Single Nucleotide Polymorphisms May Increase the Risk of Aspiration Pneumonia in Post-Stroke Patients with Dysphagia
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Assessment of Aspiration Pneumonia
2.3. Assessment of Swallowing and Functional Outcomes
2.4. Genotyping
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Genetic Polymorphism and its Association with Aspiration Pneumonia
3.3. APOE Genotyping
3.4. Comparison of APOE Genotypes
3.5. Univariable and Multivariable Analysis of Predictors of Aspiration Pneumonia
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong, J.R.; Mosher, B.D. Aspiration pneumonia after stroke: Intervention and prevention. Neurohospitalist 2011, 1, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.C.; Lin, Y.C.; Chang, Y.H.; Chen, C.H.; Chiang, H.C.; Huang, L.C.; Yang, Y.H.; Hung, C.H. The Mortality and the Risk of Aspiration Pneumonia Related with Dysphagia in Stroke Patients. J. Stroke Cerebrovasc. Dis. 2019, 28, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Roje-Bedeković, M.; Dimitrović, A.; Breitenfeld, T.; Supanc, V.; Vargek Solter, V. Reliable predicting factors for post-stroke dysphagia–Our experience. Neurol. Psychiatry Brain Res. 2020, 38, 97–101. [Google Scholar] [CrossRef]
- Wu, C.P.; Chen, Y.W.; Wang, M.J.; Pinelis, E. National Trends in Admission for Aspiration Pneumonia in the United States, 2002–2012. Ann. Am. Thorac. Soc. 2017, 14, 874–879. [Google Scholar] [CrossRef]
- Sellars, C.; Bowie, L.; Bagg, J.; Sweeney, M.P.; Miller, H.; Tilston, J.; Langhorne, P.; Stott, D.J. Risk factors for chest infection in acute stroke: A prospective cohort study. Stroke 2007, 38, 2284–2291. [Google Scholar] [CrossRef]
- Yu, K.J.; Moon, H.; Park, D. Different clinical predictors of aspiration pneumonia in dysphagic stroke patients related to stroke lesion: A STROBE-complaint retrospective study. Medicine 2018, 97, e13968. [Google Scholar] [CrossRef]
- Xu, Z.; Gu, Y.; Li, J.; Wang, C.; Wang, R.; Huang, Y.; Zhang, J. Dysphagia and aspiration pneumonia in elderly hospitalization stroke patients: Risk factors, cerebral infarction area comparison. J. Back Musculoskelet. Rehabil. 2019, 32, 85–91. [Google Scholar] [CrossRef]
- Tanzi, P.; Cain, K.; Kalil, A.; Zierath, D.; Savos, A.; Gee, J.M.; Shibata, D.; Hadwin, J.; Carter, K.; Becker, K. Post-stroke infection: A role for IL-1ra? Neurocrit. Care 2011, 14, 244–252. [Google Scholar] [CrossRef]
- Rafiq, S.; Stevens, K.; Hurst, A.J.; Murray, A.; Henley, W.; Weedon, M.N.; Bandinelli, S.; Corsi, A.M.; Guralnik, J.M.; Ferruci, L.; et al. Common genetic variation in the gene encoding interleukin-1-receptor antagonist (IL-1RA) is associated with altered circulating IL-1RA levels. Genes Immun. 2007, 8, 344–351. [Google Scholar] [CrossRef]
- Becker, K.J.; Dankwa, D.; Lee, R.; Schulze, J.; Zierath, D.; Tanzi, P.; Cain, K.; Dressel, A.; Shibata, D.; Weinstein, J. Stroke, IL-1ra, IL1RN, infection and outcome. Neurocrit. Care 2014, 21, 140–146. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, T.; Zhang, W.; He, J.; Lu, F.; Cai, Y.; Lai, Z.; Wei, N.; Liang, C.; Liu, L.; et al. Presence of the apolipoprotein E-epsilon4 allele is associated with an increased risk of sepsis progression. Sci. Rep. 2020, 10, 15735. [Google Scholar] [CrossRef]
- Oh, H.M.; Kim, T.W.; Park, H.Y.; Kim, Y.; Park, G.Y.; Im, S. Role of rs6265 BDNF polymorphisms and post-stroke dysphagia recovery-A prospective cohort study. Neurogastroenterol. Motil. 2021, 33, e13953. [Google Scholar] [CrossRef]
- Martin, B.J.; Corlew, M.M.; Wood, H.; Olson, D.; Golopol, L.A.; Wingo, M.; Kirmani, N. The association of swallowing dysfunction and aspiration pneumonia. Dysphagia 1994, 9, 1–6. [Google Scholar] [CrossRef]
- John, J.S.; Berger, L. Using the gugging swallowing screen (GUSS) for dysphagia screening in acute stroke patients. J. Contin. Educ. Nurs. 2015, 46, 103–104. [Google Scholar] [CrossRef]
- Oh, J.-C. Reliability and Validity of Korean Mann Assessment of Swallowing Ability (K-MASA). Ph.D. Thesis, Graduate School, Yonsei University, Seoul, Korea, 2014. [Google Scholar]
- Rosenbek, J.C.; Robbins, J.A.; Roecker, E.B.; Coyle, J.L.; Wood, J.L. A penetration-aspiration scale. Dysphagia 1996, 11, 93–98. [Google Scholar] [CrossRef]
- Martin-Harris, B.; Brodsky, M.B.; Michel, Y.; Castell, D.O.; Schleicher, M.; Sandidge, J.; Maxwell, R.; Blair, J. MBS measurement tool for swallow impairment--MBSImp: Establishing a standard. Dysphagia 2008, 23, 392–405. [Google Scholar] [CrossRef]
- Crary, M.A.; Mann, G.D.; Groher, M.E. Initial psychometric assessment of a functional oral intake scale for dysphagia in stroke patients. Arch. Phys. Med. Rehabil. 2005, 86, 1516–1520. [Google Scholar] [CrossRef]
- Belafsky, P.C.; Mouadeb, D.A.; Rees, C.J.; Pryor, J.C.; Postma, G.N.; Allen, J.; Leonard, R.J. Validity and reliability of the Eating Assessment Tool (EAT-10). Ann. Otol. Rhinol. Laryngol. 2008, 117, 919–924. [Google Scholar] [CrossRef]
- Goldstein, L.B.; Samsa, G.P. Reliability of the National Institutes of Health Stroke Scale. Extension to non-neurologists in the context of a clinical trial. Stroke 1997, 28, 307–310. [Google Scholar] [CrossRef]
- Park, J.-H.; Kwon, Y.C. Modification of the mini-mental state examination for use in the elderly in a non-western society. Part 1. Development of korean version of mini-mental state examination. Int. J. Geriatr. Psychiatry 1990, 5, 381–387. [Google Scholar] [CrossRef]
- Berg, K.; Wood-Dauphine, S.; Williams, J.; Gayton, D.J.P.C. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Burn, J.P. Reliability of the modified Rankin Scale. Stroke 1992, 23, 438. [Google Scholar] [CrossRef]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 1984, 64, 35–40. [Google Scholar] [CrossRef]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Seripa, D.; D’Onofrio, G.; Panza, F.; Cascavilla, L.; Masullo, C.; Pilotto, A. The genetics of the human APOE polymorphism. Rejuvenation Res. 2011, 14, 491–500. [Google Scholar] [CrossRef]
- Dong, Y.; Hu, B.; Huang, S.; Ye, T.; Dong, Q. The Modified Volume-Viscosity Swallow Test as a Predictor of Aspiration Pneumonia after Acute Ischemic Stroke. Clin. Neurol. Neurosurg. 2021, 200, 106351. [Google Scholar] [CrossRef]
- Sekizawa, K.; Matsui, T.; Nakagawa, T.; Nakayama, K.; Sasaki, H. ACE inhibitors and pneumonia. Lancet 1998, 352, 1069. [Google Scholar] [CrossRef]
- Kumazawa, R.; Jo, T.; Matsui, H.; Fushimi, K.; Yasunaga, H. Association between Angiotensin-Converting Enzyme Inhibitors and Post-Stroke Aspiration Pneumonia. J. Stroke Cerebrovasc. Dis. 2019, 28, 104444. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, L.M.; Wu, J. Cross-talk between apolipoprotein E and cytokines. Mediat. Inflamm. 2011, 2011, 949072. [Google Scholar] [CrossRef]
- Yao, X.; Gordon, E.M.; Figueroa, D.M.; Barochia, A.V.; Levine, S.J. Emerging Roles of Apolipoprotein E and Apolipoprotein A-I in the Pathogenesis and Treatment of Lung Disease. Am. J. Respir. Cell Mol. Biol. 2016, 55, 159–169. [Google Scholar] [CrossRef]
- Lagging, C.; Lorentzen, E.; Stanne, T.M.; Pedersen, A.; Soderholm, M.; Cole, J.W.; Jood, K.; Lemmens, R.; Phuah, C.L.; Rost, N.S.; et al. APOE epsilon4 is associated with younger age at ischemic stroke onset but not with stroke outcome. Neurology 2019, 93, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Van der Lee, S.J.; Wolters, F.J.; Ikram, M.K.; Hofman, A.; Ikram, M.A.; Amin, N.; Van Duijn, C.M. The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: A community-based cohort study. Lancet Neurol. 2018, 17, 434–444. [Google Scholar] [CrossRef]
- Robinson, A.C.; Davidson, Y.S.; Roncaroli, F.; Minshull, J.; Tinkler, P.; Horan, M.A.; Payton, A.; Pendleton, N.; Mann, D.M.A. Influence of APOE Genotype on Mortality and Cognitive Impairment. J. Alzheimers Dis. Rep. 2020, 4, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Altamura, C.; Squitti, R.; Pasqualetti, P.; Tibuzzi, F.; Silvestrini, M.; Ventriglia, M.C.; Cassetta, E.; Rossini, P.M.; Vernieri, F. What is the relationship among atherosclerosis markers, apolipoprotein E polymorphism and dementia? Eur. J. Neurol. 2007, 14, 679–682. [Google Scholar] [CrossRef]
- Mentz, H.; Horan, M.; Payton, A.; Ollier, W.; Pendleton, N.; Hamdy, S. Homozygosity in the ApoE 4 polymorphism is associated with dysphagic symptoms in older adults. Dis. Esophagus 2015, 28, 97–103. [Google Scholar] [CrossRef]
- Gale, S.C.; Gao, L.; Mikacenic, C.; Coyle, S.M.; Rafaels, N.; Murray Dudenkov, T.; Madenspacher, J.H.; Draper, D.W.; Ge, W.; Aloor, J.J.; et al. APOepsilon4 is associated with enhanced in vivo innate immune responses in human subjects. J. Allergy Clin. Immunol. 2014, 134, 127–134. [Google Scholar] [CrossRef]
- Gerard, H.C.; Fomicheva, E.; Whittum-Hudson, J.A.; Hudson, A.P. Apolipoprotein E4 enhances attachment of Chlamydophila (Chlamydia) pneumoniae elementary bodies to host cells. Microb. Pathog. 2008, 44, 279–285. [Google Scholar] [CrossRef]
- Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Kuchel, G.A.; Melzer, D. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 2231–2232. [Google Scholar] [CrossRef]
- Hoffmann, S.; Harms, H.; Ulm, L.; Nabavi, D.G.; Mackert, B.M.; Schmehl, I.; Jungehulsing, G.J.; Montaner, J.; Bustamante, A.; Hermans, M.; et al. Stroke-induced immunodepression and dysphagia independently predict stroke-associated pneumonia—The PREDICT study. J. Cereb. Blood Flow Metab. 2017, 37, 3671–3682. [Google Scholar] [CrossRef]
- Galovic, M.; Leisi, N.; Pastore-Wapp, M.; Zbinden, M.; Vos, S.B.; Mueller, M.; Weber, J.; Brugger, F.; Kagi, G.; Weder, B.J. Diverging lesion and connectivity patterns influence early and late swallowing recovery after hemispheric stroke. Hum. Brain Mapp. 2017, 38, 2165–2176. [Google Scholar] [CrossRef]
- Galovic, M.; Stauber, A.J.; Leisi, N.; Krammer, W.; Brugger, F.; Vehoff, J.; Balcerak, P.; Muller, A.; Muller, M.; Rosenfeld, J.; et al. Development and Validation of a Prognostic Model of Swallowing Recovery and Enteral Tube Feeding After Ischemic Stroke. JAMA Neurol. 2019, 76, 561–570. [Google Scholar] [CrossRef]
- Suntrup, S.; Kemmling, A.; Warnecke, T.; Hamacher, C.; Oelenberg, S.; Niederstadt, T.; Heindel, W.; Wiendl, H.; Dziewas, R. The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 1: Dysphagia incidence, severity and aspiration. Eur. J. Neurol. 2015, 22, 832–838. [Google Scholar] [CrossRef]
- Chang, W.H.; Bang, O.Y.; Shin, Y.I.; Lee, A.; Pascual-Leone, A.; Kim, Y.H. BDNF polymorphism and differential rTMS effects on motor recovery of stroke patients. Brain Stimul. 2014, 7, 553–558. [Google Scholar] [CrossRef]
Young Age (n = 103) | Old Age (n = 103) | |||||
---|---|---|---|---|---|---|
AP (+) (n = 46) | AP (−) (n = 57) | p-Value | AP (+) (n = 63) | AP (−) (n = 40) | p-Value | |
Sex (male) | 31 (37.4) | 38 (66.7) | 1.000 | 44 (69.8) | 23 (57.5) | 0.285 |
BMI | 22.6 ± 3.4 | 23.0 ± 2.6 | 0.541 | 21.6 ± 3.7 | 22.8 ± 3.2 | 0.090 |
Stroke type | 0.366 | 0.093 | ||||
infarction | 18 (39.1) | 27 (47.4) | 40 (63.5) | 34 (85.0) | ||
hemorrhage | 25 (54.4) | 29 (50.9) | 21 (33.3) | 6 (15.0) | ||
both | 3 (6.5) | 1 (1.7) | 2 (3.2) | 0 (0.0) | ||
Location | 0.514 | 0.204 | ||||
supratentorial | 31 (67.4) | 42 (73.7) | 43 (68.3) | 33 (82.5) | ||
infratentorial | 11 (23.9) | 13 (22.8) | 18 (28.6) | 7 (17.5) | ||
multiple | 4 (8.7) | 2 (3.5) | 2 (3.2) | 0 (0.0) | ||
Side | 0.125 | 0.269 | ||||
right | 10 (21.7) | 23 (40.4) | 23 (36.5) | 17 (42.5) | ||
left | 23 (50.0) | 23 (40.4) | 28 (44.4) | 20 (50.0) | ||
bilateral | 13 (28.3) | 11 (19.2) | 12 (19.0) | 3 (7.5) | ||
Afib | 7 (15.2) | 3 (5.3) | 0.173 | 16 (25.4) | 6 (15.0) | 0.313 |
Recur | 12 (26.1) | 4 (7.0) | 0.017 * | 16 (25.4) | 9 (22.5) | 0.922 |
DM | 16 (34.8) | 21 (36.8) | 0.992 | 34 (54.0) | 14 (35.0) | 0.093 |
HBP | 29 (63.0) | 40 (70.2) | 0.579 | 52 (82.5) | 28 (70.0) | 0.213 |
Intubation | 27 (58.7) | 20 (35.1) | 0.028 * | 28 (80.0) | 7 (20.0) | 0.009 * |
Tracheostomy | 19 (41.3) | 9 (15.8) | 0.008 * | 18 (100.0) | 0 (0.0) | 0.001 * |
Alcohol | 14 (30.4) | 23 (40.4) | 0.403 | 18 (28.6) | 13 (32.5) | 0.839 |
Smoking | 14 (30.4) | 18 (31.6) | 1.000 | 18 (28.6) | 12 (30.0) | 1.000 |
Initial Clinical Outcomes | ||||||
NIHSS | 15.2 ± 6.6 | 11.7 ± 7.7 | 0.014 * | 14.6 ± 7.3 | 10.1 ± 6.2 | < 0.001 * |
MMSE | 13.0 [1.0–22.0] | 26.0 [16.0–29.0] | < 0.001 * | 14.0 [1.0–23.0] | 17.0 [12.0–24.0] | 0.063 |
BBS | 4.0 [0.0–28.0] | 30.0 [5.0–50.0] | 0.001 * | 3.0 [0.0–8.0] | 12.5 [3.0–48.0] | 0.002 * |
NPM at ≥ 12 weeks | 27 (58.7) | 10 (17.5) | < 0.001 * | 39 (61.9) | 4 (10.0) | < 0.001 * |
MBSImp-Oral | 15.0 [10.0–18.0] | 8.5 [5.0–13.0] | < 0.001 * | 12.0 [10.0–16.0] | 10.0 [6.5–14.0] | 0.003 * |
MBSImp- Pharyngeal | 11.0 [9.0–13.0] | 8.0 [5.0–13.0] | 0.024 * | 10.0 [8.0–15.0] | 6.0 [4.5–9.0] | < 0.001 * |
GUSS | 2.0 [1.0–4.0] | 5.0 [3.0–14.0] | < 0.001 * | 2.0 [1.0–4.0] | 6.0 [3.0–14.0] | < 0.001 * |
PAS | 8.0 [8.0–8.0] | 7.0 [6.0–8.0] | < 0.001 * | 8.0 [8.0–8.0] | 8.0 [6.0–8.0] | < 0.001 * |
MASA | 115.0 [86.0–139.0] | 154.0 [125.0–175.0] | < 0.001 * | 119.0 [82.0–146.0] | 154.5 [139.5–173.0] | < 0.001 * |
EAT-10 | 40.0 [40.0–40.0] | 38.0 [20.0–40.0] | 0.001 * | 40.0 [40.0–40.0] | 32.0 [20.5–40.0] | < 0.001 * |
FOIS | 1.0 [1.0–1.0] | 1.0 [1.0–2.0] | < 0.001 * | 1.0 [1.0–1.0] | 1.0 [1.0–2.0] | 0.001 * |
FAC | 0.0 [0.0–1.0] | 2.0 [0.0–3.0] | < 0.001 * | 0.0 [0.0–0.0] | 0.0 [0.0–3.5] | 0.007 * |
MBI | 8.5 [0.0–44.0] | 53.0 [23.0–82.0] | < 0.001 * | 7.0 [1.5–34.0] | 42.5 [11.5–75.5] | < 0.001 * |
mRS (≥ 3) | 46 (100) | 55 (96.5) | 0.572 | 61 (96.8) | 38 (95.0) | 1.000 |
All Ages (n = 206) | Age < 65 (n = 103) | Age ≥ 65 (n = 103) | |||||||
---|---|---|---|---|---|---|---|---|---|
Additive OR (95% CI) | Dominant OR (95% CI) | Recessive OR (95% CI) | Additive OR (95% CI) | Dominant OR (95% CI) | Recessive OR (95% CI) | Additive OR (95% CI) | Dominant OR (95% CI) | Recessive OR (95% CI) | |
rs429358 | 1.92 (1.01–3.65) * | 1.87 (0.96–3.65) | N/A | 4.53 (1.60–12.84) † | 4.53 (1.60–12.84) † | N/A | 0.98 (0.43–2.21) | 0.82 (0.33–2.31) | N/A |
rs7412 | 0.73 (0.31–1.7) | 0.73 (0.31–1.7) | N/A | 0.99 (0.25–3.92) | 0.99 (0.25–3.92) | N/A | 0.5 (0.17–1.51) | 0.5 (0.17–1.51) | N/A |
rs165599 | 1.20 (0.80–1.82) | 1.30 (0.71–2.37) | 1.23 (0.59–2.56) | 1.18 (0.66–2.08) | 1.59 (0.66–3.81) | 0.88 (0.32–2.41) | 1.28 (0.69–2.36) | 1.07 (0.45–2.56) | 2.12 (0.63–7.10) |
rs4251961 | 0.95 (0.47–1.93) | 0.95 (0.43–2.08) | 0.89 (0.06–14.40) | 0.78 (0.29–2.07) | 0.84 (0.29–2.42) | N/A | 1.42 (0.44–4.55) | 1.31 (0.37–4.67) | N/A |
rs4532 | 0.92 (0.51–1.67) | 0.92 (0.47–1.79) | 0.89 (0.12–6.43) | 1.17 (0.50–2.77) | 1.32 (0.53–3.31) | N/A | 0.77 (0.34–1.75) | 0.65 (0.24–1.77) | 1.28 (0.11–14.58) |
rs1800497 | 1.06 (0.70–1.59) | 1.06 (0.60–1.87) | 1.11 (0.51–2.45) | 1.59 (0.88–2.89) | 1.53 (0.65–3.60) | 2.36 (0.79–7.08) | 0.77 (0.43–1.39) | 0.85 (0.38–1.93) | 0.50 (0.15–1.60) |
rs6280 | 1.03 (0.65–1.64) | 1.11 (0.64–1.93) | 0.73 (0.22–2.47) | 1.18 (0.61–2.28) | 1.52 (0.70–3.33) | 0.29 (0.03–2.73) | 0.84 (0.43–1.63) | 0.73 (0.33–1.64) | 1.29 (0.22–7.38) |
rs4680 | 0.88 (0.56–1.37) | 0.88 (0.51–1.52) | 0.75 (0.24–2.31) | 0.84 (0.46–1.53) | 0.73 (0.33–1.64) | 0.99 (0.25–3.92) | 0.86 (0.43–1.71) | 0.88 (0.40–1.94) | 0.62 (0.08–4.61) |
rs6265 | 1.14 (0.80–1.64) | 1.04 (0.58–1.87) | 1.44 (0.76–2.72) | 1.23 (0.73–2.10) | 1.20 (0.51–2.87) | 1.48 (0.61–3.58) | 1.14 (0.68–1.92) | 1.04 (0.46–2.37) | 1.48 (0.57–3.84) |
Univariable | Multivariable | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
rs429358 | 4.53 (1.67–13.80) | 0.004 * | 5.35 (1.64–20.88) | 0.009 * |
Sex (male) | 0.97 (0.42–2.21) | 0.938 | ||
BMI | 0.98 (0.85–1.11) | 0.722 | ||
DM (yes) | 0.91 (0.40–2.06) | 0.829 | ||
HBP | 0.73 (0.32–1.66) | 0.445 | ||
Alcohol (yes) | 0.65 (0.28–1.46) | 0.298 | ||
Smoking (yes) | 0.95 (0.41–2.19) | 0.901 | ||
MBSImp-Oral (> 11) | 4.03 (1.79–9.43) | 0.001 * | 2.73 (1.04–7.41) | 0.043 * |
PAS | 1.92 (1.31–3.24) | 0.004 * | 1.42 (0.97–2.43) | 0.126 |
EAT-10 (> 15) | 6.30 (1.06–120.15) | 0.091 | ||
mRS | 2.77 (1.63–5.02) | < 0.001 * | 2.45 (1.30–5.00) | 0.009 * |
AUROC | 0.82 (0.74–0.90) |
Univariable | Multivariable | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
rs429358 | 0.82 (0.33–2.07) | 0.667 | ||
Sex (male) | 0.64 (0.27–1.49) | 0.295 | ||
BMI | 0.91 (0.81–1.02) | 0.114 | ||
DM (yes) | 2.10 (0.92–4.90) | 0.082 | ||
HBP (yes) | 1.82 (0.69–4.79) | 0.223 | ||
NIHSS | 1.10 (1.03–1.17) | 0.005 * | 1.06 (0.97–1.16) | 0.188 |
Alcohol (yes) | 0.86 (0.35–2.11) | 0.732 | ||
Smoking (yes) | 0.89 (0.36–2.25) | 0.806 | ||
MMSE (< 18) | 1.10 (0.49–2.49) | 0.819 | ||
MBSImp-Oral (> 11) | 2.35 (1.03–5.57) | 0.047 * | 0.26 (0.06–0.98) | 0.062 |
GUSS | 0.78 (0.69–0.86) | <0.001 * | 0.80 (0.68–0.93) | 0.007 * |
PAS | 2.03 (1.36–3.38) | 0.002 * | 1.88 (1.22–3.39) | 0.013 * |
EAT-10 (> 15) | 5.06 (0.62–104.41) | 0.168 | ||
FOIS | 0.31 (0.11–0.61) | 0.006 * | 0.43 (0.12–1.19) | 0.150 |
FAC (< 3) | 6.42 (2.19–21.74) | 0.001 * | 4.12 (0.94–19.96) | 0.064 |
AUROC | 0.89 (0.83–0.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-Y.; Oh, H.-M.; Kim, T.-W.; Kim, Y.; Park, G.-Y.; Hwang, H.; Im, S. Single Nucleotide Polymorphisms May Increase the Risk of Aspiration Pneumonia in Post-Stroke Patients with Dysphagia. Curr. Issues Mol. Biol. 2022, 44, 3735-3745. https://doi.org/10.3390/cimb44080255
Park H-Y, Oh H-M, Kim T-W, Kim Y, Park G-Y, Hwang H, Im S. Single Nucleotide Polymorphisms May Increase the Risk of Aspiration Pneumonia in Post-Stroke Patients with Dysphagia. Current Issues in Molecular Biology. 2022; 44(8):3735-3745. https://doi.org/10.3390/cimb44080255
Chicago/Turabian StylePark, Hae-Yeon, Hyun-Mi Oh, Tae-Woo Kim, Youngkook Kim, Geun-Young Park, Hyemi Hwang, and Sun Im. 2022. "Single Nucleotide Polymorphisms May Increase the Risk of Aspiration Pneumonia in Post-Stroke Patients with Dysphagia" Current Issues in Molecular Biology 44, no. 8: 3735-3745. https://doi.org/10.3390/cimb44080255
APA StylePark, H. -Y., Oh, H. -M., Kim, T. -W., Kim, Y., Park, G. -Y., Hwang, H., & Im, S. (2022). Single Nucleotide Polymorphisms May Increase the Risk of Aspiration Pneumonia in Post-Stroke Patients with Dysphagia. Current Issues in Molecular Biology, 44(8), 3735-3745. https://doi.org/10.3390/cimb44080255