Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Consideration and DEG Identification
2.2. GO and Pathway Enrichment Analysis
2.3. PPI Network Construction and Cluster Algorithm Implementation
2.4. Hub Genes Identification and Analysis
2.5. Computational Drug Signature Identification and Analysis
2.6. TF-miRNA Co-Regulatory Network and Analysis
3. Result
3.1. 166 Common Genes Were Found
3.2. The ClueGO Analysis for Gene Ontology and Pathway Enrichment
3.3. PPI Network Analysis and Cluster Algorithm Implementation
3.4. CDK1, MAD2L1: Significant Hub Genes
3.5. Doxorubicin and Resveratrol Significant Drug Signature
3.6. TF-miRNA Co-Regulatory Network and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
GEO | Gene Expression Omnibus |
DEG | Differential Expression Gene |
OC | Oral cancer |
GO | Gene ontology |
PPI | Protein–protein interaction |
TF | Transcription Factor |
miRNA | microRNA |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
OSCC | Oral squamous cell carcinoma |
MCC | Maximal clique centrality |
MNC | Maximum Neighborhood Component |
NCBI | National Center for Biotechnology Information |
STRING | Search Tool for the Retrieval of Interacting Genes |
References
- Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of Salivary Biomarkers in Oral Cancer Detection. Adv. Clin. Chem. 2018, 86, 23–70. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.; Wiesenfeld, D. Oral Cancer. Aust. Dent. J. 2018, 63, S91–S99. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Botteri, E.; Iodice, S.; Boniol, M.; Lowenfels, A.B.; Maisonneuve, P.; Boyle, P. Tobacco smoking and cancer: A meta-analysis. Int. J. Cancer 2008, 122, 155–164. [Google Scholar] [CrossRef]
- Goldstein, B.Y.; Chang, S.-C.; Hashibe, M.; La Vecchia, C.; Zhang, Z.-F. Alcohol consumption and cancers of the oral cavity and pharynx from 1988 to 2009: An update. Eur. J. Cancer Prev. 2010, 19, 431–465. [Google Scholar] [CrossRef] [PubMed]
- Kreimer, A.R.; Clifford, G.M.; Boyle, P.; Franceschi, S. Human Papillomavirus Types in Head and Neck Squamous Cell Carcinomas Worldwide: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2005, 14, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Glick, M. Burket’s Oral Medicine; PMPH USA: New Haven, CT, USA, 2015. [Google Scholar]
- Barros-Silva, P.; Fontes-Borges, M.; Costa-Dias, C.; Mota-Lemos, J.; Cunha, S.S.; Fernandes-Souza, E.; Sousa-Dantas, T.; Bitu-Sousa, F. Clinical-pathological and sociodemographic factors associated with the distant metastasis and overall survival of oral cavity and oropharynx squamous cell carcinoma. Med. Oral. Patol. Oral. Cir. Bucal. 2020, 25, e375–e382. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Corsten, M.; McDonald, J.; Chun, J. Socio-economic factors and stage at presentation of head and neck cancer patients in Ottawa, Canada: A logistic regression analysis. Oral Oncol. 2010, 46, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.M.; Logan, H.L.; Tomar, S.L.; Sandow, P. Factors associated with early-stage diagnosis of oral and pharyngeal cancer. Community Dent. Oral Epidemiology 2009, 37, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Pakravan, F.; Abbasi, F.; Garshasbi, M.A.; Isfahani, M.N. Relationship between oral cancer stage and elapsed time from the onset of signs and symptoms to diagnosis and treatment. Cancer Treat. Res. Commun. 2021, 28, 100428. [Google Scholar] [CrossRef]
- Warnakulasuriya, S. White, red, and mixed lesions of oral mucosa: A clinicopathologic approach to diagnosis. Periodontology 2000 2019, 80, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, M.; Hnitecka, S.; Nahajowski, M.; Dominiak, M.; Gerber, H. Oral cancer: The first symptoms and reasons for delaying correct diagnosis and appropriate treatment. Adv. Clin. Exp. Med. 2020, 29, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M.; Vollset, S.E.; Abbasoglu Ozgoren, A.; Abdalla, S.; Abd-Allah, F.; et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Shrestha, A.D.; Vedsted, P.; Kallestrup, P.; Neupane, D. Prevalence and incidence of oral cancer in low- and middle-income countries: A scoping review. Eur. J. Cancer Care 2020, 29, e13207. [Google Scholar] [CrossRef]
- Khayer, N.; Zamanian-Azodi, M.; Mansouri, V.; Ghassemi-Broumand, M.; Rezaei-Tavirani, M.; Heidari, M.H.; Tavirani, M.R. Oral squamous cell cancer protein-protein interaction network interpretation in comparison to esophageal adenocarcinoma. Gastroenterol. Hepatol. Bed Bench 2017, 10, 118–124. [Google Scholar] [PubMed]
- Geng, F.; Wang, Q.; Li, C.; Liu, J.; Zhang, D.; Zhang, S.; Pan, Y. Identification of Potential Candidate Genes of Oral Cancer in Response to Chronic Infection With Porphyromonas gingivalis Using Bioinformatical Analyses. Front. Oncol. 2019, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, C.; Zhang, Z.; Li, Y.; Li, Q.; Geng, F.; Liu, J.; Pan, Y. Analysis of differentially expressed genes in oral epithelial cells infected with Fusobacterium nucleatum for revealing genes associated with oral cancer. J. Cell. Mol. Med. 2020, 25, 892–904. [Google Scholar] [CrossRef]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed]
- Toro-Domínguez, D.; Martorell-Marugán, J.; López-Domínguez, R.; García-Moreno, A.; González-Rumayor, V.; Alarcón-Riquelme, M.E.; Carmona-Sáez, P. ImaGEO: Integrative gene expression meta-analysis from GEO database. Bioinformatics 2019, 35, 880–882. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Troup, D.B.; Wilhite, S.E.; Ledoux, P.; Rudnev, D.; Evangelista, C.; Kim, I.F.; Soboleva, A.; Tomashevsky, M.; Edgar, R. NCBI GEO: Mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res. 2007, 35, D760–D765. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Troup, D.B.; Wilhite, S.E.; LeDoux, P.; Rudnev, D.; Evangelista, C.; Kim, I.F.; Soboleva, A.; Tomashevsky, M.; Marshall, K.A.; et al. NCBI GEO: Archive for high-throughput functional genomic data. Nucleic Acids Res. 2009, 37, D885–D890. [Google Scholar] [CrossRef] [PubMed]
- Blount, J.R.; Meyer, D.N.; Akemann, C.; Johnson, S.; Gurdziel, K.; Baker, T.R.; Todi, S.V. Unanchored ubiquitin chains do not lead to marked alterations in gene expression in Drosophila melanogaster. Biol. Open 2019, 8, bio043372. [Google Scholar] [CrossRef]
- Mlecnik, B.; Galon, J.; Bindea, G. Comprehensive functional analysis of large lists of genes and proteins. J. Proteom. 2018, 171, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Ágg, B.; Császár, A.; Szalay-Bekő, M.; Veres, D.V.; Mizsei, R.; Ferdinandy, P.; Csermely, P.; Kovacs, I. The EntOptLayout Cytoscape plug-in for the efficient visualization of major protein complexes in protein–protein interaction and signalling networks. Bioinformatics 2019, 35, 4490–4492. [Google Scholar] [CrossRef]
- Zhou, G.; Soufan, O.; Ewald, J.; Hancock, R.E.W.; Basu, N.; Xia, J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019, 47, W234–W241. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Killcoyne, S.; Carter, G.W.; Smith, J.; Boyle, J. Cytoscape: A Community-Based Framework for Network Modeling. Methods Mol. Biol. 2009, 563, 219–239. [Google Scholar] [CrossRef]
- Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2–27. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Sun, X.; Wang, C.; Li, F.; Zhang, S.; Zhang, H.; Li, G.; Yuan, L.; Chen, G.; Sun, R.; et al. Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage (Brassica rapa L.) during vernalization. BMC Genom. 2021, 22, 1–16. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, L.; Chen, H.; Zhang, W.; Zhang, Q.; Liang, X.; Guo, Y.; Tang, P. Hub genes and gene functions associated with postmenopausal osteoporosis predicted by an integrated method. Exp. Ther. Med. 2018, 17, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wen, Z.; Li, H.; Song, Y. Identification of Hub Genes Associated With Tuberculous Pleurisy by Integrated Bioinformatics Analysis. Front. Genet. 2021, 12, 730491. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Zhang, C.; Zhang, T.; He, Y.; Su, Y.; Zhou, L. Identification of Key Prognostic Biomarker and Its Correlation with Immune Infiltrates in Pancreatic Ductal Adenocarcinoma. Dis. Markers 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Yoo, M.; Shin, J.; Kim, J.; Ryall, K.A.; Lee, K.; Lee, S.; Jeon, M.; Kang, J.; Tan, A.C. DSigDB: Drug signatures database for gene set analysis: Fig. 1. Bioinformatics 2015, 31, 3069–3071. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, S.; Yu, F.; Zhou, L.; Wang, K. Noncoding RNAs as Molecular Targets of Resveratrol Underlying Its Anticancer Effects. J. Agric. Food Chem. 2019, 67, 4709–4719. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, J.; Li, W.; Zhang, D.; Wang, Z.; Zhai, Y.; Yu, H.; Li, Z. Integrative investigation of the TF–miRNA coregulatory network involved in the inhibition of breast cancer cell proliferation by resveratrol. FEBS Open Bio 2021, 12, 379–393. [Google Scholar] [CrossRef]
- Barlak, N.; Capik, O.; Sanli, F.; Karatas, O.F. The roles of microRNAs in the stemness of oral cancer cells. Oral Oncol. 2020, 109, 104950. [Google Scholar] [CrossRef]
- Lennard, L. Methyltransferases. In Comprehensive Toxicology, 2nd ed.; McQueen, C.A.B.T.-C.T., Ed.; Elsevier: Oxford, UK, 2010; pp. 113–131. ISBN 9780080468846. [Google Scholar] [CrossRef]
- Kouchakzadeh, H.; Safavi, M.S.; Shojaosadati, S.A. Efficient Delivery of Therapeutic Agents by Using Targeted Albumin Nanoparti-cles, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 98, pp. 121–143. ISSN 1876-1623. ISBN 9780128028285. [Google Scholar] [CrossRef]
- Lennard, L. Methyltransferases. In Comprehensive Toxicology, 2nd ed.; McQueen, C.A.B.T.-C.T., Ed.; Elsevier: Oxford, UK, 2010; pp. 477–510. ISBN 9780080468846. [Google Scholar] [CrossRef]
- Srinivasan, M.; Rajabi, M.; Mousa, S.A. Chapter 3—Nanobiomaterials in cancer therapy. In Nanobiomaterials in Cancer Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 57–89. ISBN 9780323428637. [Google Scholar] [CrossRef]
- Lin, Y.; Sibanda, V.L.; Zhang, H.-M.; Hu, H.; Liu, H.; Guo, A.-Y. MiRNA and TF co-regulatory network analysis for the pathology and recurrence of myocardial infarction. Sci. Rep. 2015, 5, 9653. [Google Scholar] [CrossRef]
- Jitender, S.; Sarika, G.; Varada, H.R.; Omprakash, Y.; Mohsin, K. Screening for oral cancer. J. Exp. Ther. Oncol. 2016, 11, 303–307. [Google Scholar]
- Rahman, M.R.; Islam, T.; Zaman, T.; Shahjaman, M.; Karim, M.R.; Huq, F.; Quinn, J.M.W.; Holsinger, R.M.D.; Gov, E.; Moni, M.A. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective. Genomics 2020, 112, 1290–1299. [Google Scholar] [CrossRef]
- Sainz, B., Jr.; Mossel, E.C.; Peters, C.J.; Garry, R.F. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 2004, 329, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C.C.; Parra, B.; Hinton, D.R.; Ramakrishna, C.; Dowdell, K.C.; Stohlman, S.A. Perforin and Gamma Interferon-Mediated Control of Coronavirus Central Nervous System Infection by CD8 T Cells in the Absence of CD4 T Cells. J. Virol. 2004, 78, 1739–1750. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, M.; Liu, Z.; Ding, D.; Ye, Y.; Zhang, M.; Kelly, R.; Guo, L.; Su, Z.; Harris, S.C.; et al. atBioNet– an integrated network analysis tool for genomics and biomarker discovery. BMC Genom. 2012, 13, 325. [Google Scholar] [CrossRef]
- Kaur, B.; Mukhlis, Y.; Natesh, J.; Penta, D.; Meeran, S.M. Identification of hub genes associated with EMT-induced chemoresistance in breast cancer using integrated bioinformatics analysis. Gene 2022, 809, 146016. [Google Scholar] [CrossRef]
- Chatr-Aryamontri, A.; Breitkreutz, B.-J.; Heinicke, S.; Boucher, L.; Winter, A.; Stark, C.; Nixon, J.; Ramage, L.; Kolas, N.; O’Donnell, L.; et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013, 41, D816–D823. [Google Scholar] [CrossRef]
- Petignat, P.; Roy, M. Diagnosis and management of cervical cancer. BMJ 2007, 335, 765–768. [Google Scholar] [CrossRef]
- Carvalho, B.S.; Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 2010, 26, 2363–2367. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Takeda, T.; Wakasa, K.-I.; Tsujimoto, M.; Sakon, M.; Matsuura, N. Expression of p73 and p63 proteins in pancreatic adenocarcinoma: p73 overexpression is inversely correlated with biological aggressiveness. Int. J. Mol. Med. 2001, 8, 67–71. [Google Scholar] [CrossRef]
- Ito, Y.; Takeda, T.; Sakon, M.; Monden, M.; Tsujimoto, M.; Matsuura, N. Expression and Prognostic Role of Cyclin-Dependent Kinase 1 (cdc2) in Hepatocellular Carcinoma. Oncology 2000, 59, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Sheng, W.; Jia, C.; Tang, J.; Dong, M. Hsa-MiR-590-3p Promotes the Malignancy Progression of Pancreatic Ductal Carcinoma by Inhibiting the Expression of p27 and PPP2R2A via G1/S Cell Cycle Pathway. OncoTargets Ther. 2020, 13, 11045–11058. [Google Scholar] [CrossRef] [PubMed]
- Du, B.B.; Wang, T.; Yang, X.F.; Wang, J.K.; Shi, X.L.; Wang, X.Y.; Wu, D.W.; Feng, L.L.; Chen, L.J.; Zhang, W.S. SOX9, miR-495, miR-590-3p, and miR-320d were identified as chemoradiotherapy-sensitive genes and miRNAs in colorectal cancer patients based on a microarray dataset. Neoplasma 2019, 66, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Song, M.; Wu, X.; Wang, W. NOL6, a new founding oncogene in human prostate cancer and targeted by miR-590-3p. Cytotechnology 2020, 72, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, K.; van Pelt, G.W.; van Dam, H.; Yu, X.; Mesker, W.E.; Dijke, P.T.; Zhou, F.; Zhang, L. c-Myb Enhances Breast Cancer Invasion and Metastasis through the Wnt/β-Catenin/Axin2 Pathway. Cancer Res. 2016, 76, 3364–3375. [Google Scholar] [CrossRef]
- Miree, O.; Srivastava, S.K.; Khan, M.A.; Sameeta, F.; Acharya, S.; Ndetan, H.; Singh, K.P.; Hertweck, K.L.; Dasgupta, S.; da Silva, L.M.; et al. Clinicopathologic significance and race-specific prognostic association of MYB overexpression in ovarian cancer. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Sakuma, K.; Sasaki, E.; Hosoda, W.; Komori, K.; Shimizu, Y.; Yatabe, Y.; Aoki, M. MYB mediates downregulation of the colorectal cancer metastasis suppressor heterogeneous nuclear ribonucleoprotein L-like during epithelial-mesenchymal transition. Cancer Sci. 2021, 112, 3846–3855. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, H.R.; Doucet, K.; Duke, V.; Morra, A.; Johnson, N. Estrogen prevents sustained COLO-205 human colon cancer cell growth by inducing apoptosis, decreasing c-myb protein, and decreasing transcription of the anti-apoptotic protein bcl-2. Tumor Biol. 2010, 31, 16–22. [Google Scholar] [CrossRef]
- Mitra, P. Transcription regulation of MYB: A potential and novel therapeutic target in cancer. Ann. Transl. Med. 2018, 6, 443. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, S.; Guo, L.; Li, X. MicroRNA-1258, regulated by c-Myb, inhibits growth and epithelial-to-mesenchymal transition phenotype via targeting SP1 in oral squamous cell carcinoma. J. Cell. Mol. Med. 2019, 23, 2813–2821. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yao, Y.; Jiang, X.; Zhong, X.; Wang, Z.; Li, C.; Kang, P.; Leng, K.; Ji, D.; Li, Z.; et al. SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-P.; Zhang, H.; Wang, H.-B.; Li, Y.-X.; Liu, G.-H.; Xing, S.; Li, M.-Z.; Zeng, M.-S. Down-regulation of Sp1 suppresses cell proliferation, clonogenicity and the expressions of stem cell markers in nasopharyngeal carcinoma. J. Transl. Med. 2014, 12, 222. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Bang, W.; Shin, J.-C.; Park, S.-M.; Cho, J.-J.; Choi, Y.H.; Seo, K.S.; Choi, N.-J.; Shim, J.-H.; Chae, J.-I. Downregulation of Sp1 is involved in β-lapachone-induced cell cycle arrest and apoptosis in oral squamous cell carcinoma. Int. J. Oncol. 2015, 46, 2606–2612. [Google Scholar] [CrossRef]
- Meredith, A.-M.; Dass, C.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J. Pharm. Pharmacol. 2016, 68, 729–741. [Google Scholar] [CrossRef]
- Ogura, M. [Adriamycin (doxorubicin)]. Gan Kagaku Ryoho 2001, 28, 1331–1338. (In Japanese) [Google Scholar] [PubMed]
- Zhao, Y.; Huan, M.-L.; Liu, M.; Cheng, Y.; Sun, Y.; Cui, H.; Liu, D.-Z.; Mei, Q.-B.; Zhou, S.-Y. Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci. Rep. 2016, 6, 35267. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lu, L.; Yan, S.; Yi, H.; Yao, H.; Wu, D.; He, G.; Tao, X.; Deng, X. Autophagy and doxorubicin resistance in cancer. Anti-Cancer Drugs 2018, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jamialahmadi, K.; Zahedipour, F.; Karimi, G. The role of microRNAs on doxorubicin drug resistance in breast cancer. J. Pharm. Pharmacol. 2021, 73, 997–1006. [Google Scholar] [CrossRef]
- Prados, J.; Melguizo, C.; Ortiz, R.; Velez, C.; Alvarez, P.J.; Arias, J.L.; Ruiz, M.A.; Gallardo, V.; Aranega, A. Doxorubicin-Loaded Nanoparticles: New Advances in Breast Cancer Therapy. Anti-Cancer Agents Med. Chem. 2012, 12, 1058–1070. [Google Scholar] [CrossRef]
- Lovitt, C.J.; Shelper, T.B.; Avery, V.M. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Abd-Rabou, A.A.; Ahmed, H.H.; Shalby, A.B. Selenium Overcomes Doxorubicin Resistance in Their Nano-platforms Against Breast and Colon Cancers. Biol. Trace Element Res. 2019, 193, 377–389. [Google Scholar] [CrossRef]
- Lv, Z.; Yan, X.; Lu, L.; Su, C.; He, Y. Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer. J. Bioenerg. Biomembr. 2018, 50, 263–270. [Google Scholar] [CrossRef]
- Du, L.; Ma, S.; Wen, X.; Chai, J.; Zhou, D. Oral squamous cell carcinoma cells are resistant to doxorubicin through upregulation of miR-221. Mol. Med. Rep. 2017, 16, 2659–2667. [Google Scholar] [CrossRef] [PubMed]
- Kataria, R. Resveratrol in Various Pockets: A Review. Curr. Top. Med. Chem. 2019, 19, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-R.; Chen, Y.-S.; Chin, Y.-T.; Li, Z.-L.; Shih, Y.-J.; Yang, Y.-C.S.; ChangOu, C.A.; Su, P.-Y.; Wang, S.-H.; Wu, Y.-H.; et al. Thyroid hormone-induced expression of inflammatory cytokines interfere with resveratrol-induced anti-proliferation of oral cancer cells. Food Chem. Toxicol. 2019, 132, 110693. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-D.; Yang, J.-L.; Zhang, W.-L.; Liu, D.-X. Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest. Tumor Biol. 2015, 37, 2871–2877. [Google Scholar] [CrossRef]
GO ID | GO Terms | Terms p-Value | Group p-Value | Categories |
---|---|---|---|---|
GO:0060337 | Type I interferon signaling pathway | 1.809E-13 | 4.480E-07 | BP |
GO:0071357 | Cellular response to type I interferon | 2.095E-13 | 4.480E-07 | BP |
GO:0034340 | Response to type I interferon | 4.251E-13 | 4.480E-07 | BP |
GO:0000070 | Mitotic sister chromatid segregation | 3.548E-10 | 2.742E-06 | BP |
GO:0000819 | Sister chromatid segregation | 3.930E-09 | 2.742E-06 | BP |
GO:0030071 | Regulation of mitotic metaphase/anaphase transition | 4.689E-09 | 1.616E-07 | BP |
GO:0007091 | Metaphase/anaphase transition of mitotic cell cycle | 6.237E-09 | 1.616E-07 | BP |
GO:0140014 | Mitotic nuclear division | 7.428E-09 | 2.742E-06 | BP |
GO:1902099 | Regulation of metaphase/anaphase transition of cell cycle | 8.216E-09 | 1.616E-07 | BP |
GO:0010965 | Regulation of mitotic sister chromatid separation | 9.397E-09 | 1.616E-07 | BP |
GO:0044784 | Metaphase/anaphase transition of cell cycle | 1.072E-08 | 1.616E-07 | BP |
GO:0051306 | Mitotic sister chromatid separation | 1.221E-08 | 1.616E-07 | BP |
GO:1905818 | Regulation of chromosome separation | 2.556E-08 | 1.616E-07 | BP |
GO:0005819 | Spindle | 2.740E-11 | 4.636E-10 | CC |
GO:0072686 | Mitotic spindle | 1.981E-07 | 4.636E-10 | CC |
GO:0000775 | Chromosome, centromeric region | 2.277E-07 | 4.133E-08 | CC |
GO:0000776 | Kinetochore | 4.474E-07 | 4.133E-08 | CC |
GO:0098687 | Chromosomal region | 7.160E-07 | 4.133E-08 | CC |
GO:0051233 | Spindle midzone | 7.456E-07 | 4.636E-10 | CC |
GO:0000779 | Condensed chromosome, centromeric region | 9.731E-07 | 4.133E-08 | CC |
GO:0097517 | Contractile actin filament bundle | 2.813E-06 | 1.143E-05 | CC |
GO:0001725 | Stress fiber | 2.813E-06 | 1.143E-05 | CC |
GO:0000777 | Condensed chromosome kinetochore | 4.721E-06 | 4.133E-08 | CC |
GO:0032432 | Actin filament bundle | 5.672E-06 | 1.143E-05 | CC |
GO:0042641 | Actomyosin | 6.158E-06 | 1.143E-05 | CC |
GO:0000228 | Nuclear chromosome | 1.917E-05 | 4.133E-08 | CC |
GO:0016504 | Peptidase activator activity | 3.497E-05 | 3.497E-05 | MF |
GO:0005178 | Integrin binding | 6.853E-05 | 6.853E-05 | MF |
GO:1990939 | ATP-dependent microtubule motor activity | 2.390E-04 | 9.072E-04 | MF |
GO:0016505 | Peptidase activator activity involved in apoptotic process | 6.662E-04 | 3.497E-05 | MF |
GO:0003777 | Microtubule motor activity | 7.133E-04 | 9.072E-04 | MF |
GO:0004714 | Transmembrane receptor protein tyrosine kinase activity | 7.391E-04 | 1.067E-03 | MF |
GO:0003774 | Motor activity | 9.072E-04 | 9.072E-04 | MF |
GO:0003688 | DNA replication origin binding | 1.635E-03 | 1.635E-03 | MF |
GO:0004715 | Non-membrane spanning protein tyrosine kinase activity | 1.979E-03 | 1.067E-03 | MF |
GO:0051087 | Chaperone binding | 2.370E-03 | 2.370E-03 | MF |
GO:0043394 | Proteoglycan binding | 5.449E-03 | 5.449E-03 | MF |
GO:0003725 | double-stranded RNA binding | 6.270E-03 | 6.270E-03 | MF |
Pathways ID | Pathways Terms | Terms p-Value | Group p-Value | Database |
---|---|---|---|---|
KEGG:04110 | Cell cycle | 8.389E-07 | 5.580E-05 | KEGG |
KEGG:05164 | Influenza A | 9.510E-05 | 7.551E-05 | KEGG |
KEGG:04914 | Progesterone-mediated oocyte maturation | 1.017E-04 | 5.580E-05 | KEGG |
KEGG:05169 | Epstein-Barr virus infection | 3.345E-04 | 7.551E-05 | KEGG |
KEGG:04114 | Oocyte meiosis | 4.923E-04 | 5.580E-05 | KEGG |
KEGG:05162 | Measles | 7.698E-04 | 7.551E-05 | KEGG |
KEGG:04726 | Serotonergic synapse | 1.544E-03 | 1.544E-03 | KEGG |
KEGG:05160 | Hepatitis C | 1.570E-03 | 7.551E-05 | KEGG |
KEGG:04512 | ECM-receptor interaction | 2.652E-03 | 3.054E-03 | KEGG |
KEGG:05222 | Small cell lung cancer | 3.218E-03 | 3.054E-03 | KEGG |
KEGG:05146 | Amoebiasis | 5.007E-03 | 3.054E-03 | KEGG |
KEGG:00350 | Tyrosine metabolism | 6.907E-03 | 6.907E-03 | KEGG |
KEGG:04115 | p53 signaling pathway | 8.122E-03 | 5.580E-05 | KEGG |
R-HSA:1015702 | Expression of IFN-induced genes | 4.799E-13 | 4.799E-13 | Reactome |
R-HSA:2468287 | CDK1 phosphorylates CDCA5 (Sororin) at centromeres | 5.845E-07 | 7.830E-07 | Reactome |
R-HSA:170057 | Formation of Cyclin B:Cdc2 complexes | 1.058E-06 | 8.867E-05 | Reactome |
R-HSA:170055 | Myt-1 mediated phosphorylation of Cyclin B:Cdc2 complexes | 4.201E-06 | 8.867E-05 | Reactome |
R-HSA:170161 | Dephosphorylation of cytoplasmic Cyclin B1/B2:phospho-Cdc2 (Thr 14, Tyr 15) complexes by CDC25B | 4.201E-06 | 8.867E-05 | Reactome |
R-HSA:2984220 | CDK1:CCNB phosphorylates NEK9 | 4.201E-06 | 8.867E-05 | Reactome |
R-HSA:4086410 | CDK1 phosphorylates BORA | 4.201E-06 | 8.867E-05 | Reactome |
R-HSA:9624800 | CDK1 phosphorylates LBR | 4.201E-06 | 8.867E-05 | Reactome |
R-HSA:1678841 | Regulation of protein ISGylation by ISG15 deconjugating enzyme USP18 | 4.921E-06 | 4.196E-07 | Reactome |
R-HSA:1169406 | ISGylation of host proteins | 1.325E-05 | 4.196E-07 | Reactome |
R-NUL:2422970 | Phosphorylation of Gorasp1, Golga2 and RAB1A by CDK1:CCNB | 3.594E-05 | 8.867E-05 | Reactome |
R-HSA:179410 | Association of Nek2A with MCC:APC/C | 5.539E-05 | 4.052E-07 | Reactome |
WP:179 | Cell Cycle | 1.024E-04 | 1.024E-04 | Wikipathways |
WP:3287 | Overview of nanoparticle effects | 1.430E-03 | 1.430E-03 | Wikipathways |
WP:4240 | Regulation of sister chromatid separation at the metaphase-anaphase transition | 3.225E-05 | 3.225E-05 | Wikipathways |
WP:4341 | Non-genomic actions of 1,25 dihydroxyvitamin D3 | 1.589E-03 | 1.589E-03 | Wikipathways |
WP:466 | DNA Replication | 1.562E-03 | 1.562E-03 | Wikipathways |
WP:619 | Type II interferon signaling (IFNG) | 7.336E-05 | 7.336E-05 | Wikipathways |
WP:4197 | The human immune response to tuberculosis | 2.525E-03 | 2.864E-04 | Wikipathways |
WP:4868 | Type I interferon induction and signaling during SARS-CoV-2 Infection | 3.733E-04 | 2.864E-04 | Wikipathways |
WP:4880 | Host-pathogen interaction of human corona viruses - Interferon induction | 6.200E-04 | 2.864E-04 | Wikipathways |
Hub Genes | Name | Degree |
---|---|---|
CDK1 | Cyclin-dependent kinase 1 | 32 |
MAD2L1 | MAD2 mitotic arrest deficient-like 1 (yeast) | 31 |
BUB1B | BUB1 mitotic checkpoint serine/threonine kinase B | 29 |
TTK | TTK protein kinase | 29 |
BUB1 | BUB1 mitotic checkpoint serine/threonine kinase | 28 |
CCNB1 | Cyclin B1 | 27 |
CCNB2 | Cyclin B2 | 27 |
AURKA | Aurora kinase A | 26 |
Targets | Overlap | p-Value | Adjusted p-Value | Genes |
---|---|---|---|---|
doxorubicin CTD 00005874 | 7 | 7.85E-10 | 2.87E-08 | CCNB2;CCNB1;CDK1;BUB1B;TTK;MAD2L1;AURKA |
resveratrol CTD 00002483 | 8 | 1.66E-09 | 5.00E-08 | CCNB2;CCNB1;CDK1;BUB1B;TTK;BUB1;MAD2L1;AURKA |
COUMESTROL CTD 00005717 | 8 | 4.48E-09 | 1.09E-07 | CCNB2;CCNB1;CDK1;BUB1B;TTK;BUB1;MAD2L1;AURKA |
Enterolactone CTD 00001393 | 7 | 4.77E-09 | 1.11E-07 | CCNB2;CCNB1;CDK1;BUB1B;TTK;MAD2L1;AURKA |
paclitaxel CTD 00007144 | 6 | 5.84E-09 | 1.30E-07 | CCNB2;CCNB1;CDK1;BUB1B;MAD2L1;AURKA |
5-Fluorouracil CTD 00005987 | 7 | 2.11E-08 | 3.86E-07 | CCNB2;CCNB1;CDK1;BUB1B;BUB1;MAD2L1;AURKA |
genistein CTD 00007324 | 7 | 2.49E-08 | 4.40E-07 | CCNB2;CCNB1;CDK1;BUB1B;TTK;BUB1;AURKA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, F.; Kahtani, F.H.A.; Sambawa, Z.M.; Alhassan, D.A.; AlSaif, R.A.; Haque, T.; Alam, M.K.; Hasan, M.T.; Islam, M.R.; Ahmed, K.; et al. Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer. Curr. Issues Mol. Biol. 2022, 44, 3552-3572. https://doi.org/10.3390/cimb44080244
Akhter F, Kahtani FHA, Sambawa ZM, Alhassan DA, AlSaif RA, Haque T, Alam MK, Hasan MT, Islam MR, Ahmed K, et al. Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer. Current Issues in Molecular Biology. 2022; 44(8):3552-3572. https://doi.org/10.3390/cimb44080244
Chicago/Turabian StyleAkhter, Fatema, Fawzia Haif Al Kahtani, Zainah Mohammed Sambawa, Deema Abdulrahman Alhassan, Reema Abdulaziz AlSaif, Tahsinul Haque, Mohammad Khursheed Alam, Md. Tanvir Hasan, Md. Rakibul Islam, Kawsar Ahmed, and et al. 2022. "Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer" Current Issues in Molecular Biology 44, no. 8: 3552-3572. https://doi.org/10.3390/cimb44080244
APA StyleAkhter, F., Kahtani, F. H. A., Sambawa, Z. M., Alhassan, D. A., AlSaif, R. A., Haque, T., Alam, M. K., Hasan, M. T., Islam, M. R., Ahmed, K., & Basri, R. (2022). Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer. Current Issues in Molecular Biology, 44(8), 3552-3572. https://doi.org/10.3390/cimb44080244