Loss of Nf1 and Ink4a/Arf Are Associated with Sex-Dependent Growth Differences in a Mouse Model of Embryonal Rhabdomyosarcoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Histological Analysis
2.3. Derivation of Cell Lines
2.4. Generation of Orthotopic Syngeneic Allografts
2.5. Cell Growth and Vincristine Sensitivity Assays
2.6. Statistics
3. Results
3.1. Tumor-Initiating Mutations Impact Rms Development and Growth
3.2. RMS Cell Lines Are Sensitive to Vincristine Treatment In Vitro
3.3. P7NI Tumor Growth Phenotypes Are Sex Dependent
3.4. Both P7KP and P7NI Allografts Are Resistant to Vincristine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Martin-Giacalone, B.A.; Weinstein, P.A.; Plon, S.E.; Lupo, P.J. Pediatric Rhabdomyosarcoma: Epidemiology and Genetic Susceptibility. J. Clin. Med. 2021, 10, 2028. [Google Scholar] [CrossRef]
- Ognjanovic, S.; Linabery, A.M.; Charbonneau, B.; Ross, J.A. Trends in Childhood Rhabdomyosarcoma Incidence and Survival in the United States (1975–2005). Cancer 2009, 115, 4218–4226. [Google Scholar] [CrossRef]
- Siegel, D.A.; King, J.; Tai, E.; Buchanan, N.; Ajani, U.A.; Li, J. Cancer Incidence Rates and Trends among Children and Adolescents in the United States, 2001–2009. Pediatrics 2014, 134, e945–e955. [Google Scholar] [CrossRef] [PubMed]
- Skapek, S.X.; Ferrari, A.; Gupta, A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Prim. 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Altekruse, S.F.; Adamson, P.C.; Reaman, G.H.; Seibel, N.L. Declining Childhood and Adolescent Cancer Mortality. Cancer 2014, 120, 2497–2506. [Google Scholar] [CrossRef]
- Punyko, J.A.; Mertens, A.C.; Baker, K.S.; Ness, K.K.; Robison, L.L.; Gurney, J.G. Long-Term Survival Probabilities for Childhood Rhabdomyosarcoma. A Population-Based Evaluation. Cancer 2005, 103, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Stewart, E.; McEvoy, J.; Wang, H.; Chen, X.; Honnell, V.; Ocarz, M.; Gordon, B.; Dapper, J.; Blankenship, K.; Yang, Y.; et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell 2018, 34, 411–426.e19. [Google Scholar] [CrossRef]
- Lagutina, I.; Conway, S.J.; Sublett, J.; Grosveld, G.C. Pax3-FKHR Knock-in Mice Show Developmental Aberrations but Do Not Develop Tumors. Mol. Cell. Biol. 2002, 22, 7204–7216. [Google Scholar] [CrossRef]
- Keller, C.; Arenkiel, B.R.; Coffin, C.M.; El-Bardeesy, N.; DePinho, R.A.; Capecchi, M.R. Alveolar Rhabdomyosarcomas in Conditional Pax3:Fkhr Mice: Cooperativity of Ink4a/ARF and Trp53 Loss of Function. Genes Dev. 2004, 18, 2614–2626. [Google Scholar] [CrossRef]
- Shern, J.F.; Selfe, J.; Izquierdo, E.; Patidar, R.; Chou, H.-C.; Song, Y.K.; Yohe, M.E.; Sindiri, S.; Wei, J.; Wen, X.; et al. Genomic Classification and Clinical Outcome in Rhabdomyosarcoma: A Report From an International Consortium. JCO 2021, 39, 2859–2871. [Google Scholar] [CrossRef]
- Sharp, R.; Recio, J.A.; Jhappan, C.; Otsuka, T.; Liu, S.; Yu, Y.; Liu, W.; Anver, M.; Navid, F.; Helman, L.J.; et al. Synergism between INK4a/ARF Inactivation and Aberrant HGF/SF Signaling in Rhabdomyosarcomagenesis. Nat. Med. 2002, 8, 1276–1280. [Google Scholar] [CrossRef] [PubMed]
- Nanni, P.; Nicoletti, G.; De Giovanni, C.; Croci, S.; Astolfi, A.; Landuzzi, L.; Di Carlo, E.; Iezzi, M.; Musiani, P.; Lollini, P.-L. Development of Rhabdomyosarcoma in HER-2/Neu Transgenic P53 Mutant Mice. Cancer Res. 2003, 63, 2728–2732. [Google Scholar] [PubMed]
- Blum, J.M.; Añó, L.; Li, Z.; Van Mater, D.; Bennett, B.D.; Sachdeva, M.; Lagutina, I.; Zhang, M.; Mito, J.K.; Dodd, L.G.; et al. Distinct and Overlapping Sarcoma Subtypes Initiated from Muscle Stem and Progenitor Cells. Cell Rep. 2013, 5, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Van Mater, D.; Añó, L.; Blum, J.M.; Webster, M.T.; Huang, W.; Williams, N.; Ma, Y.; Cardona, D.M.; Fan, C.-M.; Kirsch, D.G. Acute Tissue Injury Activates Satellite Cells and Promotes Sarcoma Formation via the HGF/c-MET Signaling Pathway. Cancer Res. 2015, 75, 605–614. [Google Scholar] [CrossRef]
- Dodd, R.D.; Añó, L.; Blum, J.M.; Li, Z.; Van Mater, D.; Kirsch, D.G. Methods to Generate Genetically Engineered Mouse Models of Soft Tissue Sarcoma. Methods Mol. Biol. 2015, 1267, 283–295. [Google Scholar] [CrossRef]
- Mater, D.V.; Xu, E.; Reddy, A.; Añó, L.; Sachdeva, M.; Huang, W.; Williams, N.; Ma, Y.; Love, C.; Happ, L.; et al. Injury Promotes Sarcoma Development in a Genetically and Temporally Restricted Manner. JCI Insight 2018, 3, e123687. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, W.R.; Scherer, A.; McGivney, G.R.; Brockman, Q.R.; Knepper-Adrian, V.; Laverty, E.A.; Roughton, G.A.; Dodd, R.D. Divergent Immune Landscapes of Primary and Syngeneic Kras-Driven Mouse Tumor Models. Sci. Rep. 2021, 11, 1098. [Google Scholar] [CrossRef]
- Fleischmann, A.; Jochum, W.; Eferl, R.; Witowsky, J.; Wagner, E.F. Rhabdomyosarcoma Development in Mice Lacking Trp53 and Fos: Tumor Suppression by the Fos Protooncogene. Cancer Cell 2003, 4, 477–482. [Google Scholar] [CrossRef]
- Hatley, M.E.; Tang, W.; Garcia, M.R.; Finkelstein, D.; Millay, D.P.; Liu, N.; Graff, J.; Galindo, R.L.; Olson, E.N. A Mouse Model of Rhabdomyosarcoma Originating from the Adipocyte Lineage. Cancer Cell 2012, 22, 536–546. [Google Scholar] [CrossRef]
- Comiskey Jr, D.F.; Jacob, A.G.; Sanford, B.L.; Montes, M.; Goodwin, A.K.; Steiner, H.; Matsa, E.; Tapia-Santos, A.S.; Bebee, T.W.; Grieves, J.; et al. A Novel Mouse Model of Rhabdomyosarcoma Underscores the Dichotomy of MDM2-ALT1 Function in Vivo. Oncogene 2018, 37, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Ragab, N.; Bauer, J.; Botermann, D.S.; Uhmann, A.; Hahn, H. Oncogenic NRAS Accelerates Rhabdomyosarcoma Formation When Occurring within a Specific Time Frame during Tumor Development in Mice. Int. J. Mol. Sci. 2021, 22, 13377. [Google Scholar] [CrossRef]
- Nakahata, K.; Simons, B.W.; Pozzo, E.; Shuck, R.; Kurenbekova, L.; Prudowsky, Z.; Dholakia, K.; Coarfa, C.; Patel, T.D.; Donehower, L.A.; et al. K-Ras and P53 Mouse Model with Molecular Characteristics of Human Rhabdomyosarcoma and Translational Applications. Dis. Model. Mech. 2022, 15, dmm049004. [Google Scholar] [CrossRef] [PubMed]
- Shern, J.F.; Chen, L.; Chmielecki, J.; Wei, J.S.; Patidar, R.; Rosenberg, M.; Ambrogio, L.; Auclair, D.; Wang, J.; Song, Y.K.; et al. Comprehensive Genomic Analysis of Rhabdomyosarcoma Reveals a Landscape of Alterations Affecting a Common Genetic Axis in Fusion-Positive and Fusion-Negative Tumors. Cancer Discov. 2014, 4, 216–231. [Google Scholar] [CrossRef]
- Li, H.; Sisoudiya, S.D.; Martin-Giacalone, B.A.; Khayat, M.M.; Dugan-Perez, S.; Marquez-Do, D.A.; Scheurer, M.E.; Muzny, D.; Boerwinkle, E.; Gibbs, R.A.; et al. Germline Cancer Predisposition Variants in Pediatric Rhabdomyosarcoma: A Report From the Children’s Oncology Group. J. Natl. Cancer Inst. 2021, 113, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Dodd, R.D.; Mito, J.K.; Eward, W.C.; Chitalia, R.; Sachdeva, M.; Ma, Y.; Barretina, J.; Dodd, L.; Kirsch, D.G. NF1 Deletion Generates Multiple Subtypes of Soft-Tissue Sarcoma That Respond to MEK Inhibition. Mol. Cancer Ther. 2013, 12, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Lepper, C.; Conway, S.J.; Fan, C.-M. Adult Satellite Cells and Embryonic Muscle Progenitors Have Distinct Genetic Requirements. Nature 2009, 460, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, W.R.; Scherer, A.; Rytlewski, J.D.; Laverty, E.A.; Sheehan, A.P.; McGivney, G.R.; Brockman, Q.R.; Knepper-Adrian, V.; Roughton, G.A.; Quelle, D.E.; et al. Augmenting Chemotherapy with Low-Dose Decitabine through an Immune-Independent Mechanism. JCI Insight 2022, 7, e159419. [Google Scholar] [CrossRef]
- Harrison, S.D. An Investigation of the Mouse as a Model for Vincristine Toxicity. Cancer Chemother. Pharmacol. 1983, 11, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, P.; Missiaglia, E.; Shipley, J.; Anderson, J.R.; Triche, T.J.; Delorenzi, M.; Gastier-Foster, J.; Wing, M.; Hawkins, D.S.; Skapek, S.X. Clinical Application of Prognostic Gene Expression Signature in Fusion Gene-Negative Rhabdomyosarcoma: A Report from the Children’s Oncology Group. Clin. Cancer Res. 2015, 21, 4733–4739. [Google Scholar] [CrossRef]
- Yoon, J.W.; Lamm, M.; Chandler, C.; Iannaccone, P.; Walterhouse, D. Up-Regulation of GLI1 in Vincristine-Resistant Rhabdomyosarcoma and Ewing Sarcoma. BMC Cancer 2020, 20, 511. [Google Scholar] [CrossRef]
- Ghilu, S.; Morton, C.L.; Vaseva, A.V.; Zheng, S.; Kurmasheva, R.T.; Houghton, P.J. Approaches to Identifying Drug Resistance Mechanisms to Clinically Relevant Treatments in Childhood Rhabdomyosarcoma. Cancer Drug Resist. 2022, 5, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.A.; Richardson, M.; Kehm, R.D.; McLaughlin, C.C.; Mueller, B.A.; Chow, E.J.; Spector, L.G. The Association between Sex and Most Childhood Cancers Is Not Mediated by Birthweight. Cancer Epidemiol. 2018, 57, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, E.; Rantanen, M.; Kallionpää, R.A.; Pöyhönen, M.; Leppävirta, J.; Ylä-Outinen, H.; Riccardi, V.M.; Pukkala, E.; Pitkäniemi, J.; Peltonen, S.; et al. Distinctive Cancer Associations in Patients With Neurofibromatosis Type 1. JCO 2016, 34, 1978–1986. [Google Scholar] [CrossRef] [PubMed]
- Peltonen, S.; Kallionpää, R.A.; Rantanen, M.; Uusitalo, E.; Lähteenmäki, P.M.; Pöyhönen, M.; Pitkäniemi, J.; Peltonen, J. Pediatric Malignancies in Neurofibromatosis Type 1: A Population-Based Cohort Study. Int. J. Cancer 2019, 145, 2926–2932. [Google Scholar] [CrossRef] [Green Version]
KRIMS-3 (F) | ||||
Sex | Initiated | Regressed | Reached 3× | Treatment |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M Total | 4/4 | 0/4 | 4/4 | 2:2 |
F | Yes | No | Yes | PBS |
F | Yes | No | Yes | PBS |
F | Yes | No | Yes | PBS |
F | Yes | No | Yes | PBS |
F | Yes | No | Yes | VCR |
F | Yes | No | Yes | VCR |
F | Yes | No | Yes | VCR |
F | Yes | No | Yes | VCR |
F Total | 8/8 | 0/8 | 8/8 | 4:4 |
NIMS-1 (F) | ||||
Sex | Initiated | Regressed | Reached 3× | Treatment |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M Total | 12/12 | 0/12 | 12/12 | 6:6 |
F | Yes | No | Yes | PBS |
F | Yes | No | Yes | PBS |
F | Yes | Yes | Yes | PBS |
F | Yes | Yes | No | PBS |
F | Yes | No | Yes | VCR |
F | Yes | No | Yes | VCR |
F | Yes | No | Yes | VCR |
F | Yes | Yes | No | VCR |
F | No | - | - | - |
F Total | 8/9 | 3/8 | 6/8 | 4:4 |
NIMS-2 (M) | ||||
Sex | Initiated | Regressed | Reached 3× | Treatment |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | PBS |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M | Yes | No | Yes | VCR |
M Total | 13/13 | 0/13 | 13/13 | 6:7 |
F | Yes | No | Yes | PBS |
F | Yes | No | Yes | PBS |
F | Yes | No | Yes | PBS |
F | Yes | No | Yes | VCR |
F | Yes | No | Yes | VCR |
F | Yes | Yes | No | VCR |
F | No | - | - | - |
F | No | - | - | - |
F | No | - | - | - |
F | No | - | - | - |
F Total | 6/10 | 1/6 | 5/6 | 3:3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, W.R.; Rytlewski, J.D.; Scherer, A.; Roughton, G.A.; Carnevale, N.C.; Vyas, K.Y.; McGivney, G.R.; Brockman, Q.R.; Knepper-Adrian, V.; Dodd, R.D. Loss of Nf1 and Ink4a/Arf Are Associated with Sex-Dependent Growth Differences in a Mouse Model of Embryonal Rhabdomyosarcoma. Curr. Issues Mol. Biol. 2023, 45, 1218-1232. https://doi.org/10.3390/cimb45020080
Gutierrez WR, Rytlewski JD, Scherer A, Roughton GA, Carnevale NC, Vyas KY, McGivney GR, Brockman QR, Knepper-Adrian V, Dodd RD. Loss of Nf1 and Ink4a/Arf Are Associated with Sex-Dependent Growth Differences in a Mouse Model of Embryonal Rhabdomyosarcoma. Current Issues in Molecular Biology. 2023; 45(2):1218-1232. https://doi.org/10.3390/cimb45020080
Chicago/Turabian StyleGutierrez, Wade R., Jeffrey D. Rytlewski, Amanda Scherer, Grace A. Roughton, Nina C. Carnevale, Krisha Y. Vyas, Gavin R. McGivney, Qierra R. Brockman, Vickie Knepper-Adrian, and Rebecca D. Dodd. 2023. "Loss of Nf1 and Ink4a/Arf Are Associated with Sex-Dependent Growth Differences in a Mouse Model of Embryonal Rhabdomyosarcoma" Current Issues in Molecular Biology 45, no. 2: 1218-1232. https://doi.org/10.3390/cimb45020080
APA StyleGutierrez, W. R., Rytlewski, J. D., Scherer, A., Roughton, G. A., Carnevale, N. C., Vyas, K. Y., McGivney, G. R., Brockman, Q. R., Knepper-Adrian, V., & Dodd, R. D. (2023). Loss of Nf1 and Ink4a/Arf Are Associated with Sex-Dependent Growth Differences in a Mouse Model of Embryonal Rhabdomyosarcoma. Current Issues in Molecular Biology, 45(2), 1218-1232. https://doi.org/10.3390/cimb45020080