Multi-Omics Analyses Unravel Metabolic and Transcriptional Differences in Tender Shoots from Two Sechium edule Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Sample Preparation
2.2. Widely Targeted Metabolomics Analysis of Metabolites between Two Varieties of Chaylte Vines
2.3. RNA-Seq and Transcriptome Data Analysis
2.4. Combined Analysis of Metabonomics and Transcriptomics
2.5. Quantitative Real-Time PCR (qRT-PCR)
2.6. Determination of Total Flavonoid Content and Protective Enzyme Activity
3. Results
3.1. Metabolic Analysis between Two Varieties of Chaylte Vines
3.2. Differentially Accumulated Metabolites between Two Varieties of Chaylte Vines
3.3. Analysis of Transcriptomics between Two Varieties of Chaylte Vines
3.4. Differentially Expressed Genes in Flavonoid-Related Pathway
3.5. Combined Analysis of Metabonomics and Transcriptomics
3.6. Construction of Transcriptional Metabolic Regulatory Network of Flavonoids in Chaylte Vines
3.7. Determination of Total Flavonoid Content and Protective Enzyme Activity
4. Discussion
4.1. Inconsistency in Total Flavonoid Content and Number of Flavonoids DAMs between Varieties
4.2. Inspiration for Breeding and Postharvest Preservation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ke, J.; Jiang, G.; Shen, G.; Wu, H.; Liu, Y.; Zhang, Z. Optimization, characterization and rheological behavior study of pectin extracted from chayote (Sechium edule) using ultrasound assisted method. Int. J. Biol. Macromol. 2020, 147, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Walters, T.W. Historical overview on domesticated plants in China with special emphasis on the Cucurbitaceae. Econ. Bot. 1989, 43, 297–313. [Google Scholar] [CrossRef]
- Pu, Y.; Luo, Q.; Wen, L.; Li, Y.; Meng, P.; Wang, X.; Tan, G. Origin, evolution, breeding, and omics of chayote, an important Cucurbitaceae vegetable crop. Front. Plant Sci. 2021, 12, 739091. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.A.; Ley, S.L.; Lee, M.Y.; Yaw, H.Y.; Lee, S.W.; Chew, L.Y.; Neo, Y.P.; Kong, K.W. Determination of nutritional constituents, antioxidant properties, and α-amylase inhibitory activity of Sechium edule (chayote) shoot from different extraction solvents and cooking methods. LWT 2021, 151, 112177. [Google Scholar] [CrossRef]
- Chadha, M.L.; Jaenicke, H.; Ganry, J.; Hoeschlezeledon, I.; Kahane, R. Indigenous vegetables of India with potentials for improving livelihood. Acta Hortic. 2009, 806, 579–586. [Google Scholar] [CrossRef]
- Siciliano, T.; De Tommasi, N.; Morelli, I.; Braca, A. Study of flavonoids of Sechium edule (Jacq) Swartz (Cucurbitaceae) different edible organs by liquid chromatography photodiode array mass spectrometry. J. Agric. Food Chem. 2004, 52, 6510–6515. [Google Scholar] [CrossRef]
- Vieira, E.F.; Pinho, O.; Ferreira, I.; Delerue-Matos, C. Chayote (Sechium edule): A review of nutritional composition, bioactivities and potential applications. Food Chem. 2019, 275, 557–568. [Google Scholar] [CrossRef]
- Lian, D.; Yao, Y.; Lai, Z.; Lin, B.; Hong, J. Analysis of main functional nutrients and antioxidant activity of chayote and chaylte vine. Farm Prod. Proces. 2021, 8, 53–55. [Google Scholar] [CrossRef]
- Fu, A.; Wang, Q.; Mu, J.; Ma, L.; Wen, C.; Zhao, X.; Gao, L.; Li, J.; Shi, K.; Wang, Y.; et al. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. Hortic. Res. 2021, 8, 35. [Google Scholar] [CrossRef]
- Li, S.; She, H.; Yang, L.; Lan, L.; Zhang, X.; Wang, L.; Zhang, Y.; Li, N.; Deng, C.; Qian, W.; et al. Impact of LTR-retrotransposons on genome structure, evolution, and function in Curcurbitaceae species. Int. J. Mol. Sci. 2022, 23, 10158. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, C.; Jiang, Y.; Wang, X.; Ai, Y.; Zhuang, W. Metabolic profiling and transcriptome analysis provide insights into the accumulation of flavonoids in chayote fruit during storage. Front. Nutr. 2023, 10, 1029745. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, C.; Sun, H.; Rosli, H.G.; Pombo, M.A.; Zhang, P.; Banf, M.; Dai, X.; Martin, G.B.; Giovannoni, J.J.; et al. iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Mol. Plant 2016, 9, 1667–1670. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Liu, B.; Liang, H.; Wu, C.; Huang, X.; Wen, X.; Wang, M.Y.; Tang, H. Physiological and transcriptomic responses of Illicium difengpi to drought stress. Sustainability 2022, 14, 7479. [Google Scholar] [CrossRef]
- Tao, H.; Li, L.; He, Y.; Zhang, X.; Zhao, Y.; Wang, Q.; Hong, G. Flavonoids in vegetables: Improvement of dietary flavonoids by metabolic engineering to promote health. Crit. Rev. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kawatra, A.; Dhankhar, R.; Mohanty, A.; Gulati, P. Biomedical applications of microbial phenylalanine ammonia lyase: Current status and future prospects. Biochimie 2020, 177, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xu, S.; Li, J.; Hu, Y.; Lin, Z. Expression profile of a PAL gene from Astragalus membranaceus var. Mongholicus and its crucial role in flux into flavonoid biosynthesis. Plant Cell Rep. 2006, 25, 705–710. [Google Scholar] [CrossRef]
- Olsen, K.M.; Lea, U.S.; Slimestad, R.; Verheul, M.; Lillo, C. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J. Plant Physiol. 2008, 165, 1491–1499. [Google Scholar] [CrossRef]
- de Meaux, J.; Pop, A.; Mitchell-Olds, T. Cis-regulatory evolution of chalcone-synthase expression in the genus Arabidopsis. Genetics 2006, 174, 2181–2202. [Google Scholar] [CrossRef]
- Kim, J.; Matsuba, Y.; Ning, J.; Schilmiller, A.L.; Hammar, D.; Jones, A.D.; Pichersky, E.; Last, R.L. Analysis of natural and induced variation in tomato glandular trichome flavonoids identifies a gene not present in the reference genome. Plant Cell 2014, 26, 3272–3285. [Google Scholar] [CrossRef]
- Bian, S.; Li, R.; Xia, S.; Liu, Y.; Jin, D.; Xie, X.; Dhaubhadel, S.; Zhai, L.; Wang, J.; Li, X. Soybean CCA1-like MYB transcription factor GmMYB133 modulates isoflavonoid biosynthesis. Biochem. Biophys. Res. Commun. 2018, 507, 324–329. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, L.; Xu, L.; Xu, Z.; Huang, Y.; He, X.; Ma, H.; Yi, J.; Zhang, D. Over-expression of GmMYB39 leads to an inhibition of the isoflavonoid biosynthesis in soybean (Glycine max. L). Plant Biotechnol. Rep. 2013, 7, 445–455. [Google Scholar] [CrossRef]
- Yi, J.; Derynck, M.R.; Li, X.; Telmer, P.; Marsolais, F.; Dhaubhadel, S. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J. 2010, 62, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Verhoeyen, M.E.; Bovy, A.; Collins, G.; Muir, S.; Robinson, S.; de Vos, C.H.; Colliver, S. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exp. Bot. 2002, 53, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Q.; Lin, X.; Liao, X.; Zeng, P.; Chen, J. Effects of harvest maturity on storage quality and antioxidative capacity of Taoxi pomelo. Food Fermen. Indust. 2019, 45, 191–198. [Google Scholar]
- Zhu, X.; Zhao, W.; Zhou, Q.; Ma, L.; Zhang, G.; Fu, A.; Wang, Q.; Gao, L.; Zuo, J.; Zheng, S. Research progress on postharvest preservation and processing of chayote. Food Res. Devel. 2021, 42, 214–219. [Google Scholar] [CrossRef]
Sample | Raw Reads | Clean Reads | Clean Base (G) | Q20 (%) | Q30 (%) | GC Content (%) | Unique Mapped |
---|---|---|---|---|---|---|---|
SG1 | 65,274,266 | 63,677,814 | 9.55 | 98.11 | 94.45 | 45.33 | 60,798,568 (95.48%) |
SG2 | 64,068,410 | 62,111,032 | 9.32 | 98.04 | 94.35 | 45.42 | 59,252,336 (95.40%) |
SG3 | 66,957,632 | 65,273,616 | 9.79 | 98.08 | 94.39 | 45.37 | 62,305,085 (95.45%) |
SW1 | 55,198,928 | 53,479,702 | 8.02 | 98.1 | 94.45 | 45.09 | 50,993,963 (95.35%) |
SW2 | 63,161,956 | 60,977,744 | 9.15 | 98.13 | 94.51 | 45.1 | 58,138,439 (95.34%) |
SW3 | 55,068,678 | 52,936,534 | 7.94 | 98.11 | 94.51 | 45.16 | 50,476,417 (95.35%) |
Subclasses | UP-Regulated | Down-Regulated | All |
---|---|---|---|
Flavones | 24 | 23 | 47 |
Flavonols | 5 | 24 | 29 |
Isoflavones | 1 | 8 | 9 |
Flavanones | 2 | 6 | 8 |
Chalcones | 0 | 5 | 5 |
Flavanols | 1 | 2 | 3 |
Flavanonols | 0 | 1 | 1 |
Other Flavonoids | 0 | 1 | 1 |
Total | 33 | 70 | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Qu, F.; Zhang, C.; Chen, Z.; Li, Y.; Wen, L. Multi-Omics Analyses Unravel Metabolic and Transcriptional Differences in Tender Shoots from Two Sechium edule Varieties. Curr. Issues Mol. Biol. 2023, 45, 9060-9075. https://doi.org/10.3390/cimb45110568
Du Z, Qu F, Zhang C, Chen Z, Li Y, Wen L. Multi-Omics Analyses Unravel Metabolic and Transcriptional Differences in Tender Shoots from Two Sechium edule Varieties. Current Issues in Molecular Biology. 2023; 45(11):9060-9075. https://doi.org/10.3390/cimb45110568
Chicago/Turabian StyleDu, Zhihui, Fei Qu, Chaojun Zhang, Zhilin Chen, Yurong Li, and Linhong Wen. 2023. "Multi-Omics Analyses Unravel Metabolic and Transcriptional Differences in Tender Shoots from Two Sechium edule Varieties" Current Issues in Molecular Biology 45, no. 11: 9060-9075. https://doi.org/10.3390/cimb45110568
APA StyleDu, Z., Qu, F., Zhang, C., Chen, Z., Li, Y., & Wen, L. (2023). Multi-Omics Analyses Unravel Metabolic and Transcriptional Differences in Tender Shoots from Two Sechium edule Varieties. Current Issues in Molecular Biology, 45(11), 9060-9075. https://doi.org/10.3390/cimb45110568