells: Involvement of angiogenesis and MMPs. Biochem. Biophys. Res. Commun. 2012, 422, 263–267. [Google Scholar] [CrossRef]
- Mu, Q.; Fang, X.; Li, X.; Zhao, D.; Mo, F.; Jiang, G.; Yu, N.; Zhang, Y.; Guo, Y.; Fu, M. Ginsenoside Rb1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2015, 466, 530–535. [Google Scholar] [CrossRef]
- Jeong, M.-Y.; Park, J.; Youn, D.-H.; Jung, Y.; Kang, J.; Lim, S.; Kang, M.-W.; Kim, H.-L.; So, H.-S.; Park, R. Albiflorin ameliorates obesity by inducing thermogenic genes via AMPK and PI3K/AKT in vivo and in vitro. Metabolism 2017, 73, 85–99. [Google Scholar] [CrossRef]
- Kim, H.-L.; Jung, Y.; Park, J.; Youn, D.-H.; Kang, J.; Lim, S.; Lee, B.S.; Jeong, M.-Y.; Choe, S.-K.; Park, R. Farnesol has an anti-obesity effect in high-fat diet-induced obese mice and induces the development of beige adipocytes in human adipose tissue derived-mesenchymal stem cells. Front. Pharmacol. 2017, 8, 654. [Google Scholar] [CrossRef] [Green Version]
- Kwak, H.J.; Jeong, M.-Y.; Um, J.-Y.; Park, J. β-Lapachone regulates obesity through modulating thermogenesis in brown adipose tissue and adipocytes: Role of AMPK signaling pathway. Am. J. Chin. Med. 2019, 47, 803–822. [Google Scholar] [CrossRef]
- Velickovic, K.; Wayne, D.; Leija, H.A.L.; Bloor, I.; Morris, D.E.; Law, J.; Budge, H.; Sacks, H.; Symonds, M.E.; Sottile, V. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Sci. Rep. 2019, 9, 9104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Nam, K.H.; Yi, S.A.; Park, J.W.; Han, J.-W.; Lee, J. Ginsenoside Rg3 induces browning of 3T3-L1 adipocytes by activating AMPK signaling. Nutrients 2020, 12, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-P.; Hsu, M.-F.; Raung, S.-Z.; Chen, C.-C.; Kuo, J.-S.; Teng, C.-M. Anti-inflammatory and analgesic effects of magnolol. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1992, 346, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Choi, M.S.; Cha, B.Y.; Woo, J.T.; Park, Y.B.; Kim, S.R.; Jung, U.J. Long-term supplementation of honokiol and magnolol ameliorates body fat accumulation, insulin resistance, and adipose inflammation in high-fat fed mice. Mol. Nutr. Food Res. 2013, 57, 1988–1998. [Google Scholar] [CrossRef]
- Parray, H.A.; Lone, J.; Park, J.P.; Choi, J.W.; Yun, J.W. Magnolol promotes thermogenesis and attenuates oxidative stress in 3T3-L1 adipocytes. Nutrition 2018, 50, 82–90. [Google Scholar] [CrossRef]
- Landrier, J.-F.; Gouranton, E.; El Yazidi, C.; Malezet, C.; Balaguer, P.; Borel, P.; Amiot, M.-J. Adiponectin expression is induced by vitamin E via a peroxisome proliferator-activated receptor γ-dependent mechanism. Endocrinology 2009, 150, 5318–5325. [Google Scholar] [CrossRef]
- Tanaka-Yachi, R.; Shirasaki, M.; Otsu, R.; Takahashi-Muto, C.; Inoue, H.; Aoki, Y.; Koike, T.; Kiyose, C. δ-Tocopherol promotes thermogenic gene expression via PGC-1α upregulation in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2018, 506, 53–59. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, S.W.; Yu, R.; Yun, J.W. Monoterpene phenolic compound thymol promotes browning of 3T3-L1 adipocytes. Eur. J. Nutr. 2017, 56, 2329–2341. [Google Scholar] [CrossRef]
- Kang, N.H.; Mukherjee, S.; Min, T.; Kang, S.C.; Yun, J.W. Trans-anethole ameliorates obesity via induction of browning in white adipocytes and activation of brown adipocytes. Biochimie 2018, 151, 1–13. [Google Scholar] [CrossRef]
- Matsukawa, T.; Villareal, M.O.; Motojima, H.; Isoda, H. Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes. J. Nutr. Biochem. 2017, 40, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.; Kim, H.; Noratto, G.; Sun, Y.; Talcott, S.T.; Mertens-Talcott, S.U. Gallotannin derivatives from mango (Mangifera indica L.) suppress adipogenesis and increase thermogenesis in 3T3-L1 adipocytes in part through the AMPK pathway. J. Funct. Foods 2018, 46, 101–109. [Google Scholar] [CrossRef]
- Liu, Z.; Liao, W.; Yin, X.; Zheng, X.; Li, Q.; Zhang, H.; Zheng, L.; Feng, X. Resveratrol-induced brown fat-like phenotype in 3T3-L1 adipocytes partly via mTOR pathway. Food Nutr. Res. 2020, 64, 3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, R.; Wei, J.; Liu, H.; Liu, C.; Wang, L.; Chen, B.; Li, L.; Jia, Q.; Tian, Y.; Li, R. Lycopene attenuates body weight gain through induction of browning via regulation of peroxisome proliferator-activated receptor γ in high-fat diet-induced obese mice. J. Nutr. Biochem. 2020, 78, 108335. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, C.R.; Perdicaro, D.J.; Landa, M.S.; Fontana, A.; Antoniolli, A.; Miatello, R.M.; Oteiza, P.I.; Prieto, M.A.V. Grape pomace extract induced beige cells in white adipose tissue from rats and in 3T3-L1 adipocytes. J. Nutr. Biochem. 2018, 56, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Leu, S.-Y.; Tsai, Y.-C.; Chen, W.-C.; Hsu, C.-H.; Lee, Y.-M.; Cheng, P.-Y. Raspberry ketone induces brown-like adipocyte formation through suppression of autophagy in adipocytes and adipose tissue. J. Nutr. Biochem. 2018, 56, 116–125. [Google Scholar] [CrossRef]
- Forbes-Hernández, T.Y.; Cianciosi, D.; Ansary, J.; Mezzetti, B.; Bompadre, S.; Quiles, J.L.; Giampieri, F.; Battino, M. Strawberry (Fragaria × ananassa cv. Romina) methanolic extract promotes browning in 3T3-L1 cells. Food Funct. 2020, 11, 297–304. [Google Scholar] [CrossRef]
- Lee, S.G.; Parks, J.S.; Kang, H.W. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J. Nutr. Biochem. 2017, 42, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Green, H.; Kehinde, O. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1974, 1, 113–116. [Google Scholar] [CrossRef]
- Poulos, S.P.; Dodson, M.V.; Hausman, G.J. Cell line models for differentiation: Preadipocytes and adipocytes. Exp. Biol. Med. 2010, 235, 1185–1193. [Google Scholar] [CrossRef]
- Bernlohr, D.; Bolanowski, M.; Kelly, T.J., Jr.; Lane, M.D. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 1985, 260, 5563–5567. [Google Scholar] [CrossRef]
- Zebisch, K.; Voigt, V.; Wabitsch, M.; Brandsch, M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal. Biochem. 2012, 425, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.M.; Moore, L.B.; Smith-Oliver, T.A.; Wilkison, W.O.; Willson, T.M.; Kliewer, S.A. An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor γ (PPARγ)*. J. Biol. Chem. 1995, 270, 12953–12956. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.M.; Lenhard, J.M.; Oliver, B.B.; Ringold, G.M.; Kliewer, S.A. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 1997, 272, 3406–3410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimpo, K.; Völker, M.N.; Heppe, E.N.; Braun, S.; Heverhagen, J.T.; Heldmaier, G. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: In vivo insights with magnetic resonance. J. Lipid Res. 2014, 55, 398–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galmozzi, A.; Sonne, S.B.; Altshuler-Keylin, S.; Hasegawa, Y.; Shinoda, K.; Luijten, I.H.; Chang, J.W.; Sharp, L.Z.; Cravatt, B.F.; Saez, E. ThermoMouse: An in vivo model to identify modulators of UCP1 expression in brown adipose tissue. Cell Rep. 2014, 9, 1584–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotney, H.; Symonds, M.E.; Law, J.; Budge, H.; Sharkey, D.; Manolopoulos, K.N. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo. Metabolism 2017, 70, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Chan, X.H.D.; Balasundaram, G.; Attia, A.B.E.; Goggi, J.L.; Ramasamy, B.; Han, W.; Olivo, M.; Sugii, S. Multimodal imaging approach to monitor browning of adipose tissue in vivo [S]. J. Lipid Res. 2018, 59, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Asp. Med. 2010, 31, 435–445. [Google Scholar] [CrossRef]
- Martinez, F.O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front Biosci 2008, 13, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Zhang, P.; Ruan, W.; Zhang, L.; Yuan, S.; Pang, T.; Jia, A.-Q. Smiglaside A ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK-PPARγ pathway. Biochem. Pharmacol. 2018, 156, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K.; Fuster, J.J.; Walsh, K. Adipokines: A link between obesity and cardiovascular disease. J. Cardiol. 2014, 63, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Blesso, C.N.; Barreto, G.E.; Banach, M.; Majeed, M.; Sahebkar, A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J. Nutr. Biochem. 2019, 66, 1–16. [Google Scholar] [CrossRef]
- Xu, L.; Ota, T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte 2018, 7, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.; McGee, S.L. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte 2015, 4, 295–302. [Google Scholar] [CrossRef] [Green Version]
Compound/Extract | Differentiation Media | Differentiation Period | Bioactive Compound Incubation | Authors | |
Compound K (bacterial gingenoside) | DMEM, 10% FBS, 1% streptomycin-penicillin, 1 μg/mL Ins, 1 μM DEX, and 0.5 mM IBMX. | 8 days | 48 h after confluence. | [28] | |
Ginsenoside Rb1 | DMEM, 10% FBS, 0.1% Gentamicin, 0.05% Biotin, 1 μM Ins, 0.25 μM DEX, and 0.25 mM IBMX. | 7 up to 9 days | 1 h after differentiation period under starving conditions. | [29] | |
Cyanidin-3-glucoside | DMEM, 10% FBS, 1% streptomycin-penicillin, Ins, DEX and IBMX. | 7 days | During differentiation period. | [44] | |
Magnolol | DMEM, 10% FBS, 1% estreptomicina-penicilina, 10 μg/mL Ins, 0.25 μM DEX y 0.5 mM IBMX. | Not detailed | During differentiation period. | [37] | |
Quercetin | DMEM, 10% FBS, 1% streptomycin-penicillin, 1 μg/mL Ins, 0.25 mM DEX and 0.5 mM IBMX. | 11 days | During differentiation period (day 5 to 11). | [49] | |
Thymol | DMEM, 10% FBS, 1% streptomycin-penicillin, 10 μg/mL Ins, 0.25 μM DEX and 0.5 mM IBMX. | 6 up to 8 days | During differentiation period. | [40] | |
Gallotannins | DMEM, 10% FBS, 1% streptomycin-penicillin, 10 μg/mL Ins, 1 μM DEX and 0.5 mM IBMX. | 6 days | 48 h after differentiation period. | [42] | |
Grape pomace | DMEM, 10% FBS, 1% streptomycin-penicillin, 1 mM/L Ins, 0.25 mM/L DEX, 0.5 mM/L IBMX, and 0.1 mM/L indomethacin. | 10 days | 20 min after differentiation period. | [47] | |
Raspberry ketone | DMEM, 10% FBS, 1% streptomycin-penicillin, 10 μg/mL Ins, 0.25 μM DEX, and 0.5 mM IBMX. | 10 days | During differentiation period (day 6 to 8) | [48] | |
δ-Tocopherol | DMEM, 10% FBS, 1% streptomycin-penicillin, 10 μg/mL Ins, 2.5 μM DEX and 0.5 mM IBMX. | 10 days | During differentiation period. | [39] | |
Trans anethole | DMEM, 10% FBS, 1% streptomycin-penicillin, 10 μg/mL Ins, 0.25 μM DEX and 0.5 mM IBMX. | 6 up to 8 days | During differentiation period. | [41] | |
Ginsenoside Rg3 | DMEM, 10% FBS, 1% streptomycin-penicillin, 5 μg/mL Ins, 1 μM DEX and 0.5 mM IBMX. | Not detailed | 24 h after differentiation period. | [34] | |
Lycopene | DMEM, 10% FBS, 1% streptomycin-penicillin, 10 μg/mL Ins, 1 μM DEX and 0.5 mM IBMX. | 6 up to 8 days | 24 and 48 h, respectively. | [45] | |
Resveratrol | DMEM, 10% FBS, 1% streptomycin-penicillin, 10 μg/mL Ins, 0.5 μM DEX and 0.5 mM IBMX. | 6 up to 8 days | During differentiation period. | [43] | |
Strawberry extract (Fragaria x ananassa) | DMEM, 10% FBS, 1% streptomycin-penicillin, 1 μg/mL Ins, 1 μM DEX, and 0.5 mM IBMX. | 10 days | During differentiation period. | [46] | |
Studies Performed in Other Cell Lines | |||||
Compound/Extract | Cell Line | Differentiation Media | Differentiation Period | Bioactive Compound Incubation | Authors |
Albiflorin | hAMSCs | DMEM, 10% SFB, 1% streptomycin-penicillin, 1 μg/mL Ins, 1 μM DEX, 0.5 mM IBMX and 100 μM Indomethacin | 14 days | After maturation, not detailed | [30] |
Farnesol | hAMSCs | DMEM, 10% SFB, 100 U/mL streptomycin-penicillin, 1 μM Ins, 1 μM DEX, 0.5 mM IBMX and 100 μM Indomethaci | 15 days | During differentiation maturation (day 6 to 15) | [31] |
β-Lapachone | hAMSc | DMEM, 10% SFB, 100 U/mL streptomycin-penicillin, 1 μM Ins, 1 μM DEX, 0.5 mM IBMX and 100 μM Indomethacin | 14 days | Not detailed | [32] |
Caffeine | mMSCs/hMSCs | DMEM, 10% SFB, 100 U/mL strep-tomycin-penicillin, 10 μg/mL Ins, 1 μM DEX, 100 µM IBMX, 1 µM Rosiglitazone and 1 nM T3/DMEM, 10% SFB, 100 U/mL streptomycin-penicillin, 10 μg/mL Ins, 1 μM DEX, 500 µM IBMX, 1 µM Rosiglitazone and 1 nM T3 | Not detailed | 7 days | [33] |
Model | Compound | Molecular Target | Technique | Authors |
---|---|---|---|---|
Mouse | - | UCP-1 | Magnetic resonance detection | [8,56] |
Mouse | Norepinephrine and rosiglitazone | UCP-1 | Transgenic mouse for UCP-1 luciferase signal | [57] |
Mouse | Albiflorin | UCP-1, PGC-1α, Nrf1, LIPIN1 and Glut4 | qPCR and Western blot analyses | [30] |
Mouse | Farmesol | UCP-1 | qPCR and Western blot analyses | [31] |
Mouse | β-Lapachone | UCP-1, PGC-1α and CIDEA. | qPCR and Western blot analyses | [32] |
Human | Caffein | Supraclavicular region activity | Infrared thermography | [33] |
Human | Hydrocortisone | - | Infrared thermography | [58] |
Mouse | - | UCP-1 | UCP-1 fluorescent probe detected by ultrasonic tomography | [59] |
Rat | Grape pomace | PPARγ, MCP-1, PRDM16, PGC-1α | Primary adipocyte cell culture | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manríquez-Núñez, J.; Ramos-Gómez, M. Bioactive Compounds and Adipocyte Browning Phenomenon. Curr. Issues Mol. Biol. 2022, 44, 3039-3052. https://doi.org/10.3390/cimb44070210
Manríquez-Núñez J, Ramos-Gómez M. Bioactive Compounds and Adipocyte Browning Phenomenon. Current Issues in Molecular Biology. 2022; 44(7):3039-3052. https://doi.org/10.3390/cimb44070210
Chicago/Turabian StyleManríquez-Núñez, Josué, and Minerva Ramos-Gómez. 2022. "Bioactive Compounds and Adipocyte Browning Phenomenon" Current Issues in Molecular Biology 44, no. 7: 3039-3052. https://doi.org/10.3390/cimb44070210
APA StyleManríquez-Núñez, J., & Ramos-Gómez, M. (2022). Bioactive Compounds and Adipocyte Browning Phenomenon. Current Issues in Molecular Biology, 44(7), 3039-3052. https://doi.org/10.3390/cimb44070210