Comparison of the Protective Effects of Nebivolol and Metoprolol against LPS-Induced Injury in H9c2 Cardiomyoblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. H9c2 Cell Culture
2.2. Cell Viability Assay
2.3. RNA Isolation and Quantitative Polymerase Chain Reaction (qPCR)
2.4. Detection of Intracellular ROS
2.5. Western Blotting
2.6. Detection of Mitochondrial ROS
2.7. Statistical Analysis
3. Results
3.1. Effects of Neb and Met on LPS-Mediated Cellular and Mitochondrial ROS Generation in H9c2 Cardiomyoblasts
3.2. Effects of Neb and Met on LPS-Stimulated Gene and Protein Expression Levels of Inflammatory Markers in H9c2 Cardiomyoblasts
3.3. Effects of Neb and Met on LPS-Mediated Reduction in the Gene Associated with Mitochondrial Biogenesis
3.4. Effects of Neb and Met on Mitochondrial Dynamics and Mitochondrial ROS Production
3.5. Effects of Neb and Met on Genes Involved in Antioxidant Defense System
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobak, K.A.; Franczuk, P.; Schubert, J.; Dzięgała, M.; Kasztura, M.; Tkaczyszyn, M.; Drozd, M.; Kosiorek, A.; Kiczak, L.; Bania, J.; et al. Primary Human Cardiomyocytes and Cardiofibroblasts Treated with Sera from Myocarditis Patients Exhibit an Increased Iron Demand and Complex Changes in the Gene Expression. Cells 2021, 10, 818. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gou, Y.; Yu, H.; Ji, T.; Li, Y.; Qin, L.; Sun, W. Mechanism of Metformin on LPS-Induced Bacterial Myocarditis. Dose Response 2019, 17, 1559325819847409. [Google Scholar] [CrossRef] [PubMed]
- Roubille, F.; Tournoux, F.; Roubille, C.; Merlet, N.; Davy, J.M.; Rhéaume, E.; Busseuil, D.; Tardif, J.C. Management of pericarditis and myocarditis: Could heart-rate-reducing drugs hold a promise? Arch. Cardiovasc. Dis. 2013, 106, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Gul, R.; Mahmood, A.; Luck, C.; Lum-Naihe, K.; Alfadda, A.A.; Speth, R.C.; Pulakat, L. Regulation of cardiac miR-208a, an inducer of obesity, by rapamycin and nebivolol. Obesity 2015, 23, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- AlHabeeb, W.; Mrabeti, S.; Abdelsalam, A.A.I. Therapeutic Properties of Highly Selective β-blockers with or without Additional Vasodilator Properties: Focus on Bisoprolol and Nebivolol in Patients with Cardiovascular Disease. Cardiovasc. Drugs Ther. 2022, 36, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, D.; Xie, Q.; Yang, Y.; Shen, W. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2013, 438, 211–217. [Google Scholar] [CrossRef]
- Ma, L.; Gul, R.; Habibi, J.; Yang, M.; Pulakat, L.; Whaley-Connell, A.; Ferrario, C.M.; Sowers, J.R. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H2341–H2351. [Google Scholar] [CrossRef]
- Erickson, C.E.; Gul, R.; Blessing, C.P.; Nguyen, J.; Liu, T.; Pulakat, L.; Bastepe, M.; Jackson, E.K.; Andresen, B.T. The β-blocker Nebivolol Is a GRK/β-arrestin biased agonist. PLoS ONE 2013, 8, e71980. [Google Scholar] [CrossRef]
- Gupta, S.; Wright, H.M. Nebivolol: A highly selective beta1-adrenergic receptor blocker that causes vasodilation by increasing nitric oxide. Cardiovasc. Ther. 2008, 26, 189–202. [Google Scholar] [CrossRef]
- Perros, F.; Ranchoux, B.; Izikki, M.; Bentebbal, S.; Happé, C.; Antigny, F.; Jourdon, P.; Dorfmüller, P.; Lecerf, F.; Fadel, E.; et al. Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J. Am. Coll. Cardiol. 2015, 65, 668–680. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, L.; Habibi, J.; Whaley-Connell, A.; Hayden, M.R.; Tilmon, R.D.; Brown, A.N.; Kim, J.A.; Demarco, V.G.; Sowers, J.R. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat. Hypertension 2010, 55, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lei, Y.; Yang, Y.; Gao, H.; Gai, Z.; Li, X. Metoprolol alleviates arginine vasopressin-induced cardiomyocyte hypertrophy by upregulating the AKT1-SERCA2 cascade in H9C2 cells. Cell Biosci. 2020, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wuri, J.; An, L.; Liu, X.; Wu, Y.; Hu, H.; Wu, R.; Su, Y.; Yuan, Q.; Yan, T. Metoprolol attenuates intracerebral hemorrhage-induced cardiac damage by suppression of sympathetic overactivity in mice. Auton. Neurosci. 2021, 234, 102832. [Google Scholar] [CrossRef] [PubMed]
- Saheera, S.; Potnuri, A.G.; Nair, R.R. Modulation of cardiac stem cell characteristics by metoprolol in hypertensive heart disease. Hypertens. Res. 2018, 41, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Moragón, A.; Gómez, M.; Villena-Gutiérrez, R.; Lalama, D.V.; García-Prieto, J.; Martínez, F.; Sánchez-Cabo, F.; Fuster, V.; Oliver, E.; Ibáñez, B. Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation. Eur. Heart J. 2020, 41, 4425–4440. [Google Scholar] [CrossRef]
- Patel, R.S.; Sharma, K.H.; Kamath, N.A.; Patel, N.H.; Thakkar, A.M. Cost-effectiveness analysis of nebivolol and metoprolol in essential hypertension: A pharmacoeconomic comparison of antihypertensive efficacy of beta blockers. Indian J. Pharmacol. 2014, 46, 485–489. [Google Scholar]
- Serg, M.; Kampus, P.; Kals, J.; Zagura, M.; Zilmer, M.; Zilmer, K.; Kullisaar, T.; Eha, J. Nebivolol and metoprolol: Long-term effects on inflammation and oxidative stress in essential hypertension. Scand. J. Clin. Lab. Investig. 2012, 72, 427–432. [Google Scholar] [CrossRef]
- Lescroart, M.; Pequignot, B.; Kimmoun, A.; Klein, T.; Levy, B. Beta-blockers in septic shock: What is new? J. Intensive Med. 2022, 2, 150–155. [Google Scholar] [CrossRef]
- Reuter, D.A.; Russell, J.A.; Mekontso Dessap, A. Beta-blockers in septic shock to optimize hemodynamics? Yes. Intensive Care Med. 2016, 42, 1607–1609. [Google Scholar] [CrossRef]
- Morelli, A.; Ertmer, C.; Westphal, M.; Rehberg, S.; Kampmeier, T.; Ligges, S.; Orecchioni, A.; D’Egidio, A.; D’Ippoliti, F.; Raffone, C.; et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: A randomized clinical trial. JAMA 2013, 310, 1683–1691. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q.; Nie, X.; Guo, J.; Yang, C. Combination therapy with milrinone and esmolol for heart protection in patients with severe sepsis: A prospective, randomized trial. Clin. Drug Investig. 2015, 35, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016, 2016, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Gul, R.; Alsalman, N.; Bazighifan, A.; Alfadda, A.A. Comparative beneficial effects of nebivolol and nebivolol/valsartan combination against mitochondrial dysfunction in angiotensin II-induced pathology in H9c2 cardiomyoblasts. J. Pharm. Pharmacol. 2021, 73, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Gul, R.; Alsalman, N.; Alfadda, A.A. Inhibition of eNOS Partially Blunts the Beneficial Effects of Nebivolol on Angiotensin II-Induced Signaling in H9c2 Cardiomyoblasts. Curr. Issues Mol. Biol. 2022, 44, 2139–2152. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Shen, L. Mitochondrial proteins in heart failure: The role of deacetylation by SIRT3. Pharmacol. Res. 2021, 172, 105802. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Shkurat, T.P.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Power, A.S.; Norman, R.; Jones, T.L.M.; Hickey, A.J.; Ward, M.L. Mitochondrial function remains impaired in the hypertrophied right ventricle of pulmonary hypertensive rats following short duration metoprolol treatment. PLoS ONE 2019, 14, e0214740. [Google Scholar] [CrossRef]
- Shaver, C.M.; Chen, W.; Janz, D.R.; May, A.K.; Darbar, D.; Bernard, G.R.; Bastarache, J.A.; Ware, L.B. Atrial Fibrillation Is an Independent Predictor of Mortality in Critically Ill Patients. Crit. Care Med. 2015, 43, 2104–2111. [Google Scholar] [CrossRef]
- Salman, S.; Bajwa, A.; Gajic, O.; Afessa, B. Paroxysmal atrial fibrillation in critically ill patients with sepsis. J. Intensive Care Med. 2008, 23, 178–183. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer | Accession Number |
---|---|---|---|
TNF-α | CACTCAGGCATCGACATTCG | CACCGGCAAGGATTCCAA | XM_032888689 |
iNOS | CGGCCACCAGCTTCTTCA | TGCTTACAGGTCTACGTTCAAGACAT | XM_032912147 |
NF-kB | TGAGTCCCGCCCCTTCTAA | TGATGGTCCCCCCAGAGA | NM_00127671 |
PGC-1α | ACTCAGCAAGTCCTCAGTGC | TTCTGGTGCTGCAAGGAGAG | NM_031347 |
TFAM | TGTCATTGGGATTGGGCACA | AGATGCACGCACAGTCTTGA | XM_032888687 |
NRF1 | CATGGCCCTTAACAGTGAAGC | TGGTCCATGCATGAACTCCA | NM_001100708 |
MFN2 | TGTTCAGAGGCCATCGGTTC | TCCACCTGTCTGAACTTCACC | XM_008764288 |
FIS1 | GGGTTACATGGATGCCCAGA | TTTGGGCAACAGCTCCTCC | XM_032886584 |
DRP1 | ACAACAGGAGAAGAAAATGGAGTTG | TGGATTGGCTCAGGGCTTAC | NM_053655 |
OPA1 | TCTTCACTGCGGGTACACCT | TCCTTCTCCAAACGCTCCAG | XM_017597866 |
MnSOD | ACCACAGGCCTTATTCCACT | TACAACAGCTCAGCCACAGT | Y00497 |
CAT | TCCCAGAAGCCTAAGAATGCA | GCGATGATTACTGGTGAGGCT | NM_012520 |
GPx | CAGTCCACCGTGTATGCCTT | TGCCATTCTCCTGATGTCCG | NM_030826 |
β-actin | CAACGTCACACTTCATGATGGA | ATGCCCCGAGGCTCTCTT | XM_032887061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, R.; Okla, M.; Mahmood, A.; Nawaz, S.; Fallata, A.; Bazighifan, A.; Alfayez, M.; Alfadda, A.A. Comparison of the Protective Effects of Nebivolol and Metoprolol against LPS-Induced Injury in H9c2 Cardiomyoblasts. Curr. Issues Mol. Biol. 2023, 45, 9316-9327. https://doi.org/10.3390/cimb45110583
Gul R, Okla M, Mahmood A, Nawaz S, Fallata A, Bazighifan A, Alfayez M, Alfadda AA. Comparison of the Protective Effects of Nebivolol and Metoprolol against LPS-Induced Injury in H9c2 Cardiomyoblasts. Current Issues in Molecular Biology. 2023; 45(11):9316-9327. https://doi.org/10.3390/cimb45110583
Chicago/Turabian StyleGul, Rukhsana, Meshail Okla, Amer Mahmood, Shahid Nawaz, Amina Fallata, Arwa Bazighifan, Musaad Alfayez, and Assim A. Alfadda. 2023. "Comparison of the Protective Effects of Nebivolol and Metoprolol against LPS-Induced Injury in H9c2 Cardiomyoblasts" Current Issues in Molecular Biology 45, no. 11: 9316-9327. https://doi.org/10.3390/cimb45110583
APA StyleGul, R., Okla, M., Mahmood, A., Nawaz, S., Fallata, A., Bazighifan, A., Alfayez, M., & Alfadda, A. A. (2023). Comparison of the Protective Effects of Nebivolol and Metoprolol against LPS-Induced Injury in H9c2 Cardiomyoblasts. Current Issues in Molecular Biology, 45(11), 9316-9327. https://doi.org/10.3390/cimb45110583