Prevalence of Common Alleles of Some Stress Resilience Genes among Adolescents Born in Different Periods Relative to the Socioeconomic Crisis of the 1990s in Russia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kessler, R.C.; Avenevoli, S.; Costello, E.J.; Georgiades, K.; Green, J.G.; Gruber, M.J.; He, J.P.; Koretz, D.; McLaughlin, K.A.; Petukhova, M. Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the National Comorbidity Survey Replication Adolescent Supplement. Arch. Gen. Psychiatry 2012, 69, 372–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariotti, A. The effects of chronic stress on health: New insights into the molecular mechanisms of brain-body communication. Future Sci. OA 2015, 1, FSO23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zefferino, R.; Di Gioia, S.; Conese, M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav. 2021, 11, e01960. [Google Scholar] [CrossRef]
- Saccaro, L.F.; Schilliger, Z.; Perroud, N.; Piguet, C. Inflammation, Anxiety, and Stress in Attention-Deficit/Hyperactivity Disorder. Biomedicines 2021, 9, 1313. [Google Scholar] [CrossRef] [PubMed]
- Tafet, G.E.; Nemeroff, C.B. The Links Between Stress and Depression: Psychoneuroendocrinological, Genetic, and Environmental Interactions. J. Neuropsychiatry Clin. Neurosci. 2016, 28, 77–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, D.N.; Whirledge, S. Stress and the HPA Axis: Balancing Homeostasis and Fertility. Int. J. Mol. Sci. 2017, 18, 2224. [Google Scholar] [CrossRef]
- Valsamakis, G.; Chrousos, G.; Mastorakos, G. Stress, female reproduction and pregnancy. Psychoneuroendocrinology 2019, 100, 48–57. [Google Scholar] [CrossRef]
- Hamilton, L.D.; Meston, C.M. Chronic stress and sexual function in women. J. Sex Med. 2013, 10, 2443–2454. [Google Scholar] [CrossRef] [Green Version]
- Toufexis, D.; Rivarola, M.A.; Lara, H.; Viau, V. Stress and the reproductive axis. J. Neuroendocrinol. 2014, 26, 573–586. [Google Scholar] [CrossRef] [Green Version]
- The Demographic Yearbook of Russia 2019/Total Fertility Rate. Available online: https://gks.ru/bgd/regl/B19_16/Main.htm (accessed on 16 August 2022).
- Statistical book of Ministry of Health of the Russian Federation 2018/Socially Significant Diseases of the Russian Population in 2018/4.1 Mental Disorders in the Russian Federation (Except for Diseases Associated with the Use of Psychoactive Substances). (In Russian). Available online: https://minzdrav.gov.ru/ministry/61/22/stranitsa-979/statisticheskie-i-informatsionnye-materialy/statisticheskiy-sbornik-2018-god (accessed on 16 August 2022).
- Karlsson Linnér, R.; Biroli, P.; Kong, E.; Meddens, S.F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef]
- Hettema, J.M.; Prescott, C.A.; Kendler, K.S. A population-based twin study of generalized anxiety disorder in men and women. J. Nerv. Ment. Dis. 2001, 189, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos-Quiroga, J.A.; Rohde, L.A.; Sonuga-Barke, E.J.; Tannock, R.; Franke, B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis Primers. 2015, 1, 15020. [Google Scholar] [CrossRef] [PubMed]
- Ohi, K.; Otowa, T.; Shimada, M.; Sasaki, T.; Tanii, H. Shared genetic etiology between anxiety disorders and psychiatric and related intermediate phenotypes. Psychol. Med. 2020, 50, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Assary, E.; Vincent, J.P.; Keers, R.; Pluess, M. Gene-environment interaction and psychiatric disorders: Review and future directions. Semin. Cell Dev. Biol. 2018, 77, 133–143. [Google Scholar] [CrossRef]
- Shimada-Sugimoto, M.; Otowa, T.; Hettema, J.M. Genetics of anxiety disorders: Genetic epidemiological and molecular studies in humans. Psychiatry Clin. Neurosci. 2015, 69, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, M.G.; Domschke, K. Genetics of generalized anxiety disorder and related traits. Dialogues Clin. Neurosci. 2017, 19, 159–168. [Google Scholar] [CrossRef]
- Meier, S.M.; Trontti, K.; Purves, K.L.; Als, T.D.; Grove, J.; Laine, M.; Pedersen, M.G.; Bybjerg-Grauholm, J.; Bækved-Hansen, M.; Sokolowska, E. Genetic Variants Associated With Anxiety and Stress-Related Disorders: A Genome-Wide Association Study and Mouse-Model Study. JAMA Psychiatry 2019, 76, 924–932. [Google Scholar] [CrossRef]
- Gershon, M.D.; Tack, J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders. Gastroenterology 2007, 132, 397–414. [Google Scholar] [CrossRef]
- Arnsten, A.F. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Azadmarzabadi, E.; Haghighatfard, A. Detection of six novel de novo mutations in individuals with low resilience to psychological stress. PLoS ONE 2021, 16, e0256285. [Google Scholar] [CrossRef]
- Hawi, Z.; Cummins, T.D.; Tong, J.; Johnson, B.; Lau, R.; Samarrai, W.; Bellgrove, M.A. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol. Psychiatry 2015, 20, 289–297. [Google Scholar] [CrossRef]
- Greenberg, B.D.; Tolliver, T.J.; Huang, S.J.; Li, Q.; Bengel, D.; Murphy, D.L. Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am. J. Med. Genet. 1999, 88, 83–87. [Google Scholar] [CrossRef]
- Schinka, J.A.; Busch, R.M.; Robichaux-Keene, N. A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Mol. Psychiatry 2004, 9, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Burmeister, M.; Ghosh, D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2004, 127B, 85–89. [Google Scholar] [CrossRef] [Green Version]
- You, J.S.; Hu, S.Y.; Chen, B.; Zhang, H.G. Serotonin transporter and tryptophan hydroxylase gene polymorphisms in Chinese patients with generalized anxiety disorder. Psychiatr Genet. 2005, 15, 7–11. [Google Scholar] [CrossRef]
- Kuhn, L.; Noack, H.; Skoluda, N.; Wagels, L.; Röhr, A.K.; Schulte, C.; Eisenkolb, S.; Nieratschker, V.; Derntl, B.; Habel, U. The association of the 5-HTTLPR polymorphism and the response to different stressors in healthy males. J. Neural. Transm. 2021, 128, 1347–1359. [Google Scholar] [CrossRef]
- Majumdar, A.; Patel, P.; Pasaniuc, B.; Ophoff, R.A. A summary-statistics-based approach to examine the role of serotonin transporter promoter tandem repeat polymorphism in psychiatric phenotypes. Eur. J. Hum. Genet. 2022, 30, 547–554. [Google Scholar] [CrossRef]
- Roberts, J.; Scott, A.C.; Howard, M.R.; Breen, G.; Bubb, V.J.; Klenova, E.; Quinn, J.P. Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat. J. Neurosci. 2007, 27, 2793–2801. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.L.; Lesch, K.P. Targeting the murine serotonin transporter: Insights into human neurobiology. Nat. Rev. Neurosci. 2008, 9, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Pizzo de Castro, M.R.; Vargas Nunes, S.O.; Guembarovski, R.L.; Ariza, C.B.; Oda, J.M.; Vargas, H.O.; Piccoli de Melo, L.G.; Watanabe, M.A.; Berk, M.; Maes, M. STin2 VNTR polymorphism is associated with comorbid tobacco use and mood disorders. J. Affect. Disord. 2015, 172, 347–354. [Google Scholar] [CrossRef]
- Kulikova, E.A.; Kulikov, A.V. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: Focus on animal models. Expert Opin. Ther. Targets. 2019, 23, 655–667. [Google Scholar] [CrossRef]
- Waider, J.; Araragi, N.; Gutknecht, L.; Lesch, K.P. Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: A perspective. Psychoneuroendocrinology 2011, 36, 393–405. [Google Scholar] [CrossRef]
- Inoue, H.; Yamasue, H.; Tochigi, M.; Takei, K.; Suga, M.; Abe, O.; Yamada, H.; Rogers, M.A.; Aoki, S.; Sasaki, T.; et al. Effect of tryptophan hydroxylase-2 gene variants on amygdalar and hippocampal volumes. Brain Res. 2010, 1331, 51–57. [Google Scholar] [CrossRef]
- Laas, K.; Kiive, E.; Mäestu, J.; Vaht, M.; Veidebaum, T.; Harro, J. Nice guys: Homozygocity for the TPH2 -703G/T (rs4570625) minor allele promotes low aggressiveness and low anxiety. J. Affect. Disord. 2017, 215, 230–236. [Google Scholar] [CrossRef]
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef]
- Pivonello, R.; Ferone, D.; Lombardi, G.; Colao, A.; Lamberts, S.W.J.; Hofland, L.J. Novel insights in dopamine receptor physiology. Eur. J. Endocrinol. 2007, 156, S13–S21. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.M.; Kidd, J.R.; Livak, K.J.; Pakstis, A.J.; Kidd, K.K. The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus. Hum. Genet. 1996, 98, 91–101. [Google Scholar] [CrossRef]
- Asghari, V.; Sanyal, S.; Buchwaldt, S.; Paterson, A.; Jovanovic, V.; Van Tol, H.H. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem. 1995, 65, 1157–1165. [Google Scholar] [CrossRef]
- Ebstein, R.P.; Novick, O.; Umansky, R.; Priel, B.; Osher, Y.; Blaine, D.; Bennett, E.R.; Nemanov, L.; Katz, M.; Belmaker, R.H. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nat. Genet. 1996, 12, 78–80. [Google Scholar] [CrossRef]
- Glazer, J.; King, A.; Yoon, C.; Liberzon, I.; Kitayama, S. DRD4 polymorphisms modulate reward positivity and P3a in a gambling task: Exploring a genetic basis for cultural learning. Psychophysiology 2020, 57, e13623. [Google Scholar] [CrossRef]
- Armbruster, D.; Mueller, A.; Moser, D.A.; Lesch, K.P.; Brocke, B.; Kirschbaum, C. Interaction effect of D4 dopamine receptor gene and serotonin transporter promoter polymorphism on the cortisol stress response. Behav. Neurosci. 2009, 123, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Gehricke, J.G.; Swanson, J.M.; Duong, S.; Nguyen, J.; Wigal, T.L.; Fallon, J.; Caburian, C.; Muftuler, L.T.; Moyzis, R.K. Increased brain activity to unpleasant stimuli in individuals with the 7R allele of the DRD4 gene. Psychiatry Res. 2015, 231, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.C.; Chi, H.C.; Grady, D.L.; Morishima, A.; Kidd, J.R.; Kidd, K.K.; Flodman, P.; Spence, M.A.; Schuck, S.; Swanson, J.M. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl. Acad. Sci. USA. 2002, 99, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.; Ding, Y.C.; Flodman, P.; Kidd, J.R.; Kidd, K.K.; Grady, D.L.; Ryder, O.A.; Spence, M.A.; Swanson, J.M.; Moyzis, R.K. The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am. J. Hum. Genet. 2004, 74, 931–944. [Google Scholar] [CrossRef] [Green Version]
- Naka, I.; Nishida, N.; Ohashi, J. No evidence for strong recent positive selection favoring the 7 repeat allele of VNTR in the DRD4 gene. PLoS ONE. 2011, 6, e24410. [Google Scholar] [CrossRef] [Green Version]
- Bonvicini, C.; Cortese, S.; Maj, C.; Baune, B.T.; Faraone, S.V.; Scassellati, C. DRD4 48 bp multiallelic variants as age-population-specific biomarkers in attention-deficit/hyperactivity disorder. Transl. Psychiatry 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Belsky, J.; Jonassaint, C.; Pluess, M.; Stanton, M.; Brummett, B.; Williams, R. Vulnerability genes or plasticity genes? Mol. Psychiatry 2009, 14, 746–754. [Google Scholar] [CrossRef]
- Gorlick, M.A.; Worthy, D.A.; Knopik, V.S.; McGeary, J.E.; Beevers, C.G.; Maddox, W.T. DRD4 long allele carriers show heightened attention to high-priority items relative to low-priority items. J. Cogn. Neurosci. 2015, 27, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Eisenhofer, G.; Kopin, I.J.; Goldstein, D.S. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacol. Rev. 2004, 56, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Weickert, C.S.; Akil, M.; Lipska, B.K.; Hyde, T.M.; Herman, M.M.; Kleinman, J.E.; Weinberger, D.R. Catechol O-methyltransferase mRNA expression in human and rat brain: Evidence for a role in cortical neuronal function. Neuroscience 2003, 116, 127–137. [Google Scholar] [CrossRef]
- Tretiakov, A.; Malakhova, A.; Naumova, E.; Rudko, O.; Klimov, E. Genetic Biomarkers of Panic Disorder: A Systematic Review. Genes 2020, 11, 1310. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lipska, B.K.; Halim, N.; Ma, Q.D.; Matsumoto, M.; Melhem, S.; Kolachana, B.S.; Hyde, T.M.; Herman, M.M.; Apud, J. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet. 2004, 75, 807–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, M.B.; Fallin, M.D.; Schork, N.J.; Gelernter, J. COMT polymorphisms and anxiety-related personality traits. Neuropsychopharmacology 2005, 30, 2092–2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, D.J.; Newman, T.K.; Savitz, J.; Ramesar, R. Warriors versus worriers: The role of COMT gene variants. CNS Spectr. 2006, 11, 745–748. [Google Scholar] [CrossRef]
- Lee, L.O.; Prescott, C.A. Association of the catechol-O-methyltransferase val158met polymorphism and anxiety-related traits: A meta-analysis. Psychiatr. Genet. 2014, 24, 52–69. [Google Scholar] [CrossRef] [Green Version]
- Howe, A.S.; Buttenschøn, H.N.; Bani-Fatemi, A.; Maron, E.; Otowa, T.; Erhardt, A.; Binder, E.B.; Gregersen, N.O.; Mors, O.; Woldbye, D.P. Candidate genes in panic disorder: Meta-analyses of 23 common variants in major anxiogenic pathways. Mol. Psychiatry 2016, 21, 665–679. [Google Scholar] [CrossRef]
- Chen, C.; Chen, C.; Moyzis, R.; Dong, Q.; He, Q.; Zhu, B.; Li, J.; Li, H.; Li, J.; Lessard, J. Sex modulates the associations between the COMT gene and personality traits. Neuropsychopharmacology 2011, 36, 1593–1598. [Google Scholar] [CrossRef] [Green Version]
- Baumann, C.; Klauke, B.; Weber, H.; Domschke, K.; Zwanzger, P.; Pauli, P.; Deckert, J.; Reif, A. The interaction of early life experiences with COMT val158met affects anxiety sensitivity. Genes Brain Behav. 2013, 12, 821–829. [Google Scholar] [CrossRef]
- Watanabe, T.; Ishiguro, S.; Aoki, A.; Ueda, M.; Hayashi, Y.; Akiyama, K.; Kato, K.; Shimoda, K. Genetic Polymorphism of 1019C/G (rs6295) Promoter of Serotonin 1A Receptor and Catechol-O-Methyltransferase in Panic Disorder. Psychiatry Investig. 2017, 14, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S. Association between COMT Val158Met and psychiatric disorders: A comprehensive meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 199–210. [Google Scholar] [CrossRef]
- Leal, G.; Bramham, C.R.; Duarte, C.B. BDNF and Hippocampal Synaptic Plasticity. Vitam. Horm. 2017, 104, 153–195. [Google Scholar] [CrossRef] [PubMed]
- Han, J.C.; Thurm, A.; Golden Williams, C.; Joseph, L.A.; Zein, W.M.; Brooks, B.P.; Butman, J.A.; Brady, S.M.; Fuhr, S.R.; Hicks, M.D. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome. Cortex 2013, 49, 2700–2710. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Sun, X.; Jia, X.; Li, D.; Gao, P.; Zhang, Y.; Li, J. The Relationship Among BDNF Val66Met Polymorphism, Plasma BDNF Level, and Trait Anxiety in Chinese Patients With Panic Disorder. Front. Psychiatry 2022, 13, 932235. [Google Scholar] [CrossRef]
- Mössner, R.; Daniel, S.; Albert, D.; Heils, A.; Okladnova, O.; Schmitt, A.; Lesch, K.P. Serotonin transporter function is modulated by brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF). Neurochem. Int. 2000, 36, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Notaras, M.; van den Buuse, M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry 2020, 25, 2251–2274. [Google Scholar] [CrossRef]
- Moreira, F.P.; Fabião, J.D.; Bittencourt, G.; Wiener, C.D.; Jansen, K.; Oses, J.P.; Quevedo Lde, Á.; Souza, L.D.; Crispim, D.; Portela, L.V. The Met allele of BDNF Val66Met polymorphism is associated with increased BDNF levels in generalized anxiety disorder. Psychiatr. Genet. 2015, 25, 201–207. [Google Scholar] [CrossRef]
- Notaras, M.; Hill, R.; van den Buuse, M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: Progress and controversy. Mol. Psychiatry 2015, 20, 916–930. [Google Scholar] [CrossRef]
- Chen, K.; Wang, N.; Zhang, J.; Hong, X.; Xu, H.; Zhao, X.; Huang, Q. Is the Val66Met polymorphism of the brain-derived neurotrophic factor gene associated with panic disorder? A meta-analysis. Asia Pac. Psychiatry 2017, 9, e12228. [Google Scholar] [CrossRef]
- González-Castro, T.B.; Pool-García, S.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; López-Narváez, M.L.; Frésan, A.; Genis-Mendoza, A.D.; Pérez-Hernández, N.; Nicolini, H. Association between BDNF Val66Met polymorphism and generalized anxiety disorder and clinical characteristics in a Mexican population: A case-control study. Medicine 2019, 98, e14838. [Google Scholar] [CrossRef]
- Vanneste, S.; Mohan, A.; De Ridder, D.; To, W.T. The BDNF Val66Met polymorphism regulates vulnerability to chronic stress and phantom perception. Prog. Brain Res. 2021, 260, 301–326. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Zai, C.C.; Zai, G.; Kennedy, J.L.; Tiwari, A.K. Genetics of human startle reactivity: A systematic review to acquire targets for an anxiety endophenotype. World J. Biol. Psychiatry 2021, 22, 399–427. [Google Scholar] [CrossRef] [PubMed]
- De Kloet, E.R.; Vreugdenhil, E.; Oitzl, M.S.; Joëls, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998, 19, 269–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Díaz, Y.; Genis-Mendoza, A.D.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; López-Narváez, M.L.; Nicolini, H. Association and Genetic Expression between Genes Involved in HPA Axis and Suicide Behavior: A Systematic Review. Genes 2021, 12, 1608. [Google Scholar] [CrossRef] [PubMed]
- Wüst, S.; Van Rossum, E.F.; Federenko, I.S.; Koper, J.W.; Kumsta, R.; Hellhammer, D.H. Common polymorphisms in the glucocorticoid receptor gene are associated with adrenocortical responses to psychosocial stress. J. Clin. Endocrinol. Metab. 2004, 89, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Vale, I.; Carvalho, D. The Pathways between Cortisol-Related Regulation Genes and PTSD Psychotherapy. Healthcare 2020, 8, 376. [Google Scholar] [CrossRef]
- van Zuiden, M.; Geuze, E.; Willemen, H.L.; Vermetten, E.; Maas, M.; Amarouchi, K.; Kavelaars, A.; Heijnen, C.J. Glucocorticoid receptor pathway components predict posttraumatic stress disorder symptom development: A prospective study. Biol. Psychiatry 2012, 71, 309–316. [Google Scholar] [CrossRef]
- Hauer, D.; Weis, F.; Papassotiropoulos, A.; Schmoeckel, M.; Beiras-Fernandez, A.; Lieke, J.; Kaufmann, I.; Kirchhoff, F.; Vogeser, M.; Roozendaal, B. Relationship of a common polymorphism of the glucocorticoid receptor gene to traumatic memories and posttraumatic stress disorder in patients after intensive care therapy. Crit. Care Med. 2011, 39, 643–650. [Google Scholar] [CrossRef]
- Sheerin, C.M.; Lind, M.J.; Bountress, K.E.; Marraccini, M.E.; Amstadter, A.B.; Bacanu, S.A.; Nugent, N.R. Meta-Analysis of Associations between Hypothalamic-Pituitary-Adrenal Axis Genes and Risk of Posttraumatic Stress Disorder. J. Trauma. Stress 2020, 33, 688–698. [Google Scholar] [CrossRef]
- Denisova, D.V.; Zavialova, L.G. Long-term trends in selected indicators of physical development of adolescent population in Novosibirsk (population-based study 1989–2009). Bull. Sib. Branch Russ. Acad. Med. Sci. 2011, 31, 84–89. (In Russian) [Google Scholar]
- Sambrook, J.; Russell, D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006, 2006, pdb.prot4455. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, C.; Xia, M.; Wu, K.; Chen, C.; He, Q.; Xue, G.; Wang, W.; He, Y.; Dong, Q. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory. Front. Hum. Neurosci. 2016, 10, 540. [Google Scholar] [CrossRef] [Green Version]
- Latsko, M.S.; Gilman, T.L.; Matt, L.M.; Nylocks, K.M.; Coifman, K.G.; Jasnow, A.M. A Novel Interaction between Tryptophan Hydroxylase 2 (TPH2) Gene Polymorphism (rs4570625) and BDNF Val66Met Predicts a High-Risk Emotional Phenotype in Healthy Subjects. PLoS ONE 2016, 11, e0162585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.Z.; Lipsky, R.H.; Zhu, G.; Akhtar, L.A.; Taubman, J.; Greenberg, B.D.; Xu, K.; Arnold, P.D.; Richter, M.A.; Kennedy, J.L.; et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am. J. Hum. Genet. 2006, 78, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yang, Y.; Jiang, X.; Guo, M.; Li, X.; Huang, P.; Liu, Z. Differential promoter methylation and G-712A polymorphism of brain-derived neurotrophic factor in post-traumatic stress disorder patients of Li and Han populations in Hainan province. Gene 2021, 769, 145192. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, K.; Nemoda, Z.; Toth, I.; Ronai, Z.; Ney, K.; Sasvari- Szekely, M.; Gervai, J. Further evidence for the role of the dopamine D4 receptor (DRD4) gene in attachment disorganization: Interaction of the exon III 48-bp repeat and the -521 C/T promoter polymorphisms. Mol. Psychiatry 2002, 7, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeng, L.Y.; Milad, M.R. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Horm. Behav. 2015, 76, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Craske, M.G.; Stein, M.B. Anxiety. Lancet 2016, 388, 3048–3059. [Google Scholar] [CrossRef]
- Palumbo, M.C.; Dominguez, S.; Dong, H. Sex differences in hypothalamic-pituitary-adrenal axis regulation after chronic unpredictable stress. Brain Behav. 2020, 10, e01586. [Google Scholar] [CrossRef]
- Cicchetti, D.; Handley, E.D. Methylation of the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), in maltreated and nonmaltreated children: Associations with behavioral undercontrol, emotional lability/negativity, and externalizing and internalizing symptoms. Dev. Psychopathol. 2017, 29, 1795–1806. [Google Scholar] [CrossRef]
- Wang, D.; Szyf, M.; Benkelfat, C.; Provençal, N.; Turecki, G.; Caramaschi, D.; Côté, S.M.; Vitaro, F.; Tremblay, R.E.; Booij, L. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS ONE 2012, 7, e39501. [Google Scholar] [CrossRef] [PubMed]
- Dadds, M.R.; Schollar-Root, O.; Lenroot, R.; Moul, C.; Hawes, D.J. Epigenetic regulation of the DRD4 gene and dimensions of attention-deficit/hyperactivity disorder in children. Eur. Child Adolesc. Psychiatry 2016, 25, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Bakusic, J.; Schaufeli, W.; Claes, S.; Godderis, L. Stress, burnout and depression: A systematic review on DNA methylation mechanisms. J. Psychosom. Res. 2017, 92, 34–44. [Google Scholar] [CrossRef]
- Heinrich, H.; Grunitz, J.; Stonawski, V.; Frey, S.; Wahl, S.; Albrecht, B.; Goecke, T.W.; Beckmann, M.W.; Kornhuber, J.; Fasching, P.A. Attention, cognitive control and motivation in ADHD: Linking event-related brain potentials and DNA methylation patterns in boys at early school age. Sci. Rep. 2017, 7, 3823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azadmarzabadi, E.; Haghighatfard, A.; Mohammadi, A. Low resilience to stress is associated with candidate gene expression alterations in the dopaminergic signalling pathway. Psychogeriatrics 2018, 18, 190–201. [Google Scholar] [CrossRef]
- Kang, P.; Luo, L.; Peng, X.; Wang, Y. Association of Val158Met polymorphism in COMT gene with attention-deficit hyperactive disorder: An updated meta-analysis. Medicine 2020, 99, e23400. [Google Scholar] [CrossRef]
- Liu, J.; Gong, P.; Gao, X.; Zhou, X. The association between well-being and the COMT gene: Dispositional gratitude and forgiveness as mediators. J. Affect. Disord. 2017, 214, 115–121. [Google Scholar] [CrossRef]
- Yen, J.Y.; Lin, P.C.; Lin, H.C.; Lin, P.Y.; Chou, W.P.; Ko, C.H. Association of Internet gaming disorder with catechol-O-methyltransferase: Role of impulsivity and fun-seeking. Kaohsiung J. Med. Sci. 2022, 38, 70–76. [Google Scholar] [CrossRef]
- Chen, C.K.; Lin, S.K.; Chiang, S.C.; Su, L.W.; Wang, L.J. Polymorphisms of COMT Val158Met and DAT1 3′-UTR VNTR in illicit drug use and drug-related psychiatric disorders. Subst. Use Misuse 2014, 49, 1385–1391. [Google Scholar] [CrossRef]
- Marco-Pallarés, J.; Nager, W.; Krämer, U.M.; Cunillera, T.; Càmara, E.; Cucurell, D.; Schüle, R.; Schöls, L.; Rodriguez-Fornells, A.; Münte, T.F. Neurophysiological markers of novelty processing are modulated by COMT and DRD4 genotypes. Neuroimage 2010, 53, 962–969. [Google Scholar] [CrossRef]
- Grizenko, N.; Fortier, M.E.; Zadorozny, C.; Thakur, G.; Schmitz, N.; Duval, R.; Joober, R. Maternal Stress during Pregnancy, ADHD Symptomatology in Children and Genotype: Gene-Environment Interaction. J. Can. Acad. Child Adolesc. Psychiatry 2012, 21, 9–15. [Google Scholar] [PubMed]
- Zohsel, K.; Buchmann, A.F.; Blomeyer, D.; Hohm, E.; Schmidt, M.H.; Esser, G.; Brandeis, D.; Banaschewski, T.; Laucht, M. Mothers’ prenatal stress and their children’s antisocial outcomes-a moderating role for the dopamine D4 receptor (DRD4) gene. J. Child Psychol. Psychiatry 2014, 55, 69–76. [Google Scholar] [CrossRef] [PubMed]
Gene, Polymorphism | PCR Primers | Annealing Temperature, °C | Amplicons’ Lengths, bp | Restriction Fragment Lengths, bp |
---|---|---|---|---|
DRD4, VNTR exon 3 | 5′-AGGTGGCACGTCGCGCCAAGCTGCA-3′ 5′-TCTGCGGTGGAGTCTGGGGTGGGAG-3′ | 66 | 462 (8R), 414 (7R), 366 (6R), 318 (5R), 270 (4R), 222 (3R), 174 (2R) | _ |
SLC6A4, rs774676466 | 5′-GGCGTTGCCGCTCTGAATGCC-3′ 5′-CAGGGGAGATCCTGGGAGAGGT-3′ | 62 | 270 (L), 182 (S) | _ |
SLC6A4, VNTR STin2 | 5′-GTCAGTATCACAGGCTGCGAG-3′ 5′-TGTTCCTAGTCTTACGCCAGTG-3′ | 60 | 299 (12R), 267 (10R), 250 (9R) | _ |
COMT rs4680 | 5′-GGGCCTACTGTGGCTACTCAGCTGT-3′ 5′-GGCATGCACACCTTGTCCTTCG-3′ | 64 | 148 | BstHH I, A/A: 148 A/G: 148, 126, 22 G/G: 126, 22 |
SNP | Oligonucleotides | Probes |
---|---|---|
BDNF rs6265 | 5′-CCAAGGCAGGTTCAGAGGCT-3′ 5′-TTCATGGGCCGAACTTTCTGG-3′ | [FAM] TCATCCAACAGCTCTTTATCACGTGTT [BHQ1] [HEX] TCATCCAACAGCTCTTTATCATGTGTT [BHQ1] |
NR3C1 rs258747 | 5′-ATCATCATGTGCACCAAGTAT-3′ 5′-ATACTCTGATTGAGGGTACAA-3′ | [FAM] ACATAGTATTTTTCTTATTCACATTGT [BHQ1] [HEX] ACATAGTATTTTTCTTATTCACGTTGT [BHQ1] |
TPH2 rs4570625 | 5′-CCTCCATATAACTCTCATGAGGC-3′ 5′-TCTTATCCCTCCCATCAGCATATT-3′ | [FAM]CACACATTTGCATGCACAAAATTAGAATATG [BHQ1] [HEX]CACACATTTGCATGCACAAAATTATAATATG [BHQ1] |
Group | rs4680 COMT | rs4570625 TPH2 | rs258747 NR3C1 | rs774676466 SLC6A4 | rs6265 BDNF | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | AG | GG | n | GG | GT | TT | n | AA | AG | GG | n | 16/16 | 16/14 | 14/14 | n | GG | AG | AA | n | |
1 | 109 | 174 | 76 | 359 | 169 | 91 | 17 | 277 | 110 | 216 | 114 | 440 | 95 | 144 | 43 | 282 | 340 | 91 | 11 | 442 |
2 | 174 | 325 | 165 | 664 | 226 | 129 | 18 | 373 | 188 | 344 | 150 | 682 | 132 | 188 | 50 | 370 | 484 | 180 | 20 | 684 |
3 | 134 | 246 | 86 | 466 | 164 | 104 | 14 | 282 | 119 | 233 | 121 | 473 | 106 | 142 | 378 | 285 | 331 | 124 | 13 | 458 |
Group (n) | Number of Genotype Carriers | Allele Frequency | ||||||
---|---|---|---|---|---|---|---|---|
12R/12R | 12R/10R | 12R/9R | 10R/10R | 10R/9R | 12R | 10R | 9R | |
1 (381) | 145 | 174 | 9 | 46 | 7 | 0.621 | 0.358 | 0.021 |
2 (654) | 244 | 332 | 15 | 54 | 9 | 0.637 | 0.343 | 0.018 |
3 (472) | 176 | 210 | 13 | 66 | 7 | 0.609 | 0.370 | 0.021 |
DRD4 | Group 1 n = 433 | Group 2 n = 666 | Group 3 n = 479 |
---|---|---|---|
No. of genotype carriers | |||
2R/2R | 9 | 2 | 10 |
2R/3R | 2 | 3 | 1 |
2R/4R | 41 | 82 | 48 |
2R/6R | - | 1 | - |
2R/7R | 9 | 14 | 8 |
2R/8R | - | 1 | - |
3R/3R | 1 | 2 | 1 |
3R/4R | 22 | 40 | 17 |
3R/5R | - | 1 | - |
3R/6R | - | 1 | - |
3R/7R | 5 | 3 | 3 |
3R/8R | 1 | - | - |
4R/4R | 255 | 345 | 289 |
4R/5R | 14 | 16 | 10 |
4R/6R | 3 | 5 | 4 |
4R/7R | 56 | 125 | 76 |
4R/8R | 4 | 9 | 1 |
5R/5R | 2 | 1 | - |
5R/7R | - | 1 | 1 |
6R/6R | - | - | 1 |
6R/7R | 2 | - | 1 |
7R/7R | 6 | 11 | 8 |
7R/8R | 1 | 2 | - |
8R/8R | - | 1 | - |
Allele frequency | |||
2R | 0.080 | 0.079 | 0.080 |
3R | 0.037 | 0.039 | 0.024 |
4R | 0.751 | 0.726 | 0.766 |
5R | 0.021 | 0.015 | 0.011 |
6R | 0.006 | 0.005 | 0.007 |
7R | 0.098 | 0.125 | 0.110 |
8R | 0.007 | 0.011 | 0.001 |
Polymorphic Site | “Protective” Allele | Minor Allele | Minor Allele Frequency | p Value | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1↔2 | 2↔3 | 1↔3 | 2↔1 + 3 | |||
exon 3 VNTR in DRD4 | Long 7R + 8R | Long 7R + 8R | 0.105 | 0.136 | 0.111 | 0.034 | 0.074 | 0.707 | 0.020 * |
rs4680 of COMT | G | G | 0.454 | 0.492 | 0.448 | 0.095 | 0.040 | 0.842 | 0.022 * |
intron 2 VNTR in SLC6A4 | Long 12 | Short (9 + 10) | 0.379 | 0.361 | 0.391 | 0.422 | 0.158 | 0.653 | 0.184 |
rs774676466 of SLC6A4 | Long 16 | Short (14) | 0.408 | 0.389 | 0.379 | 0.530 | 0.731 | 0.331 | 0.885 |
rs4570625 of TPH2 | T | T | 0.226 | 0.221 | 0.234 | 0.893 | 0.594 | 0.776 | 0.693 |
rs6265 of BDNF | G | A | 0.128 | 0.161 | 0.160 | 0.033 | 1 | 0.053 | 0.212 |
rs258747 of NR3C1 | A | G | 0.504 | 0.472 | 0.502 | 0.141 | 0.163 | 0.925 | 0.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, S.V.; Ivanoshchuk, D.E.; Yushkevich, E.A.; Bairqdar, A.; Anisimenko, M.S.; Shcherbakova, L.V.; Denisova, D.V.; Orlov, P.S. Prevalence of Common Alleles of Some Stress Resilience Genes among Adolescents Born in Different Periods Relative to the Socioeconomic Crisis of the 1990s in Russia. Curr. Issues Mol. Biol. 2023, 45, 51-65. https://doi.org/10.3390/cimb45010004
Mikhailova SV, Ivanoshchuk DE, Yushkevich EA, Bairqdar A, Anisimenko MS, Shcherbakova LV, Denisova DV, Orlov PS. Prevalence of Common Alleles of Some Stress Resilience Genes among Adolescents Born in Different Periods Relative to the Socioeconomic Crisis of the 1990s in Russia. Current Issues in Molecular Biology. 2023; 45(1):51-65. https://doi.org/10.3390/cimb45010004
Chicago/Turabian StyleMikhailova, Svetlana V., Dinara E. Ivanoshchuk, Evgeniy A. Yushkevich, Ahmad Bairqdar, Maksim S. Anisimenko, Liliya V. Shcherbakova, Diana V. Denisova, and Pavel S. Orlov. 2023. "Prevalence of Common Alleles of Some Stress Resilience Genes among Adolescents Born in Different Periods Relative to the Socioeconomic Crisis of the 1990s in Russia" Current Issues in Molecular Biology 45, no. 1: 51-65. https://doi.org/10.3390/cimb45010004
APA StyleMikhailova, S. V., Ivanoshchuk, D. E., Yushkevich, E. A., Bairqdar, A., Anisimenko, M. S., Shcherbakova, L. V., Denisova, D. V., & Orlov, P. S. (2023). Prevalence of Common Alleles of Some Stress Resilience Genes among Adolescents Born in Different Periods Relative to the Socioeconomic Crisis of the 1990s in Russia. Current Issues in Molecular Biology, 45(1), 51-65. https://doi.org/10.3390/cimb45010004