Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review
Abstract
:1. Introduction
2. Role of ADAM Family Proteins in Gastrointestinal Tumors
2.1. Esophageal Squamous Cell Carcinoma (ESCC) and ADAM9, 12, 17
2.2. Gastric Cancer (GC) and ADAM 8, 9, 10, 12, 15, 17, 33
2.3. Pancreatic Cancer (PC) and ADAM 8, 9, 10, 17
2.4. Hepatocellular Cancer (HCC) and ADAM 8, 9, 10, 12, 15, 17, 28
2.5. Colorectal Cancer (CRC) and ADAM 8, 9, 10, 12, 15, 17, 28
3. Role of Selected microRNAs in Gastrointestinal Cancers
3.1. ESCC and miR-126
3.2. GC and miR-126, miR-320
3.3. PC and miR-126, miR-328
3.4. HCC and miR-145, miR-224, miR-3163
3.5. CRC and miR-143, miR-145, miR-195-5p, miR-17,miR-19, miR-20, miR-9, miR-497-5p, miR-217, miR-182, miR-135b, miR-125a-3p, miR-198
4. Role of miRNA/ADAM Protein Axes in Gastrointestinal Cancers
4.1. ESCC and miR-126/ADAM9
4.2. GC and miR-126, miR-129-5p/ADAM9, miR-338-3p/ADAM17, miR-320a/ADAM10
4.3. PC and miR-126/ADAM9, miR-328/ADAM8
4.4. HCC and miR-122, 145, 3136/ADAM17, miR-203, 1274-a/ADAM9
4.5. CRC and miR-30c/ADAM19, miR-198/ADAM28, miR-20b/ADAM9
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACBP-3 | Anticancer bioactive peptide-3 |
ADAM | A disintegrin and metalloproteinase |
ADAMTS | ADAM with trombospodin motif |
Akt | Protein kinase B |
AR | Androgen receptor |
ARF6 | ADP Ribosylation Factor 6 |
BDKRB2 | Bradykinin Receptor B2 |
CADM1 | Cell Adhesion Molecule 1 |
CEA | Carcinoembryonic antigen |
COL1A1 | Collagen Type XI Alpha 1 Chain |
COL11A1 | Collagen Type XI Alpha 1 Chain |
COL12A1 | Collagen Type XI Alpha 1 Chain |
CRC | Colorectal cancer |
CRK | CRK proto-oncogene |
CRKL | CRK-like proto-oncogene |
ECM | Cell–extracellular matrix |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
EMT | Epithelial–mesenchymal transition |
ERK | Extracellular signal-related kinase |
ESCC | Esophageal squamous cell carcinoma |
ESR1 | Estrogen Receptor 1 |
FOXM1 | Forkhead Box M1 |
FSCN1 | Fascin Actin-Bundling Protein 1 |
GC | Gastric cancer |
GI cancers | Gastrointestinal cancers |
GOLPH3 | Golgi Phosphoprotein 3 |
H. pylori | Helicobacter pylori bacteria |
HCC | Hepatocellular cancer |
HIF-1α | Hypoxia-inducible factor |
HMGB1 | High-mobility group protein B1 |
HOTAIR | HOX antisense intergenic RNA |
HOXC10 | Homeobox C10 |
ICAM-1 | Intercellular Adhesion Molecule 1 |
IGFs | Insulin growth factors |
IGFBP-3 | Insulin growth factor binding protein-3 |
IL | Interleukin |
IRS-1 | Insulin Receptor Substrate 1 |
JAK-STAT pathway | Janus kinase—signal transducer and activator of transcription protein pathway |
KRAS | Kirsten rat sarcoma virus is a gene that provides instructions for making a protein called K-Ras |
KLF5 | Krüppel-like factor 5 |
LATS-1 | Large Tumor Suppressor Kinase 1 |
LRP6 | LDL Receptor-Related Protein 6 |
MACC1 | MET Transcriptional Regulator MACC1 |
MAPK1 | Mitogen-Activated Protein Kinase 1 |
MET | MET Proto-Oncogene, Receptor Tyrosine Kinase |
mRNA | Messenger RNA |
miRNA = microRNA = miR | Small non-coding RNA molecule |
NF-κB | Nuclear factor kappa light-chain-enhancer of activated B cells |
NRP1 | Neuropilin 1 |
OS | Overall survival |
P-REX2a | Phosphatidylinositol 3,4,5-trisphosphate RAC exchanger 2a |
PC | Pancreatic cancer |
PFS | Progression-free survival |
PI3KR2 | Phosphoinositide-3-Kinase Regulatory Subunit 2 is a Protein Coding gene |
PTEN | Phosphatase and Tensin Homolog |
PTPN9 | Protein Tyrosine Phosphatase Non-Receptor Type 9 |
ROCK1 | Rho-Associated Coiled Coil Containing Protein Kinase 1 |
SAE1 | SUMO1 Activating Enzyme Subunit 1 |
SMAD4 | SMAD Family Member 4 |
Sox2 | SRY-Box Transcription Factor 2 |
SOX5 | SRY-box transcription factor 5 |
SPOCK1 | SPARC (Osteonectin), Cwcv And Kazal-Like Domains Proteoglycan1 |
SPRED1 | Sprouty-Related EVH1 Domain Containing 1 |
SRPK1 | Serine-arginine protein kinase 1 |
SSX2IP | Synovial Sarcoma X breakpoint 2 Interacting Protein |
STAT3 | Signal transducer and activator of transcription 3 |
TGF-β | Transforming growth factor beta) |
TLR4 | Toll-like receptor 4 |
TM4SF3 | Transmembrane-4-l-six-family-3 |
TNF-α | Tumor necrosis factor alfa |
TNM | Tumor, nodules, metastases scale |
VEGF | Vascular endothelial growth factor |
WWP1 | WW domain-containing E3 ubiquitin protein ligase 1 |
Yes-1 | Yamaguchi sarcoma viral oncogene homolog1 |
ZEB2 | Zinc Finger E-Box Binding Homeobox 2 |
References
- Bordry, N.; Astaras, C.; Ongaro, M.; Goossens, N.; Frossard, J.L.; Koessler, T. Recent advances in gastrointestinal cancers. World J. Gastroenterol. 2021, 27, 4493–4503. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.iarc.who.int/ (accessed on 10 September 2022).
- Sonnenberg, W.R. Gastrointestinal Malignancies. Prim. Care Clin. Off. Pract. 2017, 44, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Przemyslaw, L.; Boguslaw, H.A.; Elzbieta, S.; Malgorzata, S.M. ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis. BMB Rep. 2013, 46, 139–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora-Skrabaka, M.; Walkiewicz, K.; Nowakowska-Zajdel, E. Adamalizyny jako potencjalne biomarkery w wybranych nowotworach złośliwych przewodu pokarmowego. Postep. Hig. I Med. Dosw. 2021, 75, 674–682. [Google Scholar] [CrossRef]
- Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front. Immunol. 2018, 9, 444. [Google Scholar] [CrossRef]
- Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S.; et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997, 385, 729–733. [Google Scholar] [CrossRef]
- Arai, J.; Goto, K.; Tanoue, Y.; Ito, S.; Muroyama, R.; Matsubara, Y.; Nakagawa, R.; Kaise, Y.; Lim, L.A.; Yoshida, H.; et al. Enzymatic inhibition of MICA sheddase ADAM17 by lomofungin in hepatocellular carcinoma cells. Int. J. Cancer 2018, 143, 2575–2583. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, H.; Mochizuki, S.; Shimoda, M.; Chijiiwa, M.; Kamiya, K.; Izumi, Y.; Watanabe, M.; Horinouchi, H.; Kawamura, M.; Kobayashi, K.; et al. ADAM28 is a serological and histochemical marker for non-small-cell lung cancers. Int. J. Cancer 2010, 127, 1844–1856. [Google Scholar] [CrossRef]
- Valkovskaya, N.; Kayed, H.; Felix, K.; Hartmann, D.; Giese, N.A.; Osinsky, S.P.; Friess, H.; Kleeff, J. ADAM8 expression is associated with increased invasiveness and reduced patient survival in pancreatic cancer. J. Cell. Mol. Med. 2007, 11, 1162–1174. [Google Scholar] [CrossRef] [Green Version]
- Rocks, N.; Paulissen, G.; El Hour, M.; Quesada, F.; Crahay, C.; Gueders, M.; Foidart, J.M.; Noel, A.; Cataldo, D. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 2008, 90, 369–379. [Google Scholar] [CrossRef]
- Liu, H.B.; Yang, Q.C.; Shen, Y.; Zhu, Y.; Zhang, X.J.; Chen, H. A disintegrin and metalloproteinase 17 mRNA and protein expression in esophageal squamous cell carcinoma, as well as its clinicopathological factors and prognosis. Mol. Med. Rep. 2015, 11, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Zadka, L.; Kulus, M.J.; Piatek, K. ADAM Protein Family—Its Role in Tumorigenesis, Mechanisms of Chemoresistance and Potential as Diagnostic and Prognostic Factors. Neoplasma 2018, 65, 823–839. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, S.; Okada, Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 2007, 98, 621–628. [Google Scholar] [CrossRef]
- Al-Akhrass, H.; Christou, N. The Clinical Assessment of MicroRNA Diagnostic, Prognostic, and Theranostic Value in Colorectal Cancer. Cancers 2021, 13, 2916. [Google Scholar] [CrossRef]
- Plotnikova, O.; Baranova, A.; Skoblov, M. Comprehensive Analysis of Human microRNA–mRNA Interactome. Front. Genet. 2019, 10, 933. [Google Scholar] [CrossRef]
- Bhinge, A.; Poschmann, J.; Namboori, S.C.; Tian, X.; Jia Hui Loh, S.; Traczyk, A.; Prabhakar, S.; Stanton, L.W. MiR-135b is a direct PAX6 target and specifies human neuroectoderm by inhibiting TGF-β/BMP signaling. EMBO J. 2014, 33, 1271–1283. [Google Scholar] [CrossRef] [Green Version]
- Forterre, A.; Komuro, H.; Aminova, S.; Harada, M. A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers 2020, 12, 1852. [Google Scholar] [CrossRef]
- Qu, Z.; Li, W.; Fu, B. MicroRNAs in Autoimmune Diseases. BioMed Res. Int. 2014, 2014, 527895. [Google Scholar] [CrossRef] [Green Version]
- Link, A.; Balaguer, F.; Shen, Y.; Nagasaka, T.; Lozano, J.J.; Boland, C.R.; Goel, A. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1766–1774. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [Green Version]
- Acunzo, M.; Romano, G.; Wernicke, D.; Croce, C.M. MicroRNA and cancer—A brief overview. Adv. Biol. Regul. 2015, 57, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ran, Y.L.; Hu, H.; Pan, J.; Li, Z.F.; Chen, L.Z.; Sun, L.C.; Peng, L.; Zhao, X.L.; Yu, L.; et al. TM4SF3 Promotes Esophageal Carcinoma Metastasis via Upregulating ADAM12m Expression. Clin. Exp. Metastasis 2008, 25, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.B.; Zhu, Y.; Yang, Q.C.; Shen, Y.; Zhang, X.J.; Chen, H. Expression and Clinical Significance of ADAM17 Protein in Esophageal Squamous Cell Carcinoma. Genet. Mol. Res. 2015, 14, 4391–4398. [Google Scholar] [CrossRef] [PubMed]
- Lo, P.H.Y.; Lung, H.L.; Cheung, A.K.L.; Apte, S.S.; Chan, K.W.; Kwong, F.M.; Ko, J.M.Y.; Cheng, Y.; Law, S.; Srivastava, G.; et al. Extracellular Protease ADAMTS9 Suppresses Esophageal and Nasopharyngeal Carcinoma Tumor Formation by Inhibiting Angiogenesis. Cancer Res. 2010, 70, 5567–5576. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-S.; Kuo, T.-T.; Lo, C.-C.; Cheng, W.-C.; Chang, W.-C.; Tseng, G.-C.; Bai, S.-T.; Huang, Y.-K.; Hsieh, C.-Y.; Hsu, H.-S.; et al. ADAM9 functions as a transcriptional regulator to drive angiogenesis in esophageal squamous cell carcinoma. Int. J. Biol. Sci. 2021, 17, 3898–3910. [Google Scholar] [CrossRef]
- Yoshimura, T.; Tomita, T.; Dixon, M.F.; Axon, A.T.R.; Robinson, P.A.; Crabtree, J.E. ADAMs. (A Disintegrin and Metalloproteinase) Messenger RNA Expression in Helicobacter Pylori –Infected, Normal, and Neoplastic Gastric Mucosa. J. Infect. Dis. 2002, 185, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, D.; Sun, X.; Zhang, Y.; Wang, L.; Suo, J. ADAM17 Promotes Lymph Node Metastasis in Gastric Cancer via Activation of the Notch and Wnt Signaling Pathways. Int. J. Mol. Med. 2019, 43, 914–926. [Google Scholar] [CrossRef] [Green Version]
- Ebi, M.; Kataoka, H.; Shimura, T.; Kubota, E.; Hirata, Y.; Mizushima, T.; Mizoshita, T.; Tanaka, M.; Mabuchi, M.; Tsukamoto, H.; et al. TGFβ Induces ProHB-EGF Shedding and EGFR Transactivation through ADAM Activation in Gastric Cancer Cells. Biochem. Biophys. Res. Commun. 2010, 402, 449–454. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ye, Z.Y.; Li, L.; Zhao, Z.S.; Shao, Q.S.; Tao, H.Q. ADAM 10 Is Associated with Gastric Cancer Progression and Prognosis of Patients. J. Surg. Oncol. 2011, 103, 116–123. [Google Scholar] [CrossRef]
- Zhang, T.C.; Zhu, W.G.; Huang, M.D.; Fan, R.H.; Chen, X.F. Prognostic Value of ADAM17 in Human Gastric Cancer. Med. Oncol. 2012, 29, 2684–2690. [Google Scholar] [CrossRef]
- Shou, Z.X.; Jin, X.; Zhao, Z.S. Upregulated Expression of ADAM17 Is a Prognostic Marker for Patients with Gastric Cancer. Ann. Surg. 2012, 256, 1014–1022. [Google Scholar] [CrossRef]
- Carl-McGrath, S.; Lendeckel, U.; Ebert, M.; Roessner, A.; Röcken, C. The Disintegrin- Metalloproteinases ADAM9, ADAM12, and ADAM15 Are Upregulated in Gastric Cancer. Int. J. Oncol. 2005, 26, 17–24. [Google Scholar] [CrossRef]
- Huang, J.; Bai, Y.; Huo, L.; Xiao, J.; Fan, X.; Yang, Z.; Chen, H.; Yang, Z. Upregulation of a Disintegrin and Metalloprotease 8 Is Associated with Progression and Prognosis of Patients with Gastric Cancer. Transl. Res. 2015, 166, 602–613. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Fei, X.; Chen, X.; Yan, J.; Liu, B.; Zhu, Z. ADAM9 Functions as a Promoter of Gastric Cancer Growth Which Is Negatively and Post-Transcriptionally Regulated by MiR-126. Oncol. Rep. 2017, 37, 2033–2040. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-E.; Song, H.; Hahm, C.; Yoon, S.Y.; Park, S.; Lee, H.; Hur, D.Y.; Kim, T.; Kim, C.; Bang, S.I.; et al. Expression of ADAM33 Is a Novel Regulatory Mechanism in IL-18-Secreted Process in Gastric Cancer. J. Immunol. 2009, 182, 3548–3555. [Google Scholar] [CrossRef] [Green Version]
- Ringel, J.; Jesnowski, R.; Moniaux, N.; Lüttges, J.; Ringel, J.; Choudhury, A.; Batra, S.K.; Klöppel, G.; Löhr, M. Aberrant Expression of a Disintegrin and Metalloproteinase 17/Tumor Necrosis Factor-α Converting Enzyme Increases the Malignant Potential in Human Pancreatic Ductal Adenocarcinoma. Cancer Res. 2006, 66, 9045–9053. [Google Scholar] [CrossRef] [Green Version]
- Gaida, M.M.; Haag, N.; Günther, F.; Tschaharganeh, D.F.; Schirmacher, P.; Friess, H.; Giese, N.A.; Schmidt, J.; Wente, M.N. Expression of A Disintegrin and Metalloprotease 10 in Pancreatic Carcinoma. Int. J. Mol. Med. 2010, 26, 281–288. [Google Scholar]
- Oria, V.O.; Lopatta, P.; Schmitz, T.; Preca, B.T.; Nyström, A.; Conrad, C.; Bartsch, J.W.; Kulemann, B.; Hoeppner, J.; Maurer, J.; et al. ADAM9 Contributes to Vascular Invasion in Pancreatic Ductal Adenocarcinoma. Mol. Oncol. 2019, 13, 456–479. [Google Scholar] [CrossRef]
- Valkovskaya, N.V. Hypoxia-Dependent Expression of ADAM8 in Human Pancreatic Cancer Cell Lines. Exp. Oncol. 2008, 30, 129–132. [Google Scholar]
- Théret, N.; Bouezzedine, F.; Azar, F.; Diab-Assaf, M.; Legagneux, V. ADAM and ADAMTS Proteins, New Players in the Regulation of Hepatocellular Carcinoma Microenvironment. Cancers 2021, 13, 1563. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Y.; Yu, H.F.; Yu, X.T.; Zhou, S.J.; Tan, Y.F. Expression of ADAM8 and Its Clinical Values in Diagnosis and Prognosis of Hepatocellular Carcinoma. Tumour Biol. 2012, 33, 2167–2172. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.S.; Qian, N.S.; Tang, Y.; Ti, Z.; Song, W.J.; Cao, D.Y.; Dou, K.F. Increased Expression of a Disintegrin and Metalloprotease-9 in Hepatocellular Carcinoma: Implications for Tumor Progression and Prognosis. Jpn. J. Clin. Oncol. 2010, 40, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, S.; Liu, K.; Wang, Y.; Ji, B.; Zhang, X.; Liu, Y. A Disintegrin and Metalloprotease (ADAM)10 Is Highly Expressed in Hepatocellular Carcinoma and Is Associated with Tumour Progression. J. Int. Med. Res. 2014, 42, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Le Pabic, H.; Bonnier, D.; Wewer, U.M.; Coutand, A.; Musso, O.; Baffet, G.; Clément, B.; Théret, N. ADAM12 in Human Liver Cancers: TGF-β-Regulated Expression in Stellate Cells Is Associated with Matrix Remodeling. Hepatology 2003, 37, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yang, L.Y.; Huang, G.W.; Wang, W.; Lu, W.Q. ADAM17 MRNA Expression and Pathological Features of Hepatocellular Carcinoma. World J. Gastroenterol. 2004, 10, 2735. [Google Scholar] [CrossRef]
- Awan, T.; Babendreyer, A.; Mahmood Alvi, A.; Düsterhöft, S.; Lambertz, D.; Bartsch, J.W.; Liedtke, C.; Ludwig, A. Expression Levels of the Metalloproteinase ADAM8 Critically Regulate Proliferation, Migration and Malignant Signalling Events in Hepatoma Cells. J. Cell. Mol. Med. 2021, 25, 1982–1999. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, Z.; He, M.; Chen, Y.; Chen, Y.; Shen, X.; Zhao, X.; Zhang, L.; Yuan, B.; Zeng, Z. ADAM9 Mediates the Interleukin-6-Induced Epithelial-Mesenchymal Transition and Metastasis through ROS Production in Hepatoma Cells. Cancer Lett. 2018, 421, 1–14. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, W.; Liu, K.; Ji, B.; Wang, G. Silencing ADAM10 Inhibits the in Vitro and in Vivo Growth of Hepatocellular Carcinoma Cancer Cells. Mol. Med. Rep. 2015, 11, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, Y.; Tsung, A.; Huang, H.; Du, Q.; Yang, M.; Deng, M.; Xiong, S.; Wang, X.; Zhang, L.; et al. INOS Promotes CD24+CD133+ Liver Cancer Stem Cell Phenotype through a TACE/ADAM17-Dependent Notch Signaling Pathway. Proc. Natl. Acad. Sci. USA 2018, 115, E10127–E10136. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.H.; Guan, Y.J.; Zhang, Y.C.; Qiu, Z.D.; Zhou, Y.; Chen, C.; Yu, J.; Wang, W.X. ADAM15 Correlates with Prognosis, Immune Infiltration and Apoptosis in Hepatocellular Carcinoma. Aging 2021, 13, 20395. [Google Scholar] [CrossRef]
- Dempsey, P.J. Role of ADAM10 in Intestinal Crypt Homeostasis and Tumorigenesis. Biochim. Biophys. Acta-Mol. Cell. Res. 2017, 1864, 2228–2239. [Google Scholar] [CrossRef]
- Blanchot-Jossic, F.; Jarry, A.; Masson, D.; Bach-Ngohou, K.; Paineau, J.; Denis, M.G.; Laboisse, C.L.; Mosnier, J.F. Up-Regulated Expression of ADAM17 in Human Colon Carcinoma: Co- Expression with EGFR in Neoplastic and Endothelial Cells. J. Pathol. 2005, 207, 156–163. [Google Scholar] [CrossRef]
- Das, S.; Czarnek, M.; Bzowska, M.; Mężyk-Kopeć, R.; Stalińska, K.; Wyroba, B.; Sroka, J.; Jucha, J.; Deneka, D.; Stokłosa, P.; et al. ADAM17 Silencing in Mouse Colon Carcinoma Cells: The Effect on Tumoricidal Cytokines and Angiogenesis. PLoS ONE 2012, 7, e50791. [Google Scholar] [CrossRef]
- Walkiewicz, K.; Strzelczyk, J.; Waniczek, D.; Biernacki, K.; Muc-Wierzgoń, M.; Copija, A.; Nowakowska-Zajdel, E. Adamalysines as Biomarkers and a Potential Target of Therapy in Colorectal Cancer Patients: Preliminary Results. Dis. Markers 2019, 2019, 5035234. [Google Scholar] [CrossRef]
- Walkiewicz, M.; Nowakowska-Zajdel, K.W.; Waniczek, E.; Strzelczyk, D.; Giordano, G.; Parcesepe, P.; Sikora-Skrabaka, M.; Weronika Walkiewicz, K.; Nowakowska-Zajdel, E.; Waniczek, D.; et al. ADAM10 and ADAM17 as Biomarkers Linked to Inflammation, Metabolic Disorders and Colorectal Cancer. Curr. Issues Mol. Biol. 2022, 44, 4517–4527. [Google Scholar]
- Walkiewicz, K.; Nowakowska-Zajdel, E.; Kozieł, P.; Muc-Wierzgoń, M. The Role of Some ADAM-Proteins and Activation of the Insulin Growth Factor-Related Pathway in Colorectal Cancer. Cent. Eur. J. Immunol. 2018, 43, 109–113. [Google Scholar] [CrossRef]
- Yang, Z.; Bai, Y.; Huo, L.; Chen, H.; Huang, J.; Li, J.; Fan, X.; Yang, Z.; Wang, L.; Wang, J. Expression of A Disintegrin and Metalloprotease 8 Is Associated with Cell Growth and Poor Survival in Colorectal Cancer. BMC Cancer 2014, 14, 568. [Google Scholar] [CrossRef] [Green Version]
- Hirao, T.; Nanba, D.; Tanaka, M.; Ishiguro, H.; Kinugasa, Y.; Doki, Y.; Yano, M.; Matsuura, N.; Monden, M.; Higashiyama, S. Overexpression of ADAM9 Enhances Growth Factor-Mediated Recycling of E-Cadherin in Human Colon Cancer Cell Line HT29 Cells. Exp. Cell. Res. 2006, 312, 331–339. [Google Scholar] [CrossRef]
- Toquet, C.; Colson, A.; Jarry, A.; Bezieau, S.; Volteau, C.; Boisseau, P.; Merlin, D.; Laboisse, C.L.; Mosnier, J.F. ADAM15 to A5β1 Integrin Switch in Colon Carcinoma Cells: A Late Event in Cancer Progression Associated with Tumor Dedifferentiation and Poor Prognosis. Int. J. Cancer 2012, 130, 278–287. [Google Scholar] [CrossRef]
- Cui, D.; Cheung, A.L. Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma. World J. Clin. Oncol. 2021, 12, 609–622. [Google Scholar] [CrossRef]
- Li, H.; Meng, F.; Ma, J.; Yu, Y.; Hua, X.; Qin, J.; Li, Y. Insulin receptor substrate-1 and Golgi phosphoprotein 3 are downstream targets of miR-126 in esophageal squamous cell carcinoma. Oncol. Rep. 2014, 32, 1225–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Z.C.; Weng, W.H.; Shang, Y.S.; Long, Y.; Li, J.; Xu, Y.T.; Li, Z. MicroRNA-126 is down-regulated in human esophageal squamous cell carcinoma and inhibits the proliferation and migration in EC109 cell via PI3K/AKT signaling pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 4745–4754. [Google Scholar] [PubMed]
- Zhu, J.; Li, H.; Ma, J.; Huang, H.; Qin, J.; Li, Y. PTPN9 promotes cell proliferation and invasion in Eca109 cells and is negatively regulated by microRNA-126. Oncol Lett. 2017, 14, 1419–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Meng, X.; Li, M. MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy. Aging 2020, 12, 12107–12118. [Google Scholar] [CrossRef]
- Li, B.X.; Yu, Q.; Shi, Z.L.; Li, P.; Fu, S. Circulating microRNAs in esophageal squamous cell carcinoma: Association with locoregional staging and survival. Int. J. Clin. Exp. Med. 2015, 8, 7241–7250. [Google Scholar]
- Wang, H.; Wang, G.; Tian, W.L. MiR-126 inhibits the proliferation and invasion of gastric cancer by downregulation of IGF-1R. Zhonghua Zhong Liu Za Zhi 2019, 41, 508–515. (In Chinese) [Google Scholar]
- Ouyang, J.; Song, F.; Li, H.; Yang, R.; Huang, H. miR-126 targeting GOLPH3 inhibits the epithelial-mesenchymal transition of gastric cancer BGC-823 cells and reduces cell invasion. Eur. J. Histochem. 2020, 64, 3168. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Wang, S.; Lei, Y.; Ge, Q.; Lv, N.; Zhou, X.; Chen, C. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget 2014, 5, 11873–11885. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Sah, B.K.; Beeharry, M.K.; Yuan, F.; Su, L.; Jin, X.; Yan, M.; Liu, B.; Li, C.; Zhu, Z. Dysregulation of miR-126/Crk protein axis predicts poor prognosis in gastric cancer patients. Cancer Biomark. 2018, 21, 335–343. [Google Scholar] [CrossRef]
- Li, X.; Wang, F.; Qi, Y. MiR-126 inhibits the invasion of gastric cancer cell in part by targeting Crk. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2031–2037. [Google Scholar]
- Li, Q.; Wang, G.; Wang, H. miR-126 Functions as a Tumor Suppressor by Targeting SRPK1 in Human Gastric Cancer. Oncol. Res. 2018, 26, 1345–1353. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Li, P.; Su, L.; Yu, B.; Cai, Q.; Li, J.; Yu, Y.; Liu, B.; Zhu, Z. CRKL promotes cell proliferation in gastric cancer and is negatively regulated by miR-126. Chem. Biol. Interact. 2013, 206, 230–238. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Su, L.; Li, P.; Cai, Q.; Liu, B.; Wu, W.; Zhu, Z. MicroRNA-126 inhibits cell proliferation in gastric cancer by targeting LAT-1. Biomed Pharmacother. 2015, 72, 66–73. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, R.; Zhang, T.; Dong, X. MicroRNA-126 regulates migration and invasion of gastric cancer by targeting CADM1. Int. J. Clin. Exp. Pathol. 2015, 8, 8869–8880. [Google Scholar]
- Feng, R.; Beeharry, M.K.; Lu, S.; Sah, B.K.; Yuan, F.; Yan, M.; Liu, B.; Li, C.; Zhu, Z. Down-regulated serum miR-126 is associated with aggressive progression and poor prognosis of gastric cancer. Cancer Biomark. 2018, 22, 119–126. [Google Scholar] [CrossRef]
- Feng, R.; Sah, B.K.; Li, J.; Lu, S.; Yuan, F.; Jin, X.; Yan, M.; Liu, B.; Li, C.; Zhu, Z. miR-126: An indicator of poor prognosis and recurrence in histologically lymph node-negative gastric cancer. Cancer Biomark. 2018, 23, 437–445. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Zhang, Y.; Ding, J.; Wu, K.; Fan, D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut 2010, 59, 579–585. [Google Scholar] [CrossRef]
- Yan, J.; Dang, Y.; Liu, S.; Zhang, Y.; Zhang, G. LncRNA HOTAIR promotes cisplatin resistance in gastric cancer by targeting miR-126 to activate the PI3K/AKT/MRP1 genes. Tumour Biol. 2016, 37, 16345–16355. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Liu, H.; Zhou, D.; Fu, A.; Zhang, E. MicroRNA-126 increases chemosensitivity in drug-resistant gastric cancer cells by targeting EZH2. Biochem. Biophys. Res. Commun. 2016, 479, 91–96. [Google Scholar] [CrossRef]
- Varkalaite, G.; Vaitkeviciute, E.; Inciuraite, R.; Salteniene, V.; Juzenas, S.; Petkevicius, V.; Gudaityte, R.; Mickevicius, A.; Link, A.; Kupcinskas, L.; et al. Atrophic gastritis and gastric cancer tissue miRNome analysis reveals hsa-miR-129-1 and hsa-miR-196a as potential early diagnostic biomarkers. World J. Gastroenterol. 2022, 28, 653–663. [Google Scholar] [CrossRef]
- Yang, J. Expression of MiR-129 in Patients with Gastric Cardia Adenocarcinoma and Prognostic Analysis. Clin. Lab. 2022, 1, 68. [Google Scholar] [CrossRef] [PubMed]
- Pehlevan Özel, H.; Dinç, T.; Tiryaki, R.S.; Keşküş, A.G.; Konu, Ö.; Kayilioğlu, S.I.; Coşkun, F. Targeted MicroRNA Profiling in Gastric Cancer with Clinical Assessement. Balkan J. Med. Genet. 2022, 24, 55–64. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.; Ma, Y.; Li, Z.; Tao, R.; Chen, W.; Xiong, S.; Han, X. MiR-129-5p Restrains Apatinib Resistance in Human Gastric Cancer Cells Via Downregulating HOXC10. Cancer Biother. Radiopharm. 2021, 36, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Guo, J.; Wang, J.P.; Chai, B.F. MiR-129-5p inhibits proliferation of gastric cancer cells through targeted inhibition on HMGB1 expression. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3665–3673. [Google Scholar] [PubMed]
- Wang, Q.; Yu, J. MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1. Biochem. Cell Biol. 2018, 96, 19–25. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, D.; Xie, X.; He, Y.; Lv, M.; Jiang, X. miR-129-3p inhibits NHEJ pathway by targeting SAE1 and represses gastric cancer progression. Int. J. Clin. Exp. Pathol. 2019, 12, 1539–1547. [Google Scholar]
- Ma, L.; Chen, X.; Li, C.; Cheng, R.; Gao, Z.; Meng, X.; Sun, C.; Liang, C.; Liu, Y. miR-129-5p and -3p co-target WWP1 to suppress gastric cancer proliferation and migration. J. Cell. Biochem. 2018, 120, 7527–7538. [Google Scholar] [CrossRef]
- Yan, L.; Sun, K.; Liu, Y.; Liang, J.; Cai, K.; Gui, J. MiR-129-5p influences the progression of gastric cancer cells through interacting with SPOCK1. Tumour Biol. 2017, 39, 1010428317706916. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Ge, Q.; Lin, Z.; Shen, W.; Lin, R.; Wu, J.; Wang, B.; Lu, Y.; Chen, L.; Liu, X.; et al. MiR-129-5p induces cell cycle arrest through modulating HOXC10/Cyclin D1 to inhibit gastric cancer progression. FASEB J. 2020, 34, 8544–8557. [Google Scholar] [CrossRef]
- Wang, D.; Luo, L.; Guo, J. miR-129-1-3p inhibits cell migration by targeting BDKRB2 in gastric cancer. Med. Oncol. 2014, 31, 98. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, H.; Li, Y.; Hou, Z.; Ma, N.; Chen, W.; Zong, Z.; Chen, S. MiR-129-5p is down-regulated and involved in migration and invasion of gastric cancer cells by targeting interleukin-8. Neoplasma 2016, 63, 673–680. [Google Scholar] [CrossRef]
- Gonzalez-Hormazabal, P.; Romero, S.; Musleh, M.; Bustamante, M.; Stambuk, J.; Pisano, R.; Lanzarini, E.; Chiong, H.; Rojas, J.; Castro, V.G.; et al. IL-8-251T>A (rs4073) Polymorphism Is Associated with Prognosis in Gastric Cancer Patients. Anticancer Res. 2018, 38, 5703–5708. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xu, Q.; Shang, J.; Lu, L.; Chen, G. Crocin inhibits the migration, invasion, and epithelial-mesenchymal transition of gastric cancer cells via miR-320/KLF5/HIF-1α signaling. J. Cell. Physiol. 2019, 234, 17876–17885. [Google Scholar] [CrossRef]
- Chen, X.; Gao, S.; Zhao, Z.; Liang, G.; Kong, J.; Feng, X. MicroRNA-320d regulates tumor growth and invasion by promoting FoxM1 and predicts poor outcome in gastric cardiac adenocarcinoma. Cell Biosci. 2020, 10, 80. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, W. LncRNA SNHG12 regulates gastric cancer progression by acting as a molecular sponge of miR-320. Mol. Med. Rep. 2018, 17, 2743–2749. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Dong, Q.; Wang, E. MicroRNA-320 inhibits invasion and induces apoptosis by targeting CRKL and inhibiting ERK and AKT signaling in gastric cancer cells. Oncol. Targets Ther. 2017, 10, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, H. Plasma microRNA-320 is a potential diagnostic and prognostic bio-marker in gastric cancer. Int. J. Clin. Exp. Pathol. 2017, 10, 7356–7361. [Google Scholar]
- Sun, F.; Yu, M.; Yu, J.; Liu, Z.; Zhou, X.; Liu, Y.; Ge, X.; Gao, H.; Li, M.; Jiang, X.; et al. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis. 2018, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Liu, L.; Yao, J.; Ma, R.; Chang, D.; Li, Z.; Song, T.; Huang, C. miR-338-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a. Mol. Cancer Res. 2014, 12, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.J.; Que, Q.Y.; Xu, H.T.; Luo, D.S.; Sun, Z.; Ni, J.S.; Que, H.F.; Ma, J.; Wu, D.; Shi, H. Hypoxia Activates SOX5/Wnt/β-Catenin Signaling by Suppressing MiR-338-3p in Gastric Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820905825. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.; Wu, Z.; Lin, L.; Zhou, M.; Wang, L.; Ma, H.; Xia, J.; Bin, J.; Liao, Y.; Liao, W. MiR-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Akt signaling. Oncotarget 2015, 6, 15222–15234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Z.; Yu, L.; Li, X.; Su, X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell Biosci. 2016, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Chen, X.; Su, L.; Li, C.; Zhi, Q.; Yu, B.; Sheng, H.; Wang, J.; Feng, R.; Cai, Q.; et al. Epigenetic silencing of miR-338-3p contributes to tumorigenicity in gastric cancer by targeting SSX2IP. PLoS ONE 2013, 8, e66782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Liu, Y.M.; Li, L.C.; Wang, L.L.; Wu, X.L. MicroRNA-338 inhibits growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. PLoS ONE 2014, 9, e94422. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Zhu, J.; Zhang, Y.; Zhao, Q.; Wang, H.; Gu, K. miR-338-5p-ZEB2 axis in Diagnostic, Therapeutic Predictive and Prognostic Value of Gastric Cancer. J. Cancer 2021, 12, 6756–6772. [Google Scholar] [CrossRef]
- Hu, J.; Huang, L.; Ding, Q.; Lv, J.; Chen, Z. Long noncoding RNA HAGLR sponges miR-338-3p to promote 5-Fu resistance in gastric cancer through targeting the LDHA-glycolysis pathway. Cell Biol. Int. 2022, 46, 173–184. [Google Scholar] [CrossRef]
- Liu, X.; Cai, H.; Sheng, W.; Huang, H.; Long, Z.; Wang, Y. microRNAs expression profile related with response to preoperative radiochemotherapy in patients with locally advanced gastric cancer. BMC Cancer 2018, 18, 1048. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Wei, C.; Cui, M.Y.; Xia, Q.Q.; Wang, S.B.; Zhang, Y. Prognostic value of microRNAs in pancreatic cancer: A meta-analysis. Aging 2020, 12, 9380–9404. [Google Scholar] [CrossRef]
- Chen, S.; Gao, C.; Yu, T.; Qu, Y.; Xiao, G.G.; Huang, Z. Bioinformatics Analysis of a Prognostic miRNA Signature and Potential Key Genes in Pancreatic Cancer. Front. Oncol. 2021, 11, 641289. [Google Scholar] [CrossRef]
- Jiao, L.R.; Frampton, A.E.; Jacob, J.; Pellegrino, L.; Krell, J.; Giamas, G.; Tsim, N.; Vlavianos, P.; Cohen, P.; Ahmad, R.; et al. MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS ONE 2012, 7, e32068. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Lu, D.; Lin, Y.; Lv, Y.; He, L. A seven-miRNA expression-based prognostic signature and its corresponding potential competing endogenous RNA network in early pancreatic cancer. Exp. Ther. Med. 2019, 18, 1601–1608. [Google Scholar] [CrossRef] [Green Version]
- Khakinezhad Tehrani, F.; Ranji, N.; Kouhkan, F.; Hosseinzadeh, S. PANC-1 cancer stem-like cell death with silybin encapsulated in polymersomes and deregulation of stemness-related miRNAs and their potential targets. Iran. J. Basic. Med. Sci. 2021, 24, 514–523. [Google Scholar]
- Liang, L.; Wei, D.M.; Li, J.J.; Luo, D.Z.; Chen, G.; Dang, Y.W.; Cai, X.Y. Prognostic microRNAs and their potential molecular mechanism in pancreatic cancer: A study based on The Cancer Genome Atlas and bioinformatics investigation. Mol. Med. Rep. 2018, 17, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, H.; Liu, Y.; Li, J.; Wu, C.; Tang, H. Exosomal Non-Coding RNAs: New Insights into the Biology of Hepatocellular Carcinoma. Curr. Oncol. 2022, 29, 5383–5406. [Google Scholar] [CrossRef]
- Nakao, K.; Miyaaki, H.; Ichikawa, T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J. Gastroenterol. 2014, 49, 589–593. [Google Scholar] [CrossRef]
- Fang, Y.; Yan, D.; Wang, L.; Zhang, J.; He, Q. Circulating microRNAs (miR-16, miR-22, miR-122) expression and early diagnosis of hepatocellular carcinoma. J. Clin. Lab. Anal. 2022, 36, e24541. [Google Scholar] [CrossRef]
- Xu, G.; Bu, S.; Wang, X.; Ge, H. MiR-122 radiosensitize hepatocellular carcinoma cells by suppressing cyclin G1. Int. J. Radiat. Biol. 2022, 98, 11–17. [Google Scholar] [CrossRef]
- Cao, F.; Yin, L.X. miR-122 enhances sensitivity of hepatocellular carcinoma to oxaliplatin via inhibiting MDR1 by targeting Wnt/β-catenin pathway. Exp. Mol. Pathol. 2019, 106, 34–43. [Google Scholar] [CrossRef]
- He, H.; Huang, Y.; Yang, D.; Liang, B.; Lin, L.; Li, J.L.; Liao, H.; Guo, B. Expression of miR-126/miR-126* in hepatocelluar carcinoma and its correlation with clinical outcomes. Nan Fang Yi Ke Da Xue Xue Bao 2014, 34, 1493–1497. (In Chinese) [Google Scholar]
- Du, C.; Lv, Z.; Cao, L.; Ding, C.; Gyabaah, O.A.; Xie, H.; Zhou, L.; Wu, J.; Zheng, S. MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2. J. Transl. Med. 2014, 12, 259. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Li, Y.; Zhang, M.; Yang, Y.; Chang, L. miR-126 inhibits cell proliferation and induces cell apoptosis of hepatocellular carcinoma cells partially by targeting Sox2. Hum. Cell 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ye, L.; Yu, Y. MicroRNA-126-5p suppresses cell proliferation, invasion and migration by targeting EGFR in liver cancer. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Fang, J.; Li, G.; Liu, H.H.; Liu, Z.S. Effects of microRNA-126 on cell proliferation, apoptosis and tumor angiogenesis via the down-regulating ERK signaling pathway by targeting EGFL7 in hepatocellular carcinoma. Oncotarget 2017, 8, 52527–52542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, W.; Lin, Z.; Chen, X.; Li, W.; Zhu, S.; Wei, Y.; Huo, L.; Chen, Y.; Shang, C. miR-126-3p contributes to sorafenib resistance in hepatocellular carcinoma via downregulating SPRED1. Ann. Transl. Med. 2022, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; An, P.; Winkler, C.A.; Yu, Y. Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets. Front. Oncol. 2020, 10, 1271. [Google Scholar] [CrossRef]
- Li, P.; Fan, H.; He, Q. Investigation of the clinical significance and prognostic value of microRNA-145 in human hepatocellular carcinoma. Medicine 2018, 97, e13715. [Google Scholar] [CrossRef]
- Wang, R.K.; Shao, X.M.; Yang, J.P.; Yan, H.L.; Shao, Y. MicroRNA-145 inhibits proliferation and promotes apoptosis of HepG2 cells by targeting ROCK1 through the ROCK1/NF-κB signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2777–2785. [Google Scholar]
- Wang, Y.; Hu, C.; Cheng, J.; Chen, B.; Ke, Q.; Lv, Z.; Wu, J.; Zhou, Y. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem. Biophys. Res. Commun. 2014, 446, 1255–1260. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, S.; Gu, Y.; Chen, Q.; Liu, X.; Fu, H. MicroRNA-145 and MicroRNA-133a Inhibited Proliferation, Migration, and Invasion, While Promoted Apoptosis in Hepatocellular Carcinoma Cells Via Targeting FSCN1. Dig. Dis. Sci. 2015, 60, 3044–3052. [Google Scholar] [CrossRef]
- Liang, H.; Sun, H.; Yang, J.; Yi, C. miR-145-5p reduces proliferation and migration of hepatocellular carcinoma by targeting KLF5. Mol. Med. Rep. 2018, 17, 8332–8338. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Fan, W.; Lou, W. hsa_circ_0001955 Enhances In Vitro Proliferation, Migration, and Invasion of HCC Cells through miR-145-5p/NRAS Axis. Mol. Ther. Nucleic Acids. 2020, 22, 445–455. [Google Scholar] [CrossRef]
- Gai, X.; Tang, B.; Liu, F.; Wu, Y.; Wang, F.; Jing, Y.; Huang, F.; Jin, D.; Wang, L.; Zhang, H. mTOR/miR-145-regulated exosomal GOLM1 promotes hepatocellular carcinoma through augmented GSK-3β/MMPs. J. Genet. Genom. 2019, 46, 235–245. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, Z.; Zhi, Y.; Zhou, H.; Zhang, K.; Wang, T.; Feng, B.; Chen, Y.; Song, H.; Wang, R.; et al. Long non-coding RNA ROR promotes radioresistance in hepatocelluar carcinoma cells by acting as a ceRNA for microRNA-145 to regulate RAD18 expression. Arch. Biochem. Biophys. 2018, 645, 117–125. [Google Scholar] [CrossRef]
- Wang, W.; Ding, B.; Lou, W.; Lin, S. Promoter Hypomethylation and miR-145-5p Downregulation- Mediated HDAC11 Overexpression Promotes Sorafenib Resistance and Metastasis of Hepatocellular Carcinoma Cells. Front. Cell Dev. Biol. 2020, 8, 724. [Google Scholar] [CrossRef]
- Zheng, R.P.; Ma, D.K.; Li, Z.; Zhang, H.F. MiR-145 Regulates the Chemoresistance of Hepatic Carcinoma Cells Against 5-Fluorouracil by Targeting Toll-Like Receptor 4. Cancer Manag. Res. 2020, 12, 6165–6175. [Google Scholar] [CrossRef]
- Xu, C.; Luo, L.; Yu, Y.; Zhang, Z.; Zhang, Y.; Li, H.; Cheng, Y.; Qin, H.; Zhang, X.; Ma, H.; et al. Screening therapeutic targets of ribavirin in hepatocellular carcinoma. Oncol. Lett. 2018, 15, 9625–9632. [Google Scholar] [CrossRef] [Green Version]
- An, F.; Wu, X.; Zhang, Y.; Chen, D.; Lin, Y.; Wu, F.; Ding, J.; Xia, M.; Zhan, Q. miR-224 Regulates the Aggressiveness of Hepatoma Cells Through the IL-6/STAT3/SMAD4 Pathway. Turk. J. Gastroenterol. 2021, 32, 532–542. [Google Scholar] [CrossRef]
- Ma, D.; Tao, X.; Gao, F.; Fan, C.; Wu, D. miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncol. Lett. 2012, 4, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Ding, C.; Chen, C.; Zhang, Z.; Xiao, H.; Xie, F.; Lei, L.; Chen, Y.; Mao, B.; Jiang, M.; et al. miR-224 promotion of cell migration and invasion by targeting Homeobox D 10 gene in human hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2014, 29, 835–842. [Google Scholar] [CrossRef]
- Yang, L.; Wei, C.; Li, Y.; He, X.; He, M. miR-224 is an early-stage biomarker of hepatocellular carcinoma with miR-224 and miR-125b as prognostic biomarkers. Biomark. Med. 2020, 14, 1485–1500. [Google Scholar] [CrossRef]
- Zhuang, L.P.; Meng, Z.Q. Serum miR-224 reflects stage of hepatocellular carcinoma and predicts survival. Biomed. Res. Int. 2015, 2015, 731781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Yang, Q.; Pan, S.; Lin, X.; Xu, G.; Luo, Y.; Zheng, B.; Xie, X.; Yu, M. LncRNA OIP5-AS1 promotes cell proliferation and migration and induces angiogenesis via regulating miR-3163/VEGFA in hepatocellular carcinoma. Cancer Biol. Ther. 2020, 21, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Haraldsdottir, S.; Einarsdottir, H.M.; Smaradottir, A.; Gunnlaugsson, A.; Halfdanarson, T.R. Colorectal cancer-review. Laeknabladid 2014, 100, 75–82. [Google Scholar] [PubMed] [Green Version]
- Lech, G.; Słotwiński, R.; Słodkowski, M.; Krasnodębski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol. 2016, 22, 1745–1755. [Google Scholar] [CrossRef]
- Slattery, M.L.; Herrick, J.S.; Mullany, L.E.; Wolff, E.; Hoffman, M.D.; Pellatt, D.F.; Stevens, J.R.; Wolff, R.K. Colorectal tumor molecular phenotype and miRNA: Expression profiles and prognosis. Mod. Pathol. 2016, 29, 915–927. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-X.; Lam, I.-H.; Liang, F.-F.; Yi, S.-P.; Ye, L.-F.; Wang, J.-T.; Guo, W.-W.; Xu, M. MiR-198 affects the proliferation and apoptosis of colorectal cancer through regulation of ADAM28/JAK-STAT signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1487–1493. [Google Scholar]
- Goel, A.; Boland, C.R. Epigenetics of colorectal cancer. Gastroenterology 2012, 143, 1442–1460.e1. [Google Scholar] [CrossRef] [Green Version]
- Schetter, A.J.; Harris, C.C. Alterations of microRNAs contribute to colon carcinogenesis. Semin. Oncol. 2011, 38, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Pekow, J.; Meckel, K.; Dougherty, U.; Butun, F.; Mustafi, R.; Lim, J.; Crofton, C.; Chen, X.; Joseph, L.; Bissonnette, M. Tumor suppressors miR-143 and miR-145 and predicted target proteins API5, ERK5, K-RAS, and IRS-1 are differentially expressed in proximal and distal colon. American Journal of Physiology. Gastrointest. Liver Physiol. 2015, 308, G179–G187. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.-W.; Xue, H.-Z.; Zhang, C. Down-regulation of microRNA-143 is associated with colorectal cancer progression. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4682–4687. [Google Scholar]
- Radanova, M.; Mihaylova, G.; Mihaylova, Z.; Ivanova, D.; Tasinov, O.; Nazifova-Tasinova, N.; Pavlov, P.; Mirchev, M.; Conev, N.; Donev, I. Circulating miR-618 Has Prognostic Significance in Patients with Metastatic Colon Cancer. Curr. Oncol. 2021, 28, 1204–1215. [Google Scholar] [CrossRef]
- Liu, R.; Gu, J.; Jiang, P.; Zheng, Y.; Liu, X.; Jiang, X.; Huang, E.; Xiong, S.; Xu, F.; Liu, G.; et al. DNMT1-microrna126 epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9-EGFR-akt signaling. Clin. Cancer Res. 2015, 21, 854–863. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Pi, J.; Zou, D.; Wang, X.; Xu, J.; Yu, S.; Zhang, T.; Li, F.; Zhang, X.; Zhao, H.; et al. microRNA arm-imbalance in part from complementary targets mediated decay promotes gastric cancer progression. Nat. Commun. 2019, 10, 4379. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Jiang, J.; Fu, Y.; Liu, T.; Yu, Y.; Zhang, X. MiR-129-5p functions as a tumor suppressor in gastric cancer progression through targeting ADAM9. Biomed. Pharmacother. 2018, 105, 420–427. [Google Scholar] [CrossRef]
- Chen, J.T.; Yao, K.H.; Hua, L.; Zhang, L.P.; Wang, C.Y.; Zhang, J.J.; Ren, X.Q. miR-338-3p inhibits the proliferation and migration of gastric cancer cells by targeting ADAM17. Int. J. Clin. Exp. Pathol. 2015, 8, 10922–10928. [Google Scholar]
- AmeliMojarad, M.; AmeliMojarad, M.; Pourmahdian, A. Circular RNA circ_0051620 sponges miR-338-3p and regulates ADAM17 to promote the gastric cancer progression. Pathol. Res. Pract. 2022, 233, 153887. [Google Scholar] [CrossRef]
- Ge, X.; Cui, H.; Zhou, Y.; Yin, D.; Feng, Y.; Xin, Q.; Xu, X.; Liu, W.; Liu, S.; Zhang, Q. MiR-320a modulates cell growth and chemosensitivity via regulating ADAM10 in gastric cancer. Mol. Med. Rep. 2017, 16, 9664–9670. [Google Scholar] [CrossRef]
- Klein, A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 493–502. [Google Scholar] [CrossRef]
- Hamada, S.; Satoh, K.; Fujibuchi, W.; Hirota, M.; Kanno, A.; Unno, J.; Masamune, A.; Kikuta, K.; Kume, K.; Shimosegawa, T. MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. 2012, 10, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Gao, Y.; Zhang, F. Propofol inhibits pancreatic cancer proliferation and metastasis by up-regulating miR-328 and down-regulating ADAM8. Basic Clin. Pharmacol. Toxicol. 2019, 125, 271–278. [Google Scholar] [CrossRef]
- Balogh, J.; Victor, D.; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, M.; Monsour, H. Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma 2016, 3, 41–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, W.C.; Hsu PW, C.; Lai, T.C.; Chau, G.Y.; Lin, C.W.; Chen, C.M.; Lin, C.D.; Liao, Y.L.; Wang, J.L.; Chau, Y.P.; et al. MicroRNA-122, a tumor suppressor MicroRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 2009, 49, 1571–1582. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, C.; Wang, Y.; Wen, S.; Wang, J.; Chen, Z.; He, Q.; Feng, D. Expression of miR-224, miR-145, and their putative target ADAM17 in hepatocellular carcinoma. Acta Biochim. Biophys. Sin. 2014, 46, 720–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wu, C.; Wang, Y.; Wen, S.; Wang, J.; Chen, Z.; He, Q.; Feng, D. MicroRNA-145 inhibits cell proliferation by directly targeting ADAM17 in hepatocellular carcinoma. Oncol. Rep. 2014, 32, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Wan, D.; Shen, S.; Fu, S.; Preston, B.; Brandon, C.; He, S.; Shen, C.; Wu, J.; Wang, S.; Xie, W.; et al. miR-203 Suppresses the Proliferation and Metastasis of Hepatocellular Carcinoma by Targeting Oncogene ADAM9 and Oncogenic Long Non-coding RNA HULC. Anti-Cancer Agents Med. Chem. 2016, 16, 414–423. [Google Scholar] [CrossRef]
- Xiang, L.; Ou, H.; Liu, X.; Chen, Z.J.; Li, X.H.; Huang, Y.; Yang, D.H. Loss of tumor suppressor miR-126 contributes to the development of hepatitis B virus–related hepatocellular carcinoma metastasis through the upregulation of ADAM9. Tumor Biol. 2017, 39, 1010428317709128. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Wang, C.; Xie, H.; Wang, Y.; Huang, J.; Rong, Y.; Zhang, H.; Kong, H.; Yang, Y.; Lu, Y. MicroRNA-3163 targets ADAM-17 and enhances the sensitivity of hepatocellular carcinoma cells to molecular targeted agents. Cell Death Dis. 2019, 10, 784. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liu, J.; Li, Y.; Liu, L.; Zhang, X.; Ma, C.Y.; Hua, S.C.; Yang, M.; Yuan, Q. MicroRNA-1274a, a modulator of sorafenib induced a disintegrin and metalloproteinase 9 (ADAM9) down-regulation in hepatocellular carcinoma. FEBS Lett. 2011, 585, 1828–1834. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, H.; Wang, Y.; Wang, L.; Yan, X.; Zhang, D.; Ma, X.; Du, Y.; Liu, X.; Yang, Y. MicroRNA-552 enhances metastatic capacity of colorectal cancer cells by targeting a disintegrin and metalloprotease 28. Oncotarget 2016, 7, 70194–70210. [Google Scholar] [CrossRef] [Green Version]
- Wildeboer, D.; Naus, S.; Amy Sang, Q.X.; Bartsch, J.W.; Pagenstecher, A. Metalloproteinase disintegrinsADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levelsand activities are associated with invasiveness. J. Neuropathol. Exp. Neurol. 2006, 65, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Roemer, A.; Schwettmann, L.; Jung, M.; Roigas, J.; Kristiansen, G.; Schnorr, D.; Loenin, S.A.; Jung, K.; Lichtinghagen, R. Increased mRNA ex-pression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol. Rep. 2004, 11, 529–536. [Google Scholar]
- Zhang, Q.; Yu, L.; Qin, D.; Huang, R.; Jiang, X.; Zou, C.; Tang, Q.; Chen, Y.; Wang, G.; Wang, X.; et al. Role of microRNA-30c targeting ADAM19 in colorectal cancer. PLoS ONE 2015, 10, e0120698. [Google Scholar] [CrossRef] [Green Version]
- Blondy, S.; David, V.; Verdier, M.; Mathonnet, M.; Perraud, A.; Christou, N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci. 2020, 111, 3142–3154. [Google Scholar] [CrossRef]
- Fu, Q.; Cheng, J.; Zhang, J.; Zhang, Y.; Chen, X.; Luo, S.; Xie, J. MiR-20b reduces 5-FU resistance by suppressing the ADAM9/EGFR signaling pathway in colon cancer. Oncol. Rep. 2017, 37, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, H.; Hong, H.; Zhang, Z. MiR-374b re-sensitizes hepatocellular carcinoma cells to sorafenib therapy by antagonizing PKM2-mediated glycolysis pathway. Am. J. Cancer Res. 2019, 9, 765–778. [Google Scholar]
- Yao, H.; Sun, Q.; Zhu, J. miR-1271 enhances the sensitivity of colorectal cancer cells to cisplatin. Exp. Ther. Med. 2019, 17, 4363–4370. [Google Scholar] [CrossRef]
- Song, A.L.; Zhao, L.; Wang, Y.W.; He, D.Q.; Li, Y.M. Chemoresistance in gastric cancer is attributed to the overexpression of excision repair cross-complementing 1 (ERCC1) caused by microRNA-122 dysregulation. J. Cell. Physiol. 2019, 234, 22485–22492. [Google Scholar] [CrossRef]
Cancer | Adamalisine | Role of ADAM |
---|---|---|
Esophageal squamous cell carcinoma | ADAM9 | Neoangiogenesis, angioinvasion, cell migration [25,26] |
ADAM12 | Metastasis promotion and tumor invasion [23] | |
ADAM17 | Level of expression in tissue correlates with the clinical advancement [24] | |
Gastric cancer | ADAM8 ADAM9 | Expression correlates with clinical advancement [34,35] |
ADAM10 ADAM17 | Association with chronic inflammation caused by H. pylori infection [27], progression of GC [28,29], negative prognostic factor [30,31,32] | |
ADAM33 | Migration and proliferation of cancer cells [36] | |
Pancreatic cancer | ADAM8 ADAM9 ADAM10 | Neoangiogenesis, cellular migration and further growth of cell clusters [39,40] Invasion and proliferation of cancer cells [38] |
ADAM17 | Progression from early precursor lesions to advanced invasive forms [37] | |
Hepatocellular cancer | ADAM8 ADAM9 ADAM10 ADAM17 | Cell proliferation, migration and invasion of HCC [47,48,49,50] |
ADAM15 | Potential HCC biomarker associated with poor prognosis [51] | |
Colorectal cancer | ADAM10 ADAM17 | Tumor growth, angiogenesis, metastasis [52,53,54,55] |
ADAM12 ADAM28 | Promotion of tumorigenesis by activating pathways related to IGF [57] | |
ADAM8 ADAM9 ADAM15 | Potentially important in the development and progression [58,59,60] |
miRNA | Cancer | Target Genes/Pathways | Functions |
---|---|---|---|
miR-126 | ESCC | IRS-1, GOLPH3, PTPN9, PI3K/AKT signaling pathway | Inhibition of cell proliferation, migration and invasion [62,63,64] |
STAT3 | Inhibition of apoptosis and autophagy [65] | ||
GC | IGF-1R, GOLPH3, VEGF-A, Crk protein, SRPK1, CRKL, LATS-1 genes | Inhibition of cell proliferation, migration and invasion [67,68,69,70,71,72,73,74] | |
CADM1 | Promotion of cancer development and invasion [75] | ||
PC | COL12A1 and COL11A1 genes, KRAS and TGF-β signaling pathway | Regulation of metastasis and cancer development [109,110,111,112] | |
HCC | LRP6 and PIK3R2, Sox2, EGFR and EGFL7 | Inhibition of tumorigenesis and metastasis [121,122,123,124] | |
SPRED1 | Acting on sorafenib resistance [125] | ||
miR-129 | GC | HOXC10 | Regulation of apatinib resistance [84] |
HMGB1, COL1A1, SAE1, WWP1, SPOCK1, HOXC10/Cyclin D1, BDKRB2 and IL-8 | Inhibition of GC progression and proliferation [85,86,87,88,89,90,91,92,93] | ||
miR-320 | GC | KLF5/HIF-1α signaling pathway, FoxM1 | Inhibition of cell migration, invasion and epithelial–mesenchymal transition (EMT) [94,95] |
miR-338 | GC | PTP1B, P-REX2a through the PTEN/AKT axis, SOX5 and blocking Wnt/β-catenin signaling pathway, ZEB2 and MACC1/Met/Akt pathway, ACBP-3, SSX2IP and NRP1 | Inhibition of tumor growth, metastasis and EMT [99,100,101,102,103,104,105] |
ZEB2 LDHA-glycolysis pathway | Regulation of cisplatin resistance [106], 5-FU resistance [107] | ||
miR-328 | PC | EGFR, MAPK1, ESR1, SMAD4 and AR | Regulation of cancer development and invasion [114] |
miR-122 | HCC | Cyclin G1 | Inhibition of HCC cells’ proliferation and enhancing their radiosensitivity [118] |
Wnt/β-catenin pathway | Enhancing sensitivity to oxaliplatin [119] | ||
miR-145 | CRC HCC | IRS-1, c-Myc, Yes-1 and 1 STAT1 | Inhibition of cancer development [148,149,150] |
ARF6, the ROCK1/NF-κB signaling pathway, IRS1, FSCN1, KLF5 | Inhibition of metastasis [127,128,129,130,131] | ||
TLR4 | Acting on radio- and chemoresistance to 5-FU [135,136] | ||
miR-224 | HCC | AKT signaling pathway through Homeobox D 10 gene | Promotion of cancer development and invasion [139] |
miR-3163 | HCC | VEGF A | Promotion of invasion and angiogenesis [143] |
Cancer | Adamalysine | miRNA | Role of ADAM/miR Axis |
---|---|---|---|
Esophageal squamous cell carcinoma Gastric cancer Pancreatic cancer Hepatocellular cancer | ADAM9 | miR–126 | Supressing tumor development and progression by inhibiting cell migration, invasion and angiogenesis [35,153,154,160,167] |
Gastric cancer | ADAM9 | miR-129-5p | Supressing cell migration and invasion by targeting interleukin-8 [155] |
ADAM17 | miR-338-3p | Supressing proliferation, migration and invasion of cancer cells [157] | |
ADAM10 | miR-320a | Progression of cancer and resistance to cisplatin [158] | |
Pancreatic cancer | ADAM8 | miR-328 | Supressing development of cancer through propofol [161] |
Hepatocellular cancer | ADAM17 | miR-122 | Reduction in tumorgenesis, angiogenesis, invasion and chemoresistance [163] |
miR-145 | Potentially supressing development of cancer [164,165] | ||
miR-3163 | Enhancing sensitivity of cancer cells to sorafenib [168] | ||
ADAM9 | miR-203 | Supressing proliferation, migration and invasion of cancer cells [166] | |
miR-1274-a | Sensitivity of cancer cells to sorafenib [169] | ||
Colorectal cancer | ADAM28 | miR-552 | Promoting metastasis [170] |
miR-198 | Inhibiting cancer progression by regulating JAK-STAT signaling pathway [147] | ||
ADAM19 | miR-30c | Supressing tumor growth, migration and invasion [173] | |
ADAM9 | miR-20b | Reducing 5-FU resistance by inhibiting EGFR pathway [174,175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalita, A.; Sikora-Skrabaka, M.; Nowakowska-Zajdel, E. Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Curr. Issues Mol. Biol. 2023, 45, 2917-2936. https://doi.org/10.3390/cimb45040191
Kalita A, Sikora-Skrabaka M, Nowakowska-Zajdel E. Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Current Issues in Molecular Biology. 2023; 45(4):2917-2936. https://doi.org/10.3390/cimb45040191
Chicago/Turabian StyleKalita, Agnieszka, Magdalena Sikora-Skrabaka, and Ewa Nowakowska-Zajdel. 2023. "Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review" Current Issues in Molecular Biology 45, no. 4: 2917-2936. https://doi.org/10.3390/cimb45040191
APA StyleKalita, A., Sikora-Skrabaka, M., & Nowakowska-Zajdel, E. (2023). Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Current Issues in Molecular Biology, 45(4), 2917-2936. https://doi.org/10.3390/cimb45040191