Synthesis and Antibacterial Activity Evaluation of Biphenyl and Dibenzofuran Derivatives as Potential Antimicrobial Agents against Antibiotic-Resistant Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Procedure for the Synthesis of Compounds 5a–5n
2.1.2. General Procedure for the Synthesis of Compounds 6a–6n
2.2. Antibacterial Activity Assays
3. Results
3.1. Design and Synthesis of Biphenyl and Benzo-Heterocycle Phytoalexin Derivatives
3.2. Antibacterial Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Zhu, X.; Tong, A.; Wang, D.; Sun, H.; Chen, L.; Dong, M. Antibiotic resistance patterns of Gram-negative and Gram-positive strains isolated from inpatients with nosocomial infections in a tertiary hospital in Beijing, China from 2011 to 2014. J. Chemother. 2017, 29, 317–320. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Van Boeckel, T.; Frost, I.; Kariuki, S.; Khan, E.A.; Limmathurotsakul, D.; Larsson, D.G.; Levy-Hara, G.; Mendelson, M.; Outterson, K.; et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect. Dis. 2020, 20, e51–e60. [Google Scholar] [CrossRef]
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef]
- World Health Organization. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avertantimicrobial-resistance-crisis (accessed on 29 April 2021).
- Shatalin, K.; Nuthanakanti, A.; Kaushik, A.; Shishov, D.; Peselis, A.; Shamovsky, I.; Pani, B.; Lechpammer, M.; Vasilyev, N.; Shatalina, E.; et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. Science 2021, 372, 1169–1175. [Google Scholar] [CrossRef]
- Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Release, N. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Saudi Med. J. 2017, 38, 444–445. [Google Scholar]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Zahedi Bialvaei, A.; Rahbar, M.; Yousefi, M.; Asgharzadeh, M.; Samadi Kafil, H. Linezolid: A promising option in the treatment of Gram-positives. J. Antimicrob. Chemother. 2017, 72, 354–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahab, S.; Khan, T.; Adil, M.; Khan, A. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 2021, 7, e07448. [Google Scholar] [CrossRef]
- Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406, 775–781. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, K.M.G.; Hodgkinson, J.T.; Sore, H.F.; Welch, M.; Salmond, G.P.C.; Spring, D.R. Combating Multidrug-Resistant Bacteria: Current Strategies for the Discovery of Novel Antibacterials. Angew. Chem. Int. Ed. 2013, 52, 10706–10733. [Google Scholar] [CrossRef]
- Sionov, R.V.; Banerjee, S.; Bogomolov, S.; Smoum, R.; Mechoulam, R.; Steinberg, D. Targeting the Achilles’ Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide. Int. J. Mol. Sci. 2022, 23, 7798. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.W.; Hu, S.J.; Niu, W.P.; Zhang, G.N.; Zhu, M.; Wang, M.H.; Zhang, F.; Li, X.M.; Wang, J.X. Design, synthesis, and antibacterial evaluation of PFK-158 derivatives as potent agents against drug-resistant bacteria. Bioorg. Med. Chem. Lett. 2021, 41, 127980. [Google Scholar] [CrossRef]
- Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther. 2017, 17, 663–676. [Google Scholar] [CrossRef]
- Somma, A.D.; Moretta, A.; Cané, C.; Scieuzo, C.; Salvia, R.; Falabella, P.; Duilio, A. Structural and Functional Characterization of a Novel Recombinant Antimicrobial Peptide from Hermetia illucens. Curr. Issues Mol. Biol. 2022, 44, 1–13. [Google Scholar] [CrossRef]
- Tian, J.X.; Zhang, J.Y.; Yang, J.T.; Du, L.Y.; Geng, H.; Cheng, Y.Q. Conjugated Polymers Act Synergistically with Antibiotics to Combat Bacterial Drug Resistance. ACS Appl. Mater. Interfaces 2017, 9, 18512–18520. [Google Scholar] [CrossRef]
- Deepika, M.S.; Thangam, R.; Sundarraj, S.; Sheena, T.S.; Sivasubramanian, S.; Kulandaivel, J.; Thirumurugan, R. Co-delivery of Diverse Therapeutic Compounds Using PEG-PLGA Nanoparticle Cargo against Drug-Resistant Bacteria: An Improved Anti-biofilm Strategy. ACS Appl. Bio Mater. 2020, 3, 385–399. [Google Scholar] [CrossRef]
- Breheny, J.; Kingston, C.; Doran, R.; Anes, J.; Martins, M.; Fanning, S.; Guiry, P.J. Investigation of the Anti-Methicillin-Resistant Staphylococcus aureus Activity of (+)-Tanikolide- and (+)-Malyngolide-Based Analogues Prepared by Asymmetric Synthesis. Int. J. Mol. Sci. 2021, 22, 6400. [Google Scholar] [CrossRef] [PubMed]
- Douafer, H.; Andrieu, V.; Phanstiel, O.; Brunel, J.M. Antibiotic Adjuvants: Make Antibiotics Great Again! J. Med. Chem. 2019, 62, 8665–8681. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic Resistance-the Need for Global Solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Lewis, K. Platforms for Antibiotic Discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J. Antibiotics in the Environment. Upsala J. Med. Sci. 2014, 119, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Chamkhi, I.; Balahbib, A.; Rebezov, M.; Ali Shariati, M.; Wilairatana, P.; Mubarak, M.S.; Benali, T.; El Omari, N. Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review. Molecules 2022, 27, 1484. [Google Scholar] [CrossRef]
- Paxton, J.D. Phytoalexins-A Working Redefinition. J. Phytopathol. 1981, 101, 106–209. [Google Scholar] [CrossRef]
- Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue. J. Am. Chem. Soc. 2010, 132, 15328–15333. [Google Scholar] [CrossRef]
- Mao, G.H.; Meng, X.Z.; Liu, Y.D.; Zheng, Z.Y.; Chen, Z.X.; Zhang, S.Q. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 2011, 23, 1639–1653. [Google Scholar] [CrossRef]
- Jeandet, P.; Douillet-Breuil, A.C.; Bessis, R.; Debord, S.; Sbaghi, M.; Adrian, M. Phytoalexins from the vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 2002, 50, 2731–2741. [Google Scholar] [CrossRef]
- Hüttner, C.; Beuerle, T.; Scharnhop, H.; Ernst, L.; Beerhues, L. Differential Effect of Elicitors on Biphenyl and Dibenzofuran Formation in Sorbus aucuparia Cell Cultures. J. Agric. Food Chem. 2010, 58, 11977–11984. [Google Scholar] [CrossRef]
- Chizzali, C.; Beerhues, L. Phytoalexins of the Pyrinae: Biphenyls and dibenzofurans. Beilstein J. Org. Chem. 2012, 8, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Erdtman, H.; Eriksson, G.; Norin, T.; Forsen, S. Aucuparin and methoxyaucuparin, two phenolic biphenyl derivatives from the heartwood of Sorbus aucuparia L. Acta Chem. Scand. 1963, 17, 1151–1156. [Google Scholar] [CrossRef]
- Kemp, M.S.; Burden, R.S. Isolation and structure determination of cpyrufuran, a third induced antifungal dibenzofuran from the wood of Pyrus communis L. infected with Chondrostereum purpureum (Pers. ex Fr.) Pouzar. J. Chem. Soc. Perkin Trans. 1984, 1, 1441–1443. [Google Scholar] [CrossRef]
- Burmaoglu, S.; Kazancioglu, E.; Kazancioglu, M.Z.; Sağlamtaş, R.; Yalcin, G.; Gulcin, I.; Algul, O. Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. J. Mol. Struc. 2022, 1254, 132358. [Google Scholar] [CrossRef]
- Jain, Z.J.; Gide, P.S.; Kankate, R.S. Biphenyls and their derivatives as synthetically and pharmacologically important aromatic structural moieties. Arab. J. Chem. 2017, 10, S2051–S2066. [Google Scholar] [CrossRef]
- Song, C.G.; Wang, X.; Yang, J.; Kuang, Y.; Wang, Y.X.; Yang, S.X.; Qin, J.C.; Guo, L.P. Antifungal Biphenyl Derivatives from Sorbus pohuashanensis Leaves Infected by Alternaria tenuissi and Their Effect against Crop Pathogens. Chem. Biodivers. 2021, 18, e2100079. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, J.; Yang, X.-L.; Zhang, L.; Wang, J.; Li, Q.; Lin, D.-M.; Zhang, M.; Xia, S.-N.; Xu, L.-L.; et al. Novel dibenzofuran and biphenyl phytoalexins from Sorbus pohuashanensis suspension cell and their antimicrobial activities. Fitoterapia 2021, 152, 104914. [Google Scholar] [CrossRef]
- Langfielda, R.D.; Scaranob, F.J.; Heitzmana, M.E.; Kondoa, M.; Hammonda, G.B.; Neto, C.C. Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides. J. Ethnopharmacol. 2004, 94, 279–281. [Google Scholar] [CrossRef]
- Music, A.; Baumann, A.N.; Spieß, P.; Plantefol, A.; Jagau, T.C.; Didier, D. Electrochemical Synthesis of Biaryls via Oxidative Intramolecular Coupling of Tetra(hetero)arylborates. J. Am. Chem. Soc. 2020, 142, 4341–4348. [Google Scholar] [CrossRef]
- Delaney, C.P.; Kassel, V.M.; Denmark, S.E. Potassium Trimethylsilanolate Enables Rapid, Homogeneous Suzuki−Miyaura Cross-Coupling of Boronic Esters. ACS Catal. 2020, 10, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Vasala, A.; Hytönen, V.P.; Laitinen, O.H. Modern tools for rapid diagnostics of antimicrobial resistance. Front. Cell. Infect. Microbiol. 2020, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Jin, Y.C.; Xue, W.W.; Xiao, L.L.; You, F.L.; Wei, Z.; Tian, E.W.; Ming, P.; Shu, C.L.; Shi, J.; et al. Structural modification of honokiol, a biphenyl occurring in Magnolia officinalis: The evaluation of honokiol analogues as inhibitors of angiogenesis and for their cytotoxicity and structure-activity relationship. J. Med. Chem. 2011, 54, 6469–6481. [Google Scholar]
- de Fernandes, T.A.; Domingos, J.L.O.; da Rocha, L.I.A.; de Medeiros, S.; Nájera, C.; Costa, P.R.R. Synthesis of 5-Carbapterocarpens by α-Arylation of Tetralones Followed by One-Pot Demethylation/Cyclization with BBr3. Eur. J. Org. Chem. 2014, 2014, 1314–1320. [Google Scholar] [CrossRef]
- Lohan, S.; Mandal, D.; Choi, W.; Konshina, A.G.; Tiwari, R.K.; Efremov, R.G.; Maslennikov, I.; Parang, K. Small Amphiphilic Peptides: Activity Against a Broad Range of Drug-Resistant Bacteria and Structural Insight into Membranolytic Properties. J. Med. Chem. 2022, 65, 665–687. [Google Scholar] [CrossRef] [PubMed]
Compounds | MIC b (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
MRSA | MRSE c | MREF c | MREf c | CRPA | CRAB | CRKP | CREC | |
5a–5n | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
6a | 12.5 | 12.5 | 12.5 | 50 | 50 | 50 | 100 | 100 |
6b | 12.5 | 25 | 25 | 12.5 | 100 | 50 | 100 | 100 |
6c | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
6d | 25 | 12.5 | 50 | 25 | 100 | 50 | 50 | 100 |
6e | 25 | 25 | 50 | 25 | 100 | 50 | 100 | 100 |
6f | 25 | 25 | 50 | 12.5 | >100 | 100 | >100 | >100 |
6g | 25 | 25 | 25 | 12.5 | 100 | 50 | 100 | 100 |
6h | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
6i | 6.25 | 25 | 12.5 | 6.25 | >100 | 50 | 100 | 100 |
6j | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
6k | >100 | >100 | >100 | 6.25 | >100 | >100 | >100 | >100 |
6l | 6.25 | >100 | 6.25 | >100 | >100 | >100 | >100 | >100 |
6m | 3.13 | >100 | >100 | 6.25 | >100 | >100 | >100 | >100 |
6n | 12.5 | 100 | 12.5 | 12.5 | >100 | >100 | >100 | >100 |
Ciprofloxacin | 1.56 | 25 | 3.13 | <0.78 | <0.78 | 50 | >100 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fu, H.-Y.; He, W.; Xiang, Y.-T.; Yang, Z.-C.; Kuang, Y.; Yang, S.-X. Synthesis and Antibacterial Activity Evaluation of Biphenyl and Dibenzofuran Derivatives as Potential Antimicrobial Agents against Antibiotic-Resistant Bacteria. Curr. Issues Mol. Biol. 2022, 44, 4087-4099. https://doi.org/10.3390/cimb44090280
Wang X, Fu H-Y, He W, Xiang Y-T, Yang Z-C, Kuang Y, Yang S-X. Synthesis and Antibacterial Activity Evaluation of Biphenyl and Dibenzofuran Derivatives as Potential Antimicrobial Agents against Antibiotic-Resistant Bacteria. Current Issues in Molecular Biology. 2022; 44(9):4087-4099. https://doi.org/10.3390/cimb44090280
Chicago/Turabian StyleWang, Xing, Hao-Yu Fu, Wei He, Yu-Ting Xiang, Ze-Cheng Yang, Yi Kuang, and Sheng-Xiang Yang. 2022. "Synthesis and Antibacterial Activity Evaluation of Biphenyl and Dibenzofuran Derivatives as Potential Antimicrobial Agents against Antibiotic-Resistant Bacteria" Current Issues in Molecular Biology 44, no. 9: 4087-4099. https://doi.org/10.3390/cimb44090280
APA StyleWang, X., Fu, H. -Y., He, W., Xiang, Y. -T., Yang, Z. -C., Kuang, Y., & Yang, S. -X. (2022). Synthesis and Antibacterial Activity Evaluation of Biphenyl and Dibenzofuran Derivatives as Potential Antimicrobial Agents against Antibiotic-Resistant Bacteria. Current Issues in Molecular Biology, 44(9), 4087-4099. https://doi.org/10.3390/cimb44090280