Liver Damage and COVID-19: At Least a “Two-Hit” Story in Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. COVID-19 and Liver Involvement: The Issue
3.2. COVID-19-Related Liver Damage: Pathophysiology
3.3. Drugs’ Role in Liver Damage in COVID-19 Patients
3.4. COVID-19, Liver Damage and Chronic Liver Disease: The MAFLD and Other Cases
3.5. Liver Damage Management during COVID-19
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chams, N.; Chams, S.; Badran, R.; Shams, A.; Araji, A.; Raad, M.; Mukhopadhyay, S.; Stroberg, E.; Duval, E.J.; Barton, L.M.; et al. COVID-19: A Multidisciplinary Review. Front. Public Health 2020, 8, 383. [Google Scholar] [CrossRef] [PubMed]
- Goyal, R.; Gautam, R.K.; Chopra, H.; Dubey, A.K.; Singla, R.K.; Rayan, R.A.; Kamal, M.A. Comparative highlights on MERS-CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI J. 2022, 21, 1245–1272. [Google Scholar] [PubMed]
- Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1953–1966. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Ye, X.; Zhou, Y.; Zheng, Y.; Weng, Z.; Xie, J.; Zheng, K.; Su, Z.; Zhuang, X.; et al. Clinical characteristics of patients infected with novel coronavirus wild strain, Delta variant strain and Omicron variant strain in Quanzhou: A real-world study. Exp. Ther. Med. 2022, 25, 62. [Google Scholar] [CrossRef]
- Scarpellini, E.; Tack, J. Post-Covid-19 Gastro-Intestinal Disturbances. Rev. Recent Clin. Trials 2023, 18, 34–40. [Google Scholar] [CrossRef]
- Shen, S.; Gong, M.; Wang, G.; Dua, K.; Xu, J.; Xu, X.; Liu, G. COVID-19 and Gut Injury. Nutrients 2022, 14, 4409. [Google Scholar] [CrossRef]
- Shiri Aghbash, P.; Ebrahimzadeh Leylabadlo, H.; Fathi, H.; Bahmani, M.; Chegini, R.; Bannazadeh Baghi, H. Hepatic Disorders and COVID-19: From Pathophysiology to Treatment Strategy. Can. J. Gastroenterol. Hepatol. 2022, 2022, 4291758. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Aghemo, A.; Forner, A.; Valenti, L. COVID-19 and liver disease. Liver Int. 2020, 40, 1278–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Zhou, X.; Qiu, Y.; Song, Y.; Feng, F.; Feng, J.; Song, Q.; Jia, Q.; Wang, J. Clinical characteristics of 82 cases of death from COVID-19. PLoS ONE 2020, 15, e0235458. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Du, Q.; Yan, S.; Guo, X.G.; He, Y.; Zhu, G.; Zhao, K.; Ouyang, S. Liver injury in COVID-19: Clinical features and treatment management. Virol. J. 2021, 18, 121. [Google Scholar] [CrossRef]
- Papadopoulos, N.; Vasileiadi, S.; Deutsch, M. COVID-19 and liver injury: Where do we stand? Ann. Gastroenterol. 2020, 33, 459–464. [Google Scholar] [CrossRef]
- Zhao, B.; Ni, C.; Gao, R.; Wang, Y.; Yang, L.; Wei, J.; Lv, T.; Liang, J.; Zhang, Q.; Xu, W.; et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell 2020, 11, 771–775. [Google Scholar] [CrossRef] [Green Version]
- Sivandzadeh, G.R.; Askari, H.; Safarpour, A.R.; Ejtehadi, F.; Raeis-Abdollahi, E.; Vaez Lari, A.; Abazari, M.F.; Tarkesh, F.; Bagheri Lankarani, K. COVID-19 infection and liver injury: Clinical features, biomarkers, potential mechanisms, treatment, and management challenges. World J. Clin. Cases 2021, 9, 6178–6200. [Google Scholar] [CrossRef]
- Zhong, P.; Xu, J.; Yang, D.; Shen, Y.; Wang, L.; Feng, Y.; Du, C.; Song, Y.; Wu, C.; Hu, X.; et al. COVID-19-associated gastrointestinal and liver injury: Clinical features and potential mechanisms. Signal Transduct. Target Ther. 2020, 5, 256. [Google Scholar] [CrossRef]
- Nalwa, A.; Vishwajeet, V.; Kumar, D.; Purohit, A.; Garg, M.; Kanchan, D.T.; Dutt, N.; Kothari, N.; Bhaskar, S.; Elhence, P.; et al. Ultrastructural Changes in Autopsy Tissues of COVID-19 Patients. Cureus 2022, 14, e31932. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, D.; Wang, M.; Zhao, M.; Li, D.; Ye, J.; Liu, J.; Xu, Y.; Zhang, J.; Pan, W.; et al. Clinical Features of COVID-19 Patients with Different Outcomes in Wuhan: A Retrospective Observational Study. BioMed Res. Int. 2020, 2020, 2138387. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Prichett, L.; Tao, X.; Alqahtani, S.A.; Hamilton, J.P.; Mezey, E.; Strauss, A.T.; Kim, A.; Potter, J.J.; Chen, P.H.; et al. Abnormal liver chemistries as a predictor of COVID-19 severity and clinical outcomes in hospitalized patients. World J. Gastroenterol. 2022, 28, 570–587. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, P.; Dungdung, A.; Kumar Gupta, A.; Anurag, A.; Kumar, A. Pattern of liver function and clinical profile in COVID-19: A cross-sectional study of 91 patients. Diabetes Metab. Syndr. 2020, 14, 1951–1954. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Xiang, Y.; Fang, W.; Zheng, Y.; Li, B.; Hu, Y.; Lang, C.; Huang, D.; Sun, Q.; Xiong, Y.; et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J. Med. Virol. 2020, 92, 797–806. [Google Scholar] [CrossRef]
- Osborn, J.; Szabo, S.; Peters, A.L. Pediatric Acute Liver Failure Due to Type 2 Autoimmune Hepatitis Associated With SARS-CoV-2 Infection: A Case Report. JPGN Rep. 2022, 3, e204. [Google Scholar] [CrossRef]
- Lohse, A.; Klopfenstein, T.; Balblanc, J.C.; Royer, P.Y.; Bossert, M.; Gendrin, V.; Charpentier, A.; Bozgan, A.M.; Badie, J.; Bourgoin, C.; et al. Predictive factors of mortality in patients treated with tocilizumab for acute respiratory distress syndrome related to coronavirus disease 2019 (COVID-19). Microbes Infect. 2020, 22, 500–503. [Google Scholar] [CrossRef]
- Bahmani, M.; Chegini, R.; Ghanbari, E.; Sheykhsaran, E.; Shiri Aghbash, P.; Leylabadlo, H.E.; Moradian, E.; Kazemzadeh Houjaghan, A.M.; Bannazadeh Baghi, H. Severe acute respiratory syndrome coronavirus 2 infection: Role of interleukin-6 and the inflammatory cascade. World J. Virol. 2022, 11, 113–128. [Google Scholar] [CrossRef]
- Abenavoli, L.; Aquila, I.; Sacco, M.; Procopio, A.C.; Cinaglia, P.; Zanza, C.; Longhitano, Y.; Arena, V.; Fagoonee, S.; Ricci, P.; et al. Liver injury associated with high value of D-dimer plasmatic level in COVID-19 patients. Minerva Gastroenterol. 2022, 69, 141–148. [Google Scholar] [CrossRef]
- Hojyo, S.; Uchida, M.; Tanaka, K.; Hasebe, R.; Tanaka, Y.; Murakami, M.; Hirano, T. How COVID-19 induces cytokine storm with high mortality. Inflamm. Regen. 2020, 40, 37. [Google Scholar] [CrossRef]
- Lee, U.E.; Friedman, S.L. Mechanisms of hepatic fibrogenesis. Best Pract. Res. Clin. Gastroenterol. 2011, 25, 195–206. [Google Scholar] [CrossRef]
- Sahin, H.; Trautwein, C.; Wasmuth, H.E. Functional role of chemokines in liver disease models. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 682–690. [Google Scholar] [CrossRef]
- Schwabe, R.F.; Bataller, R.; Brenner, D.A. Human hepatic stel- late cells express CCR5 and RANTES to induce prolifera- tion and migration. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 285, G949–G958. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Song, S.; Cao, H.C.; Li, L.J. Liver diseases in COVID-19: Etiology, treatment and prognosis. World J. Gastroenterol. 2020, 26, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Nardo, A.D.; Schneeweiss-Gleixner, M.; Bakail, M.; Dixon, E.D.; Lax, S.F.; Trauner, M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021, 41, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Nagata, N.; Takeuchi, T.; Masuoka, H.; Aoki, R.; Ishikane, M.; Iwamoto, N.; Sugiyama, M.; Suda, W.; Nakanishi, Y.; Terada-Hirashima, J.; et al. Human Gut Microbiota and Its Metabolites Impact Immune Responses in COVID-19 and Its Complications. Gastroenterology 2023, 164, 272–288. [Google Scholar] [CrossRef]
- Ji, D.; Qin, E.; Xu, J.; Zhang, D.; Cheng, G.; Wang, Y.; Lau, G. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J. Hepatol. 2020, 73, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Su, T.H.; Kao, J.H. The clinical manifestations and management of COVID-19-related liver injury. J. Formos Med. Assoc. 2020, 119, 1016–1018. [Google Scholar] [CrossRef] [PubMed]
- Amrouche, T.; Chikindas, M.L. Probiotics for immunomodulation in prevention against respiratory viral infections with special emphasis on COVID-19. AIMS Microbiol. 2022, 8, 338–356. [Google Scholar] [CrossRef]
- Scarpellini, E.; Fagoonee, S.; Rinninella, E.; Rasetti, C.; Aquila, I.; Larussa, T.; Ricci, P.; Luzza, F.; Abenavoli, L. Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. J. Clin. Med. 2020, 9, 2488. [Google Scholar] [CrossRef]
- Zampino, R.; Mele, F.; Florio, L.L.; Bertolino, L.; Andini, R.; Galdo, M.; De Rosa, R.; Corcione, A.; Durante-Mangoni, E. Liver injury in remdesivir-treated COVID-19 patients. Hepatol. Int. 2020, 14, 881–883. [Google Scholar] [CrossRef]
- Yip, T.C.; Gill, M.; Wong, G.L.; Liu, K. Management of hepatitis B virus reactivation due to treatment of COVID-19. Hepatol. Int. 2022, 16, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Yanny, B.; Alkhero, M.; Alani, M.; Stenberg, D.; Saharan, A.; Saab, S. Post-Covid- 19 Cholangiopathy:A Systematic Review. J. Clin. Exp. Hepatol. 2022, in press. [CrossRef]
- Tan, E.H.; Low, E.X.S.; Dan, Y.Y.; Tai, B.C. Systematic review and meta-analysis of algorithms used to identify drug-induced liver injury (DILI) in health record databases. Liver Int. 2018, 38, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Huang, D.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Li, Z.; Zhou, G.; Gou, J.; Qu, J.; et al. COVID-19: Abnormal liver function tests. J. Hepatol. 2020, 73, 566–574. [Google Scholar] [CrossRef]
- Ore, A.; Adeogun, A.I.; Akinloye, O.A. Hydroethanolic Extract of Defatted Buchholzia coriacea Seeds Alleviates Tamoxifen-Induced Hepatic Triglyceride Accumulation, Inflammation and Oxidative Distress in Rat. Medicines 2021, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ye, L.P.; Song, Y.Q.; Mao, X.L.; Wang, L.; Jiang, Y.Z.; Que, W.T.; Li, S.W. Liver injury in COVID-19: Detection, pathogenesis, and treatment. World J. Gastroenterol. 2021, 27, 3022–3036. [Google Scholar] [CrossRef]
- Tsalik, E.L.; Rouphael, N.G.; Sadikot, R.T.; Rodriguez-Barradas, M.C.; McClain, M.T.; Wilkins, D.M.; Woods, C.W.; Swamy, G.K.; Walter, E.B.; El Sahly, H.M.; et al. Efficacy and safety of azithromycin versus placebo to treat lower respiratory tract infections associated with low procalcitonin: A randomised, placebo-controlled, double-blind, non-inferiority trial. Lancet Infect. Dis. 2022, 23, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Lory, P.; Combret, S.; Michot, J.; Veyrac, G.; Chouchana, L.; Grandvuillemin, A. Safety profile of the lopinavir/ritonavir combination before and during the SARS-CoV-2 pandemic. Therapie 2022, in press. [CrossRef]
- Lyashchenko, A.K.; Yu, Y.; McMahon, D.J.; Bies, R.; Yin, M.T.; Cremers, S. Systemic exposure to hydroxychloroquine and its relationship with outcome in severely ill COVID-19 patients in New York City. Br. J. Clin. Pharmacol. 2023, 89, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Zuccon, W.; Comassi, P.; Adriani, L.; Bergamaschini, G.; Bertin, E.; Borromeo, R.; Corti, S.; De Petri, F.; Dolci, F.; Galmozzi, A.; et al. Intensive care for seriously ill patients affected by novel coronavirus SARS-CoV-2: Experience of the Crema Hospital, Italy. Am. J. Emerg. Med. 2021, 45, 156–161. [Google Scholar] [CrossRef]
- Sabljić, Z.; Bašić-Jukić, N. Toxic myopathy and liver damage caused by concomitant therapy with remdesivir, atorvastatin, ezetimibe, and tacrolimus in a renal transplant patient with recently treated SARS-CoV-2 induced pneumonia: A case report. Ther. Apher. Dial 2022, 26, 478–479. [Google Scholar] [CrossRef]
- Albisinni, R.; Vitrone, M.; Ursi, M.P.; Spiezia, S.; Salemme, A.; Florio, L.L.; Boccia, F.; Iossa, D.; Zampino, R.; Atripaldi, L.; et al. Clinical evaluation of the safety and efficacy of enoxaparin in patients with COVID-19. Blood Transfus. 2022, 20, 495–504. [Google Scholar]
- Meng, M.; Chu, Y.; Zhang, S.; Li, X.; Sha, J.; Wang, P.; Cui, Y.; Han, M.; Dong, X.; Sun, W.; et al. Corticosteroid treatment in severe patients with SARS-CoV-2 and chronic HBV co-infection: A retrospective multicenter study. BMC Infect. Dis. 2022, 22, 891. [Google Scholar] [CrossRef]
- Feng, G.; Zheng, K.I.; Yan, Q.Q.; Rios, R.S.; Targher, G.; Byrne, C.D.; Poucke, S.V.; Liu, W.Y.; Zheng, M.H. COVID-19 and Liver Dysfunction: Current Insights and Emergent Therapeutic Strategies. J. Clin. Transl. Hepatol. 2020, 8, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, A.V.; Kumar, P.; Tevethia, H.V.; Premkumar, M.; Arab, J.P.; Candia, R.; Talukdar, R.; Sharma, M.; Qi, X.; Rao, P.N.; et al. Systematic review with meta-analysis: Liver manifestations and outcomes in COVID-19. Aliment Pharmacol. Ther. 2020, 52, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Muhović, D.; Bojović, J.; Bulatović, A.; Vukčević, B.; Ratković, M.; Lazović, R.; Smolović, B. First case of drug-induced liver injury associated with the use of tocilizumab in a patient with COVID-19. Liver Int. 2020, 40, 1901–1905. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, L.; Li, J.; Cheng, X.; Yang, J.; Tian, C.; Zhang, Y.; Huang, S.; Liu, Z.; Cheng, J. Clinical Features of COVID-19-Related Liver Functional Abnormality. Clin. Gastroenterol. Hepatol. 2020, 18, 1561–1566. [Google Scholar] [CrossRef]
- Su, Y.J.; Chang, C.W.; Chen, M.J.; Lai, Y.C. Impact of COVID-19 on liver. World J. Clin. Cases 2021, 9, 7998–8007. [Google Scholar] [CrossRef]
- Della Guardia, B.; Boteon, A.P.C.S.; Matielo, C.E.L.; Felga, G.; Boteon, Y.L. Current and future perspectives on acute-on-chronic liver failure: Challenges of transplantation, machine perfusion, and beyond. World J. Gastroenterol. 2022, 28, 6922–6934. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, A.; Anikhindi, S.; Bansal, N.; Singla, V.; Shivam, K.; Arora, A. Effect of COVID-19 on Pre-existing Liver disease: What Hepatologist Should Know? J. Clin. Exp. Hepatol. 2021, 11, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Sarin, S.K.; Choudhury, A.; Lau, G.K.; Zheng, M.H.; Ji, D.; Abd-Elsalam, S.; Hwang, J.; Qi, X.; Cua, I.H.; Suh, J.I.; et al. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol. Int. 2020, 14, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.I.; Gao, F.; Wang, X.B.; Sun, Q.F.; Pan, K.H.; Wang, T.Y.; Ma, H.L.; Chen, Y.P.; Liu, W.Y.; George, J.; et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020, 108, 154244. [Google Scholar] [CrossRef]
- Targher, G.; Mantovani, A.; Byrne, C.D.; Wang, X.B.; Yan, H.D.; Sun, Q.F.; Pan, K.H.; Zheng, K.I.; Chen, Y.P.; Eslam, M.; et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated atty liver disease and increased fibrosis scores. Gut 2020, 69, 1545–1547. [Google Scholar] [CrossRef]
- Mushtaq, K.; Khan, M.U.; Iqbal, F.; Alsoub, D.H.; Chaudhry, H.S.; Ata, F.; Iqbal, P.; Elfert, K.; Balaraju, G.; Almaslamani, M.; et al. NAFLD is a predictor of liver injury in COVID-19 hospitalized patients but not of mortality, disease severity on the presentation or progression—The debate continues. J. Hepatol. 2021, 74, 482–484. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Pugliese, G.; Barrea, L.; Savastano, S.; Colao, A. Commentary: Obesity: The “Achilles heel” for COVID-19? Metabolism 2020, 108, 154251. [Google Scholar] [CrossRef]
- Jiang, S.T.; Liu, Y.G.; Zhang, L.; Sang, X.T.; Xu, Y.Y.; Lu, X. Systems biology approach reveals a common molecular basis for COVID-19 and non-alcoholic fatty liver disease (NAFLD). Eur. J. Med. Res. 2022, 27, 251. [Google Scholar] [CrossRef] [PubMed]
- Boeckmans, J.; Rodrigues, R.M.; Demuyser, T.; Piérard, D.; Vanhaecke, T.; Rogiers, V. COVID-19 and drug-induced liver injury: A problem of plenty or a petty point? Arch. Toxicol. 2020, 94, 1367–1369. [Google Scholar] [CrossRef] [Green Version]
- He, Y.F.; Jiang, Z.G.; Wu, N.; Bian, N.; Ren, J.L. Correlation between COVID-19 and hepatitis B: A systematic review. World J. Gastroenterol. 2022, 28, 6599–6618. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Q.; Ma, Z.; Ling, J.; Hu, W.; Cao, Q.; Mo, P.; Yao, L.; Yang, R.; Gao, S.; et al. Clinical Characteristics of Hospitalized Patients with SARS-CoV-2 and Hepatitis B Virus Co-infection. Virol. Sin. 2020, 35, 842–845. [Google Scholar] [CrossRef]
- Campbell, P.T.; Fix, O.K. Coronavirus Disease-2019 and Implications on the Liver. Clin. Liver Dis. 2023, 27, 27–45. [Google Scholar] [CrossRef]
- Kanda, T.; Sasaki-Tanaka, R.; Ishii, T.; Abe, H.; Ogawa, M.; Enomoto, H. Acute Liver Failure and Acute-on-Chronic Liver Failure in COVID-19 Era. J. Clin. Med. 2022, 11, 4249. [Google Scholar] [CrossRef]
- Metawea, M.I.; Yousif, W.I.; Moheb, I. COVID 19 and liver: An A-Z literature review. Dig. Liver Dis. 2021, 53, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Licata, A.; Minissale, M.G.; Distefano, M.; Montalto, G. Liver injury; SARS-COV-2 infection and COVID-19: What physicians should really know? GastroHep 2021, 3, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jia, A.Y.; Zorzi, J.; Griffith, P.; Kim, A.K.; Dao, D.; Anders, R.A.; Georgiades, C.; Liddell, R.P.; Hong, K.; et al. Impact of the COVID-19 Pandemic on Liver Cancer Staging at a Multidisciplinary Liver Cancer Clinic. Ann. Surg. Open 2022, 3, e207. [Google Scholar] [CrossRef]
- Muñoz-Martínez, S.; Sapena, V.; Forner, A.; Bruix, J.; Sanduzzi-Zamparelli, M.; Ríos, J.; Bouattour, M.; El-Kassas, M.; Leal, C.R.G.; Mocan, T.; et al. Outcome of liver cancer patients with SARS-CoV-2 infection: An International; Multicentre; Cohort Study. Liver Int. 2022, 42, 1891–1901. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, F.; Xie, L.; Wang, C.; Wang, J.; Chen, R.; Jia, P.; Guan, H.Q.; Peng, L.; Chen, Y.; et al. Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan; China. Ann. Oncol. 2020, 31, 894–901. [Google Scholar] [CrossRef]
- Pazgan-Simon, M.; Kucharska, M.; Górka-Dynysiewicz, J.; Simon, K. Impact of SARS CoV-2 /COVID-19 infection on the course of advanced chronic liver disease and hepatocellular carcinoma. Pharmacol. Rep. 2022, 74, 1306–1314. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Zompo, F.D.; Nesci, A.; Santopaolo, F.; Ianiro, G.; Pompili, M.; Gasbarrini, A.; Gemelli Against COVID-19 Group. Liver involvement is not associated with mortality: Results from a large cohort of SARS-CoV-2-positive patients. Ailment Pharmacol. Ther. 2020, 52, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Del Zompo, F.; De Siena, M.; Ianiro, G.; Gasbarrini, A.; Pompili, M.; Ponziani, F.R. Prevalence of liver injury and correlation with clinical outcomes in patients with COVID-19: Systematic review with meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 13072–13088. [Google Scholar]
- Ponziani, F.R.; Nesci, A.; Del Zompo, F.; Santopaolo, F.; Pompili, M.; Gasbarrini, A. Correlation Between Liver Function Tests Abnormalities and Interleukin-6 Serum Levels in Patients With SARS-CoV-2 Infection. Gastroenterology 2021, 160, 1891–1893. [Google Scholar] [CrossRef] [PubMed]
- Phipps, M.; Barraza, L.H.; LaSota, E.D.; Sobieszczyk, M.E.; Pereira, M.R.; Zheng, E.X.; Fox, A.N.; Zucker, J.; Verna, E.C. Acute liver injury in COVID-19: Prevalence and associated outcomes in a large U.S. cohort. Hepatology 2020, 72, 807–817. [Google Scholar] [CrossRef] [PubMed]
Medication | Hepatotoxic Mechanism(s) and Damage(s) | Reference Number |
---|---|---|
Azithromycin | Self-limited cholestatic hepatitis, appearing within 1 to 3 weeks after starting treatment. Importantly, cholestasis and increased transaminases can persist for up to 6 months | [47] |
Lopinavir/ritonavir | Incidence of 3% to 10%; symptoms’ onset (e.g., jaundice) from 1 to 8 week(s) after treatment initiation; range of laboratory tests; hepatocellular to cholestatic or mixed damage. Usually, the liver injury is self-limiting, with a few fatal cases | [48] |
Hydroxychloroquine | Only if used at high doses can it lead to acute liver injury (namely, sudden onset of fever and marked elevation of serum transaminase) | [49] |
Tocilizumab | There have been recorded several cases of clinically apparent severe liver injury with jaundice, usually self-limiting, with complete recovery within 2 to 3 months upon drug termination. Indeed, it was the cause of one case of fatal liver failure. Interestingly, registration trials showed serum aminotransferase elevations in 10% to 50% of administered patients | [50] |
Remdesivir | Ten to 50% of treated patients have shown transient, mild-to-moderate serum transaminases rise within 1 to 5 days of drug initiation. Interestingly, no elevation of serum bilirubin and/or alkaline phosphatase levels was registered | [51] |
Enoxaparin | They have been described as elevations of serum aminotransferases in 4% to 13% of treated patients. There was a rapid liver damage onset (within 3 to 5 days upon drug administration), and rapid recovery (from 1 to 4 weeks upon treatment discontinuation), with no symptoms. Some patients presented with a mild increase in serum bilirubin and alkaline phosphatase | [52] |
Corticosteroids | The use of glucocorticoids can result in hepatomegaly and steatosis. Moreover, their use can trigger/worsen non-alcoholic steatohepatitis. Further, long-term administration can reactivate B and C chronic viral hepatitis. Specifically, high doses of methylprednisolone can lead to acute liver damage with fatal acute liver failure. Symptoms account for jaundice (from 2 to 6 weeks after drug discontinuation). Some cases required emergency liver transplantation | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montori, M.; Baroni, G.S.; Santori, P.; Di Giampaolo, C.; Ponziani, F.; Abenavoli, L.; Scarpellini, E. Liver Damage and COVID-19: At Least a “Two-Hit” Story in Systematic Review. Curr. Issues Mol. Biol. 2023, 45, 3035-3047. https://doi.org/10.3390/cimb45040199
Montori M, Baroni GS, Santori P, Di Giampaolo C, Ponziani F, Abenavoli L, Scarpellini E. Liver Damage and COVID-19: At Least a “Two-Hit” Story in Systematic Review. Current Issues in Molecular Biology. 2023; 45(4):3035-3047. https://doi.org/10.3390/cimb45040199
Chicago/Turabian StyleMontori, Michele, Gialuca Svegliati Baroni, Pierangelo Santori, Catia Di Giampaolo, Francesca Ponziani, Ludovico Abenavoli, and Emidio Scarpellini. 2023. "Liver Damage and COVID-19: At Least a “Two-Hit” Story in Systematic Review" Current Issues in Molecular Biology 45, no. 4: 3035-3047. https://doi.org/10.3390/cimb45040199
APA StyleMontori, M., Baroni, G. S., Santori, P., Di Giampaolo, C., Ponziani, F., Abenavoli, L., & Scarpellini, E. (2023). Liver Damage and COVID-19: At Least a “Two-Hit” Story in Systematic Review. Current Issues in Molecular Biology, 45(4), 3035-3047. https://doi.org/10.3390/cimb45040199