Lipid Peroxidation via Regulating the Metabolism of Docosahexaenoic Acid and Arachidonic Acid in Autistic Behavioral Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Precautions for Mitigating the Effects of Small Sample Sizes
2.3. Assessment of Social Behaviors
2.4. Controlling for Dietary Intake and Assessment of Nutrient Intake
2.5. Measurement of Plasma PUFA, Cp, SOD, and Tf Levels
2.5.1. Blood-Sampling Procedures
2.5.2. Plasma Levels of PUFAs
2.5.3. Plasma Levels of SOD
2.5.4. Plasma Levels of CP
2.5.5. Plasma Levels of TF
2.6. Plasma Levels of MDA-LDL
2.7. Sex Differences in Plasma Variables and the Total SRS Scores
2.8. Statistical Analyses
3. Results
3.1. Study Population
3.2. Plasma Levels of Lipid-Peroxidation-Related Biomarkers
3.3. Predictor Variables: Multiple Linear Regression Analysis
3.4. Results of Adaptive Lasso
3.5. The Profiles of Nutrient Intake
3.6. Sex Difference
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Cortelazzo, A.; De Felice, C.; Guerranti, R.; Signorini, C.; Leoncini, S.; Zollo, G.; Leoncini, R.; Timperio, A.M.; Zolla, L.; Ciccoli, L.; et al. Expression and Oxidative Modifications of Plasma Proteins in Autism Spectrum Disorders: Interplay Between Inflammatory Response and Lipid Peroxidation. Proteomics Clin. Appl. 2016, 10, 1103–1112. [Google Scholar] [CrossRef]
- Meguid, N.A.; Dardir, A.A.; Abdel-Raouf, E.R.; Hashish, A. Evaluation of Oxidative Stress in Autism: Defective Antioxidant Enzymes and Increased Lipid Peroxidation. Biol. Trace Elem. Res. 2011, 143, 58–65. [Google Scholar] [CrossRef]
- González-Fraguela, M.E.; Hung, M.D.; Vera, H.; Maragoto, C.; Noris, E.; Blanco, L.; Galvizu, R.; Robinson, M. Oxidative Stress Markers in Children with Autism Spectrum Disorders. BJMMR 2013, 3, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.A.; Magtanong, L.; Dixon, S.J.; Watts, J.L. Dietary Lipids Induce Ferroptosis in Caenorhabditiselegans and Human Cancer Cells. Dev. Cell. 2020, 54, 447–454.e4. [Google Scholar] [CrossRef]
- Mortensen, M.S.; Ruiz, J.; Watts, J.L. Polyunsaturated fatty acids drive lipid peroxidation during ferroptosis. Cells 2023, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Wang, Z.; Zhang, Z.; Cao, Y.; Wei, Z.; Shao, J.; Chen, A.; Zhang, F.; Zheng, S. Dihydroartemisinin alleviates hepatic fibrosis through inducing ferroptosis in hepatic stellate cells. Biofactors 2021, 47, 801–818. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Mu, Y.; Sun, J.; Li, Z.; Zhang, W.; Liu, Z.; Li, C.; Peng, C.; Cui, G.; Shao, H.; Du, Z. Activation of pyroptosis and ferroptosis is involved in the hepatotoxicity induced by polystyrene microplastics in mice. Chemosphere 2022, 291 Pt 2, 132944. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, X.; Zhang, M.; Jia, Y.; Yu, B.; Tian, J. Revisiting Tumors and the Cardiovascular System: Mechanistic Intersections and Divergences in Ferroptosis. Med. Cell Longev. 2020, 2020, 9738143. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Nam, M.; Son, H.Y.; Hyun, K.; Jang, S.Y.; Kim, J.W.; Kim, M.W.; Jung, Y.; Jang, E.; Yoon, S.J.; et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc. Natl. Acad. Sci. USA 2020, 117, 32433–32442. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Cao, P.; Luo, L. Identification of Novel Arachidonic Acid 15-lipoxygenase inhibitors based on the bayesian classifier model and computer-aided high-throughput virtual screening. Pharmaceuticals 2022, 15, 1440. [Google Scholar] [CrossRef] [PubMed]
- Dziobek, I.; Gold, S.M.; Wolf, O.T.; Convit, A. Hypercholesterolemia in Asperger syndrome: Independence from lifestyle, obsessive-compulsive behavior, and social anxiety. Psychiatry Res. 2007, 149, 21–24. [Google Scholar] [CrossRef]
- Kreuzer, J.; White, A.L.; Knott, T.J.; Jien, M.L.; Mehrabian, M.; Scott, J.; Young, S.G.; Haberland, M.E. Amino terminus of Apolipoprotein B Suffices to Produce Recognition of Malondialdehyde-Modified Low Density Lipoprotein by the Scavenger Receptor of Human Monocyte-Macrophages. J. Lipid Res. 1997, 38, 324–342. [Google Scholar] [CrossRef]
- Ogawa, K.; Tanaka, T.; Nagoshi, T.; Sekiyama, H.; Arase, S.; Minai, K.; Ogawa, T.; Yoshimura, M. Increase in the oxidised low-density lipoprotein Level by smoking and the possible inhibitory effect of statin therapy in patients with cardiovascular disease: A retrospective study. BMJ Open 2015, 5, e005455. [Google Scholar] [CrossRef]
- Al-Gadani, Y.; El-Ansary, A.; Attas, O.; Al-Ayadhi, L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin. Biochem. 2009, 42, 1032–1040. [Google Scholar] [CrossRef]
- Mousavinejad, E.; Ghaffari, M.A.; Riahi, F.; Hajmohammadi, M.; Tiznobeyk, Z.; Mousavinejad, M. Coenzyme Q10 Supplementation Reduces Oxidative Stress and Decreases Antioxidant Enzyme Activity in Children with Autism Spectrum Disorders. Psychiatry Res. 2018, 265, 62–69. [Google Scholar] [CrossRef]
- Perez, M.A.; Clostio, A.J.; Houston, I.R.; Ruiz, J.; Magtanong, L.; Dixon, S.J.; Watts, J.L. Ether lipid deficiency disrupts lipid homeostasis leading to ferroptosis sensitivity. PLoS Genet. 2022, 18, e1010436. [Google Scholar] [CrossRef]
- Sánchez-Illana, Á.; Shah, V.; Piñeiro-Ramos, J.D.; Di Fiore, J.M.; Quintás, G.; Raffay, T.M.; MacFarlane, P.M.; Martin, R.J.; Kuligowski, J. Adrenic acid non-enzymatic peroxidation products in biofluids of m; oderate preterm infants. Free Radic Biol. Med. 2019, 142, 107–112. [Google Scholar] [CrossRef]
- Fortin, É.; Blouin, R.; Lapointe, J.; Petit, H.V.; Palin, M.F. Linoleic acid, α-linolenic acid and enterolactone affect lipid oxidation and expression of lipid metabolism and antioxidant-related genes in hepatic tissue of dairy cows. Br. J. Nutr. 2017, 117, 1199–1211. [Google Scholar] [CrossRef]
- Wahid, A.; Khan, D.M.; Hussain, I. Robust Adaptive Lasso Method for Parameter’s Estimation and Variable Selection in High-Dimensional Sparse Models. PLoS ONE 2017, 12, e0183518. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Razik Ismail, E. Behavior of lasso quantile regression with small sample sizes. J. Multidiscip. Eng. Sci. Technol. 2015, 2, 388–394. [Google Scholar]
- Gomez-Gomez, A.; Aguilera, P.; Langohr, K.; Casals, G.; Pavon, C.; Marcos, J.; To-Figueras, J.; Pozo, O. Evaluation of metabolic changes in acute intermittent porphyria patients by targeted metabolomics. Int. J. Mol. Sci. 2022, 23, 3219. [Google Scholar] [CrossRef] [PubMed]
- Clubb, J.; Towlson, C.; Barrett, S. Measurement properties of external training load variables during standardised games in soccer: Implications for training and monitoring strategies. PLoS ONE 2022, 17, e0262274. [Google Scholar] [CrossRef]
- Indrayan, A.; Mishra, A. The importance of small samples in medical research. J. Postgrad. Med. 2021, 67, 219–223. [Google Scholar] [CrossRef]
- Hackshaw, A. Small studies: Strengths and limitations. Eur. Respir. J. 2008, 32, 1141–1143. [Google Scholar] [CrossRef]
- Constantino, J.H.; Gruber, C.P. Social Responsiveness Scale-Second Edition (SRS-2); Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
- Sipsock, D.; Tokadjian, H.; Righi, G.; Morrow, E.M.; Sheinkopf, S.J.; Rhode Island Consortium for Autism Research and Treatment (RI-CART). Autism severity aggregates with family psychiatric history in a community-based autism sample. Autism Res. 2021, 14, 2524–2532. [Google Scholar] [CrossRef]
- Barradas, M.; Plaza, A.; Colmenarejo, G.; Lázaro, I.; Costa-Machado, L.F.; Martín-Hernández, R.; Micó, V.; López-Aceituno, J.L.; Herranz, J.; Pantoja, C.; et al. Fatty acids homeostasis during fasting predicts protection from chemotherapy toxicity. Nat. Commun. 2022, 13, 5677. [Google Scholar] [CrossRef]
- Vivek, S.; Carnethon, M.R.; Prizment, A.; Carson, A.P.; Bancks, M.P.; Jacobs, D.R., Jr.; Thyagarajan, B. Association of the extent of return to fasting state 2-hours after a glucose challenge with incident prediabetes and type 2 diabetes: The CARDIA study. Diabetes Res. Clin. Pract. 2021, 180, 109004. [Google Scholar] [CrossRef]
- Keirns, B.H.; Sciarrillo, C.M.; Koemel, N.A.; Emerson, S.R.J. Fasting, non-fasting and postprandial triglycerides for screening cardiometabolic risk. Nutr. Sci. 2021, 10, e75. [Google Scholar] [CrossRef] [PubMed]
- Regidor, P.A.; de la Rosa, X.; Müller, A.; Mayr, M.; Gonzalez Santos, F.; Gracia Banzo, R.; Rizo, J.M. PCOS: A Chronic Disease That Fails to Produce Adequately Specialized Pro-Resolving Lipid Mediators (S Ms). Biomedicines 2022, 10, 456. [Google Scholar] [CrossRef]
- Soundravally, R.; Hoti, S.L.; Patil, S.A.; Cleetus, C.C.; Zachariah, B.; Kadhiravan, T.; Narayanan, P.; Kumar, B.A. Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. Int. J. Infect. Dis. 2014, 18, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Connors, S.L.; Macklin, E.A.; Smith, K.D.; Fahey, J.W.; Talalay, P.; Zimmerman, A.W. Sulforaphane treatment of autism spectrum disorder (ASD). Proc. Natl. Acad. Sci. USA 2014, 111, 15550–15555. [Google Scholar] [CrossRef] [PubMed]
- Molenaar-Kuijsten, L.; Braal, C.L.; Groenland, S.L.; de Vries, N.; Rosing, H.; Beijnen, J.H.; Koolen, S.L.W.; Vulink, A.J.E.; van Dongen, M.G.J.; Mathijssen, R.H.J.; et al. Effects of the Moderate CYP3A4 Inhibitor Erythromycin on the Pharmacokinetics of Palbociclib: A Randomized Crossover Trial in Patients with Breast Cancer. Clin. Pharmacol. Ther. 2023, 114, 933–1141. [Google Scholar] [CrossRef] [PubMed]
- Grotenhuis, H.B.; Zhou, C.; Tomlinson, G.; Isaac, K.V.; Seed, M.; Grosse-Wortmann, L.; Yoo, S.J. Cardiothoracic ratio on chest radiograph in pediatric heart disease: How does it correlate with heart volumes at magnetic resonance imaging? Pediatr. Radiol. 2015, 45, 1616–1623. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Z.; Xue, H.; Zhao, P. Ferroptosis is involved in regulating perioperative neurocognitive disorders: Emerging perspectives. J. Neuroinflammation 2022, 19, 219. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, A.; Yang, Y.; Zhao, Y.; Wang, C.C.; Wang, Y.; Han, J.; Wang, Z.; Wen, M. DHA and EPA Prevent Seizure and Depression-Like Behavior by Inhibiting Ferroptosis and Neuroinflammation via Different Mode-of-Actions in a Pentylenetetrazole-Induced Kindling Model in Mice. Mol. Nutr. Food Res. 2022, 66, e2200275. [Google Scholar] [CrossRef]
- Shan, K.; Feng, N.; Zhu, D.; Qu, H.; Fu, G.; Li, J.; Cui, J.; Chen, H.; Wang, R.; Qi, Y.; et al. Free docosahexaenoic acid promotes ferroptotic cell death via lipoxygenase dependent and independent pathways in cancer cells. Eur. J. Nutr. 2022, 61, 4059–4075. [Google Scholar] [CrossRef]
- Dierge, E.; Debock, E.; Guilbaud, C.; Corbet, C.; Mignolet, E.; Mignard, L.; Bastien, E.; Dessy, C.; Larondelle, Y.; Feron, O. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 2021, 33, 1701–1715. [Google Scholar] [CrossRef]
- Do, Q.; Zhang, R.; Hooper, G.; Xu, L.J. Differential contributions of distinct free radical peroxidation mechanisms to the induction of ferroptosis. JACS Au. 2023, 3, 1100–1117. [Google Scholar] [CrossRef]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Sarparast, M.; Pourmand, E.; Hinman, J.; Vonarx, D.; Reason, T.; Zhang, F.; Paithankar, S.; Chen, B.; Borhan, B.; Watts, J.L.; et al. Dihydroxy-metabolites of dihomo-γ-linolenic acid drive ferroptosis-mediated neurodegeneration. ACS. Cent. Sci. 2023, 9, 870–882. [Google Scholar] [CrossRef]
- Yang, B.; Kevin, L.; Fritsche, K.L.; Beversdorf, D.Q.; Gu, Z.; Lee, J.C.; Folk, W.R.; Greenlief, C.M.; Sun, G.Y. Yin-Yang mechanisms regulating lipid peroxidation of docosahexaenoic acid and arachidonic acid in the central nervous system. Front. Neurol. Actions 2019, 10, 642. [Google Scholar] [CrossRef]
- Carbone, B.E.; Abouleish, M.; Watters, K.E.; Vogel, S.; Ribic, A.; Schroeder, O.H.; Bader, B.M.; Biederer, T. Synaptic connectivity and cortical maturation are promoted by the ω-3 fatty acid docosahexaenoic acid. Cereb. Cortex 2020, 30, 226–240. [Google Scholar] [CrossRef]
- Roig-Pérez, S.; Guardiola, F.; Moretó, M.; Ferrer, R. Lipid Peroxidation Induced by DHA Enrichment Modifies Paracellular Permeability in Caco-2 Cells: Protective Role of Taurine. J. Lipid Res. 2004, 45, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Dyall, S.C. Long-Chain Omega-3 Fatty Acids and the Brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Patel, A.K.; Kumari, R.; Chugh, S.; Shrivastav, C.; Mehra, S.; Sharma, A.N.; Asianm Pac, J. Interactions between oxidative stress, lipid profile and antioxidants in breast cancer: A case control study. Cancer Prev. 2012, 13, 6295–6298. [Google Scholar] [CrossRef]
- Miralles-Pérez, B.; Méndez, L.; Nogués, M.R.; Sánchez-Martos, V.; Fortuño-Mar, À.; Ramos-Romero, S.; Hereu, M.; Medina, I.; Romeu, M. Effects of a fish oil rich in docosahexaenoic acid on cardiometabolic risk factors and oxidative stress in healthy rats. Mar. Drugs 2021, 19, 555. [Google Scholar] [CrossRef]
- Liu, G.Y.; Moon, S.H.; Jenkins, C.M.; Sims, H.F.; Guan, S.; Gross, R.W. Synthesis of oxidized phospholipids by sn-1 acyltransferase using 2–15-HETE Lysophospholipids. J. Biol. Chem. 2019, 294, 10146–10159. [Google Scholar] [CrossRef]
- Wong, C.T.; Ahmad, E.; Li, H.; Crawford, D.A. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: Implications for autism spectrum disorders. Cell Commun. Signal. 2014, 12, 19. [Google Scholar] [CrossRef]
- Colombo, J.; Jill Shaddy, D.J.; Kerling, E.H.; Gustafson, K.M.; Carlson, S.E. Docosahexaenoic Acid (DHA) and Arachidonic Acid (ARA) Balance in Developmental Outcomes. Prostaglandins Leukot. Essent. Fatty Acids 2017, 121, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Yui, K.; Imataka, G.; Kawasak, Y.; Yamada, H. Increased ω-3 polyunsaturated fatty acid/arachidonic acid ratios and upregulation of signaling mediator in individuals with autism spectrum disorders. Life Sci. 2016, 145, 205–212. [Google Scholar] [CrossRef]
- Yehuda, S. Omega-6/omega-3 Ratio and Brain Related Functions. World Rev. Nutr. Diet. 2003, 92, 37–56. [Google Scholar] [CrossRef]
- Smink, W.; Gerrits, W.J.J.; Gloaguen, M.; Ruiter, A.; van Baal, J. Linoleic and α-linolenic acid as precursor and inhibitor for the synthesis of long-chain polyunsaturated fatty acids in liver and brain of growing pigs. Animal 2012, 62, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.V.; Malau-Aduli, B.S.; Cavalieri, J.; Malau-Aduli, A.E.O.; Nichols, P.D. Enhancing Omega-3 Long-Chain Polyunsaturated Fatty Acid Content of Dairy-Derived Foods for Human Consumption. Nutrients 2019, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Hsu, W.L.; Tsai, C.C.; Chao, H.R.; Wu, C.Y.; Chen, Y.H.; Lai, Y.R.; Chen, C.H.; Tsai, M.H. 7,10,13,16-Docosatetraenoic acid impairs neurobehavioral development by increasing reactive oxidative species production in Caenorhabditis elegans. Life Sci. 2023, 319, 121500. [Google Scholar] [CrossRef]
- Wang, X.; Lin, H.; Gu, Y. Multiple Roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis. 2012, 11, 25. [Google Scholar] [CrossRef]
- Novichkova, E.; Chumin, K.; Eretz-Kdosha, N.; Boussiba, S.; Gopas, J.; Cohen, G.; Khozin-Goldberg, I. DGLA from the Microalga Lobosphaera Incsa P127 Modulates Inflammatory Response, Inhibits iNOS Expression and Alleviates NO Secretion in RAW264.7 Murine macrophages. Nutrients 2020, 12, 2892. [Google Scholar] [CrossRef] [PubMed]
- Mahéo, K.; Vibet, S.; Steghens, J.P.; Dartigeas, C.; Lehman, M.; Bougnoux, P.; Goré, J. Differential sensitization of cancer cells to doxorubicin by DHA: A Role for Lipoperoxidation. Free Radic. Biol. Med. 2005, 39, 742–751. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 17, 1915–1928. [Google Scholar] [CrossRef]
- Yui, K.; Imataka, G.; Sasaki, H.; Shiroki, R. The role of lipid peroxidation in individuals with autism spectrum disorders. Metab. Brain Dis. 2020, 35, 1101–1108. [Google Scholar] [CrossRef]
- Jaganjac, M.; Milkovic, L.; Gegotek, A.; Cindric, M.; Zarkovic, K.; Skrzydlewska, E.; Zarkovic, N. The Relevance of Pathophysiological Alterations in Redox Signaling of 4-Hydroxynonenal for Pharmacological Therapies of Major Stress-Associated Diseases. Free Radic. Biol. Med. 2020, 157, 128–153. [Google Scholar] [CrossRef] [PubMed]
- Oborna, I.; Wojewodka, G.; De Sanctis, J.B.; Fingerova, H.; Svobodova, M.; Brezinova, J.; Hajduch, M.; Novotny, J.; Radova, L.; Radzioch, D. Increased lipid peroxidation and abnormal fatty acid profiles in seminal and blood plasma of normozoospermic males from Infertile couples. Hum. Reprod. 2010, 25, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Starčević, K.; Roškarić, P.; Šperanda, M.; Đidara, M.; Kurilj, A.G.; Maurić, M.; Mašek, T. High Dietary n6/n3 Ratio Decreases Eicosapentaenoic to Arachidonic Acid Ratios and Upregulates NF-κB/p50 Expression in Short-Term Low Dose Streptozotocin and High-Fructose Rat Model of Diabetes. Prostaglandins Leukot. Essent. Fatty Acids 2019, 149, 1–7. [Google Scholar] [CrossRef]
- Hadley, K.B.; Ryan, A.S.; Forsyth, S.; Gautier, S.; Salem, N., Jr. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016, 8, 216. [Google Scholar] [CrossRef]
- Kang, M.; Choi, S.; Koh, I.S. The Effect of Increasing Control-to-Case Ratio on Statistical Power in a Simukated Case-Cintrl SNP Association Study. Genomics Inform. 2009, 7, 148–151. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Wu, Z.; Wang, G.; Zhao, H.; Li, J. The Mechanism and clinical outcome of patients with corona virus disease. Trials 2019 Whose nucleic acid test has changed from negative to positive, and the therapeutic efficacy of Favipiravir: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 488. [Google Scholar] [CrossRef] [PubMed]
- Namvarpour, Z.; Nasehi, M.; Amini, A.; Zarrindast, M.R. Protective role of alpha-lipoic acid in impairments of social and stereotyped behaviors induced by early postnatal administration of thimerosal in male rat. Neurotoxicol Teratol. 2018, 67, 1–9. [Google Scholar] [CrossRef]
- Yadav, S.; Tiwari, V.; Singh, M.; Yadav, R.K.; Roy, S.; Devi, U.; Gautam, S.; Rawat, J.K.; Ansari, M.N.; Saeedan, A.S.; et al. Comparative Efficacy of Alpha-Linolenic Acid and Gamma-Linolenic Acid to Attenuate Valproic Acid-Induced Autism-Like Features. J. Physiol. Biochem. 2017, 73, 187–198. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, J.; Ma, Y.; Yao, T.; Chen, X.; Ge, S.; Wang, L.; Fan, X. MYCN and PRC1 cooperatively repress docosahexaenoic acid synthesis in neuroblastoma via ELOVL2. J. Exp. Clin. Cancer Res. 2019, 38, 498. [Google Scholar] [CrossRef]
- Dooper, M.M.; van Riel, B.; Graus, Y.M.; M’Rabet, L. Dihomo-gamma-linolenic acid inhibits tumour necrosis factor-alpha production by human leucocytes independently of cyclooxygenase activity. Immunology 2003, 110, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Niedernhofer, L.J.; Daniels, J.S.; Rouzer, C.A.; Greene, R.E.; Lawrence, J.; Marnett, L.J. Malondialdehyde, a product of lipid Peroxidation, is mutagenic in human cells. J. Biol. Chem. 2003, 278, 31426–31433. [Google Scholar] [CrossRef] [PubMed]
ASD | Controls | U | p Value | |
---|---|---|---|---|
(n = 17) | (n = 7) | |||
Age (years) | 11.2 ± 5.7 | 10.0 ± 4.1 | 45.00 | 0.49 |
Sex (male/female) | 13/17 | 4/17 | χ2 = 0.46 | 0.50 |
Scores of Autism Diagnostic | ||||
Interview-revised | ||||
Domain A (Social) | 13.6 ± 4.3 | |||
Domain B (Communication) | 2.1 ± 2.3 | |||
Domain C (stereotyped) | 17.6 ± 5.6 | |||
Plasma biomarker levels | ||||
Cp (mg/dL) | 28.29 ± 7.21 | 24.29 ± 7.25 | 44.50 | 0.35 |
Tf (mg/dL) | 275.71 ± 43.16 | 262.29 ± 25.75 | 47.00 | 0.46 |
SOD (mg/dL) | 2.51 ± 0.47 | 5.69 ± 4.64 | 18.50 | 0.01 * |
MDA-LDL | 90.94 ± 17.24 | 71.29 ± 17.87 | 24.50 | 0.02 * |
DHA | 3.53 ± 0.98 | 2.52 ± 0.90 | 28.50 | 0.047 * |
ARA | 6.34 ±1.11 | 6.68 ±1.67 | 49.00 | 0.53 |
DHA/ARA | 0.59 ± 0.17 | 0.37 ± 0.08 | 11.50 | 0.01 * |
AdA | 0.27 ± 0.25 | 0.27 ± 0.07 | 28.50 | 0.047 * |
DGLA | 1.27 ± 0.33 | 1.60 ± 0.22 | 25.50 | 0.03 * |
Total scores of Aberrant Behavior Checklist | 49.41 ± 25.57 | 0.71 ± 1.25 | 0.00 | p < 0.001 ** |
Model | Model R2 | Model Value | Coefficients | ||
---|---|---|---|---|---|
B | Beta Coefficients | p Value | |||
DHA | 0.997 | p < 0.001 ** | |||
ALA | 0.849 0.245 | 0.164 | 0.018 | ||
DGLA | −0.210 0.029 | −0.421 | 0.002 | ||
MDA-LDL | −0.057 0.124 | −0.025 | 0.667 | ||
SOD | −0.0076 0.020 | −0.203 | 0.012 | ||
ABC total scores | 0.002 0.002 | 0.067 | 0.253 | ||
Group 1 = ASD, 2 = controls | −0.057 0.124 | −0.025 | 0.667 | ||
DHA/ARA | 0.982 | 0.004 ** | |||
ALA | −0.342 0.124 | −0.395 | 0.041 | ||
DGLA | −0.122 0.058 | −0.23- | 0.090 | ||
MDA-LDL | 0.002 0.001 | 0.270 | 0.096 | ||
SOD | 0.008 0.050 | 0.023 | 0.895 | ||
ABC total scores | 0.022 0.024 | 0.348 | 0.183 | ||
Group 1 = ASD, 2 = control | 0.007 0.055 | 0.019 | 0.899 |
Intercept | Estimate | SE | p Value | 95% | Confidence Interval |
---|---|---|---|---|---|
Lower Bounds | Upper Bounds | ||||
ABC total scores | |||||
DHA | 136.50 | 54.89 | 0.012 | 29.11 | 243.90 |
DHA/ARA | −74.88 | 46.97 | 0.111 | −166.94 | 17.18 |
α-linoleic acid | −75.48 | 26.21 | 0.004 | −126.84 | −24.12 |
MDA-LDL | |||||
DHA | −105.88 | 50.74 | 0.038 | −205.32 | −6.44 |
DHA/ARA | 98.81 | 32.21 | 0.002 | 35.67 | 161.95 |
α-linoleic acid | 31.38 | 28.01 | 0.247 | −22.52 | 87.28 |
ASD (n = 7) | Control (n = 5) | U | p Value | |
---|---|---|---|---|
Age (years) | 11.4 ± 4.3 | 11.4 ± 3.2 | 14.0 | 0.87 |
Fat (g/day) | 72.2 ± 30.1 | 87.4 ± 25.8 | 12.0 | 0.43 |
Unsaturated fatty acid (g/day) | 14.8 ± 4.4 | 18.7 ± 5.5 | 9.0 | 0.20 |
Omega-3 PUFAs (g/day) | 2.6 ± 0.8 | 3.1 ± 0.5 | 9.0 | 0.20 |
Omega-6 PUFAs (g/day) | 12.1 ± 3.9 | 15.9 ± 5.1 | 11.0 | 0.34 |
EPA (mg/day) | 181.2 ± 118.7 | 176.2 ± 73.6 | 15.5 | 0.76 |
DHA (mg/day) | 332.6 ± 170.4 | 345.0 ± 83.31 | 15.5 | 0.76 |
ARA (mg/day) | 168.1 ± 17.1 | 221.0 ± 87.7 | 11.5 | 0.34 |
Protein (g/day) | 78.1 ± 25.8 | 89.2 ± 25.8 | 13.0 | 0.53 |
Animal protein (mg/day) | 32.0 ± 9.1 | 30.4 ± 14.7 | 14.0 | 0.64 |
Cholesterol (mg/day) | 139.1± 186.4 | 31.9 ± 10.3 | 17.0 | 1.00 |
Carbohydrates (g/day) | 286.2 ± 62.1 | 304.21 ± 72.4 | 14.0 | 0.64 |
MDA-LDL | DHA | ARA | SOD | Total ABC Score | |
---|---|---|---|---|---|
Male (n = 12) | 92.55 ± 14.69 | 3.43 ± 1.07 | 6.43 ± 1.12 | 2.76 ± 0.53 | 41.81 ± 29.03 |
Female (n = 5) | 88.93 ± 29.88 | 3.05 ± 0.71 | 6.32 ± 1.77 | 4.21 ± 3.54 | 19.78 ± 29.68 |
U | 112.00 | 100.50 | 139.00 | 99.00 | 45.50 |
p values | 0.34 | 0.17 | 0.99 | 0.16 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yui, K.; Imataka, G.; Shiohama, T. Lipid Peroxidation via Regulating the Metabolism of Docosahexaenoic Acid and Arachidonic Acid in Autistic Behavioral Symptoms. Curr. Issues Mol. Biol. 2023, 45, 9149-9164. https://doi.org/10.3390/cimb45110574
Yui K, Imataka G, Shiohama T. Lipid Peroxidation via Regulating the Metabolism of Docosahexaenoic Acid and Arachidonic Acid in Autistic Behavioral Symptoms. Current Issues in Molecular Biology. 2023; 45(11):9149-9164. https://doi.org/10.3390/cimb45110574
Chicago/Turabian StyleYui, Kunio, George Imataka, and Tadashi Shiohama. 2023. "Lipid Peroxidation via Regulating the Metabolism of Docosahexaenoic Acid and Arachidonic Acid in Autistic Behavioral Symptoms" Current Issues in Molecular Biology 45, no. 11: 9149-9164. https://doi.org/10.3390/cimb45110574
APA StyleYui, K., Imataka, G., & Shiohama, T. (2023). Lipid Peroxidation via Regulating the Metabolism of Docosahexaenoic Acid and Arachidonic Acid in Autistic Behavioral Symptoms. Current Issues in Molecular Biology, 45(11), 9149-9164. https://doi.org/10.3390/cimb45110574