Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Cultivation Conditions
2.2. Construction of Strains Expressing Codon-Optimized DSPAα2
2.3. Construction of Strains Expressing Glycosylated Mutations of DSPAα2
2.4. Purification of Proteins from Transformants
2.5. Protein Concentrations
2.6. SDS-PAGE Analysis
2.7. Fibrin Assay of DSPAa2 Enzyme Activity
2.8. Blood Clot Lysis Activity Assay
2.9. Kinetics of S-2765 Hydrolysis
2.10. Stability against Temperature and pH
3. Results
3.1. Homology and Phylogenetic Analysis
3.2. Protein Level and Purification Using SDS-PAGE Analysis
3.3. N-Glycosylation Mutation Reduced the Fibrinolytic Activity of DSPAα2
3.4. N-Glycosylation Mutation Did Not Change the Physicochemical Properties of DSPAα2
3.5. High Correlation between the N185 Site and Fibrinogen Specificity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zhang, K.; Zhang, J.; Gao, Z.-G.; Zhang, D.; Zhu, L.; Han, G.W.; Moss, S.M.; Paoletta, S.; Kiselev, E.; Lu, W.; et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 2014, 509, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, K.; Gao, Z.-G.; Paoletta, S.; Zhang, D.; Han, G.W.; Li, T.; Ma, L.; Zhang, W.; Müller, C.E.; et al. Agonist-bound structure of the human P2Y12 receptor. Nature 2014, 509, 119–122. [Google Scholar] [CrossRef]
- Flemmig, M.; Melzig, M.F. Serine-proteases as plasminogen activators in terms of fibrinolysis. J. Pharm. Pharmacol. 2012, 64, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, P.; Gruber, D.; Liese, A.; Toschi, L.; Krätzschmar, J.; Schleuning, W.D.; Donner, P. Structural Features Mediating Fibrin Selectivity of Vampire Bat Plasminogen Activators. J. Biol. Chem. 1995, 270, 25596–25603. [Google Scholar] [CrossRef]
- Gulba, D.C.; Praus, M.; Witt, W. DSPA alpha—Properties of the plasminogen activators of the vampire bat Desmodus rotundus. Fibrinolysis 1995, 9, 91–96. [Google Scholar] [CrossRef]
- Krätzschmar, J.; Haendler, B.; Langer, G.; Boidol, W.; Bringmann, P.; Alagon, A.; Donner, P.; Schleuning, W.-D. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundas: Cloning and expression. Gene 1991, 105, 229–237. [Google Scholar] [CrossRef]
- Haltiwanger, R.S.; Lowe, J.B. Role of Glycosylation in Development. Annu. Rev. Biochem. 2004, 73, 491–537. [Google Scholar] [CrossRef]
- Sinclair, A.M.; Elliott, S. Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins. J. Pharm. Sci. 2005, 94, 1626–1635. [Google Scholar] [CrossRef]
- Wong, C.-H. Protein Glycosylation: New Challenges and Opportunities. J. Org. Chem. 2005, 70, 4219–4225. [Google Scholar] [CrossRef]
- Dingermann, T. Recombinant therapeutic proteins: Production platforms and challenges. Biotechnol. J. Healthc. Nutr. Technol. 2008, 3, 90–97. [Google Scholar] [CrossRef]
- Bretthaner, R.K.; Castellino, F.J. Glycosylation of Pichia pastoris-derived proteins. Biotechnol. Appl. Biochem. 1999, 30, 193–200. [Google Scholar] [CrossRef]
- Han, Y.M.; Lei, X.G. Role of Glycosylation in the functional expression of an Aspergillus Niger phytase(phyA) in Pichia pastoris. Arch. Biochem. 1999, 364, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Daniels, R.; Kurowski, B.; Johnson, A.E.; Hebert, D.N. N-linked glycans direct the contranslation folding pathway of influenza hemagglutinin. Mol. Cell 2003, 11, 79–90. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Y.; Li, G.; Li, X.; Liu, D. Optimized gene synthesis, expression, and purification of active salivary plasminogen activator α2 (DSPAα2) of Desmodus rotundus in Pichia pastoris. Protein Expr. Purif. 2008, 57, 27–33. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Fisher, R.; Waller, E.K.; Grossi, G.; Thompson, D.; Tizard, R.; Schleuning, W.D. Isolation and characterization of the human tissue-type plasminogen activator structural gene including its 5′ flanking region. J. Biol. Chem. 1985, 260, 11223–11230. [Google Scholar] [CrossRef]
- Prasad, S.; Kashyap, R.S.; Deopujari, J.Y.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F. Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb. J. 2006, 4, 14. [Google Scholar] [CrossRef]
- Tsujikawa, M.; Okabayashi, K.; Morita, M.; Tanabe, T. Secretion of a variant of human single-chain urokinase-type plasminogen activator without an N-glycosylation site in the methylotrophic yeast, Pichia pastoris and characterization of the secreted product. Yeast 1996, 12, 541–553. [Google Scholar] [CrossRef]
- Haddad, Y.; Heger, Z.; Adam, V. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB. Front. Mol. Neurosci. 2017, 10, 7. [Google Scholar] [CrossRef]
- Isoherranen, N.; Zhong, G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol. Ther. 2019, 204, 107400. [Google Scholar] [CrossRef]
- Hoepfner, D.; McNamara, C.W.; Lim, C.S.; Studer, C.; Riedl, R.; Aust, T.; McCormack, S.L.; Plouffe, D.M.; Meister, S.; Schuierer, S.; et al. Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe 2012, 11, 654–663. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Gherardi, E.; Manzano, R.G.; Cottage, A.; Hawker, K.; Aparicio, S. Evolution of Plasminogen-Related Growth Factors (HGF/SF and HGF1/MSP). In Plasminogen-Related Growth Factors: Ciba Foundation Symposium 212; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 24–45. [Google Scholar] [CrossRef]
- Harlos, K.; Boys, C.W.; Holland, S.K.; Esnouf, M.P.; Blake, C.C. Structure and order of the protein and carbohydrate domains of prothrombin fragment 1. FEBS Lett. 1987, 224, 97–103. [Google Scholar] [CrossRef]
- Park, C.H.; Tulinsky, A. Three-dimensional structure of the kringle sequence: Structure of prothrombin fragment 1. Biochemistry 1986, 25, 3977–3982. [Google Scholar] [CrossRef]
- Sottrup-Jensen, L.; Zajdel, M.; Claeys, H.; Petersen, T.E.; Magnusson, S. Amino-acid sequence of the activation cleavage site in plasminogen: Homology with “pro” part of prothrombin. Proc. Natl. Acad. Sci. USA 1975, 72, 2577–2581. [Google Scholar] [CrossRef]
- Patthy, L.; Trexler, M.; Váli, Z.; Banyai, L.; Varadi, A. Kringles: Modules specialized for protein binding: Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases. FEBS Lett. 1984, 171, 131–136. [Google Scholar] [CrossRef]
- Castellino, F.J.; McCance, S.G. The kringle domains of human plasminogen. In Plasminogen-Related Growth Factors: Ciba Foundation Symposium 212; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 46–65. [Google Scholar] [CrossRef]
- Renatus, M.; Stubbs, M.T.; Huber, R.; Bringmann, P.; Donner, P.; Schleuning, W.-D.; Bode, W. Catalytic Domain Structure of Vampire Bat Plasminogen Activator: A Molecular Paradigm for Proteolysis without Activation Cleavage. Biochemistry 1997, 36, 13483–13493. [Google Scholar] [CrossRef]
- Fang, L.; Du, W.W.; Lyu, J.; Dong, J.; Zhang, C.; Yang, W.; He, A.; Kwok, Y.S.; Ma, J.; Wu, N.; et al. Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1. Cell Death Differ. 2018, 25, 2195–2208. [Google Scholar] [CrossRef]
- Inanami, T.; Terada, T.P.; Sasai, M. Folding pathway of a multidomain protein depends on its topology of domain connectivity. Proc. Natl. Acad. Sci. USA 2014, 111, 15969–15974. [Google Scholar] [CrossRef]
- Konstantinou, K.; Mocanu, F.C.; Lee, T.H.; Elliott, S.R. Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5. Nat. Commun. 2019, 10, 3065. [Google Scholar] [CrossRef]
- Gan, H.H.; Gunsalus, K.C. Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition. Nucleic Acids Res. 2015, 43, 9613–9625. [Google Scholar] [CrossRef]
- Fang, H.; Wei, S.; Lee, T.H.; Hayes, J.J. Chromatin structure-dependent conformations of the H1 CTD. Nucleic Acids Res. 2016, 44, 9131–9141. [Google Scholar] [CrossRef]
- Wang, N.; Wang, K.Y.; Xu, F.; Li, G.; Liu, D. The effect of N-glycosylation on the expression of the tetanus toxin fragment C in Pichia pastoris. Protein Expr. Purif. 2020, 166, 105503. [Google Scholar] [CrossRef]
- Yang, M.; Yu, X.-W.; Zheng, H.; Sha, C.; Zhao, C.; Qian, M.; Xu, Y. Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris. Microb. Cell Factories 2015, 14, 40. [Google Scholar] [CrossRef]
- Águila, S.; Noto, R.; Luengo-Gil, G.; Espín, S.; Bohdan, N.; De La Morena-Barrio, M.E.; Peñas, J.; Rodenas, M.C.; Vicente, V.; Corral, J.; et al. N-glycosylation as a Tool to Study Antithrombin Secretion, Conformation, and Function. Int. J. Mol. Sci. 2021, 22, 516. [Google Scholar] [CrossRef]
- Li, J.; Yan, Y.; Wang, Q.; Sun, L.; Wang, J. Effect of N-linked glycosylation on secretion and activity of recombinant DSPAalpha1 expressed in Pichia pastoris. Chin. J. Biotechnol. 2010, 26, 1287–1292. [Google Scholar] [CrossRef]
- Heimo, H.; Palmu, K.; Suominen, I. Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain. Protein Expr. Purif. 1997, 10, 70–79. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, W.; Yu, H. Enhanced Activity of Rhizomucor miehei Lipase by Deglycosylation of Its Propeptide in Pichia pastoris. Curr. Microbiol. 2014, 68, 186–191. [Google Scholar] [CrossRef]
- Shental-Bechor, D.; Levy, Y. Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. USA 2008, 105, 8256–8261. [Google Scholar] [CrossRef]
- Lucas, M.A.; Fretto, L.J.; A McKee, P. The binding of human plasminogen to fibrin and fibrinogen. J. Biol. Chem. 1983, 258, 4249–4256. [Google Scholar] [CrossRef]
- Petri, T.; Langer, G.; Bringmann, P.; Cashion, L.; Shallow, S.; Schleuning, W.-D.; Donner, P. Production of vampire bat plasminogen activator DSPA α1 in CHO and insect cells. J. Biotechnol. 1995, 39, 75–83. [Google Scholar] [CrossRef]
- Gohlke, M.; Nuck, R.; Kannicht, C.; Grunow, D.; Baude, G.; Donner, P.; Reutter, W. Analysis of site-specific N-glycosylation of recombinant Desmodus rotundus salivary plasminogen activator rDSPAα1 expressed in Chinese hamster ovary cells. Glycobiology 1997, 7, 67–77. [Google Scholar] [CrossRef]
- Nakajima, M.; Koga, T.; Sakai, H.; Yamanaka, H.; Fujiwara, R.; Yokoi, T. N-Glycosylation plays a role in protein folding of human UGT1A9. Biochem. Pharmacol. 2010, 79, 1165–1172. [Google Scholar] [CrossRef]
- Helenius, A.; Aebi, M. Intracellular functions of N-linked glycans. Science 2001, 291, 2364–2369. [Google Scholar] [CrossRef]
- Han, M.; Wang, X.; Ding, H.; Jin, M.; Yu, L.; Wang, J.; Yu, X. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase ex-pressed by Pichia pastoris. Enzym. Microb. Technol. 2014, 54, 32–37. [Google Scholar] [CrossRef]
- Cregg, J.M.; Cereghino, J.L.; Shi, J.; Higgins, D.R. Recombinant Protein Expression in Pichia pastoris. Mol. Biotechnol. 2000, 16, 23–52. [Google Scholar] [CrossRef]
- Hamilton, S.R.; Gerngross, T.U. Glycosylation engineering in yeast: The advent of fully humanized yeast. Curr. Opin. Biotechnol. 2007, 18, 387–392. [Google Scholar] [CrossRef]
- Bretthauer, R.K. Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. Trends Biotechnol. 2003, 21, 459–462. [Google Scholar] [CrossRef]
Enzyme | Motif | Modification | N-Glycosylation Sites | Mutation Sites |
---|---|---|---|---|
rDSPAα2 | N153-N185-K368-N398 | / | N185-N398 | / |
QNGlyα2 | N153-Q185-K368-Q398 | Deletion | / | N185Q-N398Q |
QNGlyα2-1 | N153-Q185-K368-N398 | Deletion | N398 | N185Q |
QNGlyα2-2 | N153-N185-K368-Q398 | Deletion | N185 | N398Q |
ANGlyα2+1 | N153-N185-K368-N398 | Addition | N153-N185-N398 | N155S |
ANGlyα2+U | N153-N185-N368-N398 | Addition | N185-N368-N398 | K368N |
Enzyme | Cofactor | Kcat ∗103 | Km mM | Kcat/Km mM−1S−1 | Stimulation Factor | Ratio Fbn/None |
---|---|---|---|---|---|---|
rDSPAα2 | None | 0.0955 ± 0.0085 | 0.9419 ± 0.0442 | 101.42 ± 5.52 | 1 | |
Fbg | 0.0947 ± 0.0021 | 0.4500 ± 0.0095 | 210.34 ± 4.86 | 2.1 | ||
Fbn | 0.2043 ± 0.0040 | 0.0914 ± 0.0091 | 1141.79 ± 120.81 | 11.3 | 5.4 | |
QNGlyα2 | None | 0.0023 ± 0.0009 | 1.1203 ± 0.0149 | 20.35 ± 0.60 | 1 | |
Fbg | 0.0021 ± 0.0006 | 1.0460 ± 0.0140 | 20.16 ± 0.53 | 0.9 | ||
Fbn | 0.0030 ± 0.0009 | 0.5199 ± 0.0752 | 35.22 ± 4.12 | 1.7 | 1.9 | |
QNGlyα2-1 | None | 0.0894 ± 0.0035 | 0.9567 ± 0.0283 | 93.40 ± 5.29 | 1 | |
Fbg | 0.0973 ± 0.0092 | 0.8782 ± 0.0440 | 110.78 ± 5.01 | 1.2 | ||
Fbn | 0.1064 ± 0.0049 | 0.5638 ± 0.0128 | 188.84 ± 9.36 | 2.0 | 1.7 | |
QNGlyα2-2 | None | 0.0028 ± 0.0002 | 1.5603 ± 0.0039 | 18.48 ± 6.67 | 1 | |
Fbg | 0.0037 ± 0.0023 | 0.7922 ± 0.0073 | 47.22 ± 6.92 | 2.6 | ||
Fbn | 0.0046 ± 0.0002 | 0.3342 ± 0.0024 | 136.87 ± 11.30 | 7.4 | 2.8 | |
ANGlyα2 + 1 | None | 0.1301 ± 0.0027 | 1.6877 ± 0.0080 | 77.37 ± 2.19 | 1 | |
Fbg | 0.0965 ± 0.0012 | 0.4300 ± 0.0036 | 224.44 ± 18.08 | 2.9 | ||
Fbn | 0.0956 ± 0.0092 | 0.3970 ± 0.0034 | 240.36 ± 3.51 | 3.1 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.; Wang, M.; Wang, N.; Yang, C.; Guo, W.; Li, G.; Huang, S.; Wei, D.; Liu, D. Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2. Curr. Issues Mol. Biol. 2022, 44, 3930-3947. https://doi.org/10.3390/cimb44090270
Peng H, Wang M, Wang N, Yang C, Guo W, Li G, Huang S, Wei D, Liu D. Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2. Current Issues in Molecular Biology. 2022; 44(9):3930-3947. https://doi.org/10.3390/cimb44090270
Chicago/Turabian StylePeng, Huakang, Mengqi Wang, Nan Wang, Caifeng Yang, Wenfang Guo, Gangqiang Li, Sumei Huang, Di Wei, and Dehu Liu. 2022. "Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2" Current Issues in Molecular Biology 44, no. 9: 3930-3947. https://doi.org/10.3390/cimb44090270
APA StylePeng, H., Wang, M., Wang, N., Yang, C., Guo, W., Li, G., Huang, S., Wei, D., & Liu, D. (2022). Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2. Current Issues in Molecular Biology, 44(9), 3930-3947. https://doi.org/10.3390/cimb44090270