Serum Growth Factors in Schizophrenia Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Laboratory Examination
2.3. Statistical Analysis
3. Results
3.1. The Main Demographic and Clinical Characteristics of Participants
3.2. The Concentration of Growth Factors in Patients with Schizophrenia
3.3. The Concentration of Growth Factors on the Clinical Features of Schizophrenia
3.4. Spearman’s Correlation Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jauhar, S.; Johnstone, M.; McKenna, P.J. Schizophrenia. Lancet 2022, 399, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Marder, S.R.; Cannon, T.D. Schizophrenia. N. Engl. J. Med. 2019, 381, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Müller, N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophr. Bull. 2018, 44, 973–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, M.E.; Teixeira, A.L. Inflammation in psychiatric disorders: What comes first? Ann. N. Y. Acad. Sci. 2019, 1437, 57–67. [Google Scholar] [CrossRef]
- Buckley, P.F. Neuroinflammation and Schizophrenia. Curr. Psychiatry Rep. 2019, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Mednova, I.A.; Boiko, A.S.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; Ivanova, S.A. Cytokines as Potential Biomarkers of Clinical Characteristics of Schizophrenia. Life 2022, 12, 1972. [Google Scholar] [CrossRef]
- Zozulya, S.A.; Shevelev, O.A.; Tikhonov, D.V.; Simonov, A.N.; Kaleda, V.G.; Klyushnik, T.P.; Petrova, M.V.; Mengistu, E.M. Thermal Balance of the Brain and Markers of Inflammatory Response in Patients with Schizophrenia. Bull. Exp. Biol. Med. 2022, 173, 505–509. [Google Scholar] [CrossRef]
- Ermakov, E.A.; Mednova, I.A.; Boiko, A.S.; Buneva, V.N.; Ivanova, S.A. Chemokine Dysregulation and Neuroinflammation in Schizophrenia: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 2215. [Google Scholar] [CrossRef]
- Galvez-Contreras, A.Y.; Campos-Ordonez, T.; Lopez-Virgen, V.; Gomez-Plascencia, J.; Ramos-Zuniga, R.; Gonzalez-Perez, O. Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine. Growth Factor Rev. 2016, 32, 85–96. [Google Scholar] [CrossRef]
- Marchetti, B. The LHRH-astroglial network of signals as a model to study neuroimmune interactions: Assessment of messenger systems and transduction mechanisms at cellular and molecular levels. Neuroimmunomodulation 1996, 3, 1–27. [Google Scholar] [CrossRef]
- Xian, C.J.; Zhou, X.F. Roles of transforming growth factor-alpha and related molecules in the nervous system. Mol. Neurobiol. 1999, 20, 157–183. [Google Scholar] [CrossRef] [PubMed]
- Cooper, O.; Isacson, O. Intrastriatal transforming growth factor alpha delivery to a model of Parkinson’s disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J. Neurosci. 2004, 24, 8924–8931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyagi, A.; Hara, H. Essential roles of heparin-binding epidermal growth factor-like growth factor in the brain. CNS Neurosci. Ther. 2012, 18, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhang, J.; Zhang, K.; Yang, H.; Sun, Y.; Shen, Y.; Xu, Q. A study of the functional significance of epidermal growth factor in major depressive disorder. Psychiatry Genet. 2012, 22, 161–167. [Google Scholar] [CrossRef]
- Futamura, T.; Toyooka, K.; Iritani, S.; Niizato, K.; Nakamura, R.; Tsuchiya, K.; Someya, T.; Kakita, A.; Takahashi, H.; Nawa, H. Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. Mol. Psychiatry 2002, 7, 673–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawa, H.; Sotoyama, H.; Iwakura, Y.; Takei, N.; Namba, H. Neuropathologic implication of peripheral neuregulin-1 and EGF signals in dopaminergic dysfunction and behavioral deficits relevant to schizophrenia: Their target cells and time window. BioMed Res. Int. 2014, 2014, 697935. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Brazo, J.; Baekelandt, V.; Encinas, J.M. Neurogenesis as a new target for the development of antidepressant drugs. Curr. Pharm. Des. 2014, 20, 3763–3775. [Google Scholar] [CrossRef]
- Maza-Quiroga, R.; García-Marchena, N.; Romero-Sanchiz, P.; Barrios, V.; Pedraz, M.; Serrano, A.; Nogueira-Arjona, R.; Ruiz, J.J.; Soria, M.; Campos, R.; et al. Evaluation of plasma cytokines in patients with cocaine use disorders in abstinence identifies transforming growth factor alpha (TGFα) as a potential biomarker of consumption and dual diagnosis. Peer J. 2017, 5, e3926. [Google Scholar] [CrossRef] [Green Version]
- Misiak, B.; Stramecki, F.; Stańczykiewicz, B.; Frydecka, D.; Lubeiro, A. Vascular endothelial growth factor in patients with schizophrenia: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 24–29. [Google Scholar] [CrossRef]
- Storkebaum, E.; Lambrechts, D.; Carmeliet, P. VEGF: Once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 2004, 26, 943–954. [Google Scholar] [CrossRef]
- Lee, B.-H.; Hong, J.-P.; Hwang, J.-A.; Ham, B.-J.; Na, K.-S.; Kim, W.-J.; Trigo, J.; Kim, Y.-K. Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment. Psychiatry Res. 2015, 228, 95–99. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, K.; Xie, L.; Childs, J.; Mao, X.O.; Logvinova, A.; Greenberg, D.A. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Investig. 2003, 111, 1843–1851. [Google Scholar] [CrossRef]
- Jin, K.; Zhu, Y.; Sun, Y.; Mao, X.O.; Xie, L.; Greenberg, D.A. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2002, 99, 11946–11950. [Google Scholar] [CrossRef] [Green Version]
- Guillemot, F.; Zimmer, C. From cradle to grave: The multiple roles of fibroblast growth factors in neural development. Neuron 2011, 71, 574–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Nowakowski, R.S.; Vaccarino, F.M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci. 2004, 26, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.A.; Watson, S.J.; Akil, H. The fibroblast growth factor family: Neuromodulation of affective behavior. Neuron 2012, 76, 160–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, K.; Shimizu, E.; Komatsu, N.; Nakazato, M.; Okamura, N.; Watanabe, H.; Kumakiri, C.; Shinoda, N.; Okada, S.; Takei, N.; et al. Increased levels of serum basic fibroblast growth factor in schizophrenia. Psychiatry Res. 2003, 120, 211–218. [Google Scholar] [CrossRef]
- Zhang, Y.; You, X.; Li, S.; Long, Q.; Zhu, Y.; Teng, Z.; Zeng, Y. Peripheral Blood Leukocyte RNA-Seq Identifies a Set of Genes Related to Abnormal Psychomotor Behavior Characteristics in Patients with Schizophrenia. Med. Sci. Monit. 2020, 26, e922426. [Google Scholar] [CrossRef]
- Antoniades, H.N. PDGF: A multifunctional growth factor. Baillieres Clin. Endocrinol. Metab. 1991, 5, 595–613. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.T.; Nakamura, T.; Hori, E.; Urakawa, S.; Uwano, T.; Zhao, J.; Li, R.; Bac, N.D.; Hamashima, T.; Ishii, Y.; et al. Cognitive and socio-emotional deficits in platelet-derived growth factor receptor-β gene knockout mice. PLoS ONE 2011, 6, e18004. [Google Scholar] [CrossRef]
- Betsholtz, C. Biology of platelet-derived growth factors in development. Birth Defects Res. C Embryo. Today 2003, 69, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Harirchian, M.H.; Tekieh, A.H.; Modabbernia, A.; Aghamollaii, V.; Tafakhori, A.; Ghaffarpour, M.; Sahraian, M.A.; Naji, M.; Yazdankhah, M. Serum and CSF PDGF-AA and FGF-2 in relapsing-remitting multiple sclerosis: A case-control study. Eur. J. Neurol. 2012, 19, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.R.; Opler, L.A.; Fiszbein, A. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, N.C.; Pressler, M.; Nopoulos, P.; Miller, D.; Ho, B.C. Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biol. Psychiatry 2010, 67, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Girgenti, M.J.; Hunsberger, J.; Duman, C.H.; Sathyanesan, M.; Terwilliger, R.; Newton, S.S. Erythropoietin induction by electroconvulsive seizure, gene regulation, and antidepressant-like behavioral effects. Biol. Psychiatry 2009, 66, 267–274. [Google Scholar] [CrossRef]
- Gunnell, D.; Lewis, S.; Wilkinson, J.; Georgieva, L.; Davey, G.S.; Day, I.N.; Holly, J.M.; O′Donovan, M.C.; Owen, M.J.; Kirov, G.; et al. IGF1, growth pathway polymorphisms and schizophrenia: A pooling study. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144B, 117–120. [Google Scholar] [CrossRef]
- Sotoyama, H.; Namba, H.; Chiken, S.; Nambu, A.; Nawa, H. Exposure to the cytokine EGF leads to abnormal hyperactivity of pallidal GABA neurons: Implications for schizophrenia and its modeling. J. Neurochem. 2013, 126, 518–528. [Google Scholar] [CrossRef]
- Bernstein, H.G.; Keilhoff, G.; Lendeckel, U.; Steiner, J.; Bogerts, B. Concerning HB-EGF brain levels in schizophrenia: Cellular distribution of putative sheddases may matter. CNS Neurosci. Ther. 2013, 19, 136–137. [Google Scholar] [CrossRef]
- Palomino, A.; González-Pinto, A.; Martinez-Cengotitabengoa, M.; Ruiz de Azua, S.; Alberich, S.; Mosquera, F.; Matute, C. Relationship between negative symptoms and plasma levels of insulin-like growth factor 1 in first-episode schizophrenia and bipolar disorder patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 44, 29–33. [Google Scholar] [CrossRef]
- Narasimhalu, K.; Ma, L.; De Silva, D.A.; Wong, M.C.; Chang, H.M.; Chen, C. Elevated platelet-derived growth factor AB/BB is associated with a lower risk of recurrent vascular events in stroke patients. Int. J. Stroke 2015, 10, 85–89. [Google Scholar] [CrossRef]
- Fulzele, S.; Pillai, A. Decreased VEGF mRNA expression in the dorsolateral prefrontal cortex of schizophrenia subjects. Schizophr. Res. 2009, 115, 372–373. [Google Scholar] [CrossRef] [PubMed]
- Rampino, A.; Annese, T.; Torretta, S.; Tamma, R.; Falcone, R.M.; Ribatti, D. Involvement of vascular endothelial growth factor in schizophrenia. Neurosci. Lett. 2021, 760, 136093. [Google Scholar] [CrossRef] [PubMed]
- Collinson, D.J.; Donnelly, R. Therapeutic angiogenesis in peripheral arterial disease: Can biotechnology produce an effective collateral circulation? Eur. J. Vasc. Endovasc. Surg. 2004, 28, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Gerasimova, V.I.; Kornetov, A.N.; Loonen, A.J.M.; Bokhan, N.A.; Ivanova, S.A. Cytokine Level Changes in Schizophrenia Patients with and without Metabolic Syndrome Treated with Atypical Antipsychotics. Pharmaceuticals 2021, 14, 446. [Google Scholar] [CrossRef] [PubMed]
- Poltavskaya, E.G.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Kornetov, A.N.; Bokhan, N.A.; Ivanova, S.A. Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms. Life 2021, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness: Evolution and role in mental disorders. Acta Neuropsychiatr. 2018, 30, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness-focus on potential biomarkers for circuitry including the habenuloid complex. Acta Neuropsychiatr. 2022, 34, 229–239. [Google Scholar] [CrossRef]
- Domenici, E.; Willé, D.R.; Tozzi, F.; Prokopenko, I.; Miller, S.; McKeown, A.; Brittain, C.; Rujescu, D.; Giegling, I.; Turck, C.W.; et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS ONE 2010, 5, e9166. [Google Scholar] [CrossRef] [Green Version]
Parameter | Healthy Persons (n = 102) | Patients (n = 236) | p-Value | |
---|---|---|---|---|
Age, years | 35 [27; 47] | 36 [30; 46] | 0.477 | |
Gender, n (%) | Male | 47 (46.1%) | 115 (48.7%) | 0.654 |
Female | 55 (53.9%) | 121 (51.3%) | ||
Age of manifestation, years | - | 24.5 [21; 32] | ||
Duration of disorder, years | - | 12 [5; 19] | ||
Clinical course, n (%) | Episodic course | - | 94 (43.1%) | |
Continuous course | - | 102 (46.8%) | ||
PANSS, positive symptoms Score | - | 21 [17; 25] | ||
PANSS, negative symptoms Score | - | 25 [21; 28] | ||
PANSS, general psychopathology Score | - | 53 [44; 58] | ||
PANSS, total score | - | 100 [87; 109] | ||
Leading symptomatology, n (%) | Negative | - | 118 (50.2%) | |
Positive | - | 117 (49.8%) | ||
Duration of antipsychotic treatment, years | - | 7 [3.1; 14.9] | ||
Total CPZeq | - | 342.5 [200.1; 676] |
Growth Factors, pg/mL | Healthy Persons (n = 102) | Patients with Schizophrenia (n = 236) | p-Value |
---|---|---|---|
EGF | 146.8 [74.83; 259.72] | 172 [116.1; 240.43] | 0.121 |
VEGF | 146.98 [108.44; 252.66] | 133.68 [82.78; 194] | 0.119 |
FGF-2 | 65.11 [46.61; 132.72] | 67.87 [43.15; 139.96] | 0.75 |
TGF-α | 4.61 [2.81; 7.2] | 5.06 [3.98; 7.04] | 0.013 * |
PDGF-AA | 2853.99 [1555; 4177] | 3320 [2281; 4392] | 0.04 * |
PDGF-AB/BB | 12263 [8197.75; 23576.57] | 11100 [8637; 19878] | 0.119 |
Growth Factors, pg/mL | Healthy Men (n = 47) | Men with Schizophrenia (n = 115) | p-Value |
---|---|---|---|
EGF | 152.37 [85.03; 288.14] | 183.51 [129.66; 266.76] | 0.294 |
VEGF | 178.21 [114.64; 308.87] | 141.7 [82.78; 222.48] | 0.029 * |
FGF-2 | 71.2 [46.61; 137.6] | 59.16 [42.36; 137.6] | 0.419 |
TGF-α | 4.7 [3; 8.07] | 4.96 [3.74; 7.08] | 0.456 |
PDGF-AA | 3174.55 [1554.25; 4866.72] | 3320 [1940.5; 4531] | 0.56 |
PDGF-AB/BB | 12258 [8688; 18024] | 11257 [8955.5; 25078.13] | 0.855 |
Growth Factors, pg/mL | Healthy Women (n = 55) | Women with Schizophrenia (n = 121) | p-Value |
---|---|---|---|
EGF | 139.77 [72.12; 252.42] | 158.76 [105.25; 228.23] | 0.269 |
VEGF | 130.41 [83.74; 199.13] | 130.95 [83.67; 177.18] | 0.933 |
FGF-2 | 54.15 [45.23; 104.41] | 85.78 [43.17; 140.54] | 0.189 |
TGF-α | 4 [2.46; 6.14] | 5.15 [4.07; 7.01] | 0.006 * |
PDGF-AA | 2459 [1557.27; 4038.27] | 3317 [2658.25; 4259.25] | 0.025 * |
PDGF-AB/BB | 12274.05 [7419.3; 26344.14] | 11032 [8296; 1823] | 0.369 |
Growth Factors, pg/mL | Negative Symptomatic (n = 118) | Positive Symptomatic (n = 117) | p-Value |
---|---|---|---|
EGF | 176.35 [119.07; 234.53] | 165.73 [110.78; 258.51] | 0.969 |
VEGF | 130.95 [82.78; 195.46] | 133.68 [80.58; 193.62] | 0.947 |
FGF-2 | 64.73 [41.07; 139.96] | 68.77 [43.99; 140.54] | 0.407 |
TGF-α | 4.75 [3.55; 6.99] | 5.27 [4.1; 7.36] | 0.124 |
PDGF-AA | 3322 [1905.25; 4482.25] | 3308 [2508.75; 4304.75] | 0.788 |
PDGF-AB/BB | 10970.5 [8225.75; 24894.34] | 11323 [8898; 18905.5] | 0.635 |
Growth Factors, pg/mL | Episodic Course (n = 94) | Continuous Course (n = 102) | p-Value |
---|---|---|---|
EGF | 176.35 [119.07; 234.53] | 165.73 [110.78; 258.51] | 0.997 |
VEGF | 130.95 [82.78; 195.46] | 133.68 [80.58; 193.62] | 0.528 |
FGF-2 | 64.73 [41.07; 139.96] | 68.77 [43.99; 140.54] | 0.286 |
TGF-α | 4.75 [3.55; 6.99] | 5.27 [4.1; 7.36] | 0.172 |
PDGF-AA | 3322 [1905.25; 4482.25] | 3308 [2508.75; 4304.75] | 0.456 |
PDGF-AB/BB | 10970.5 [8225.75; 24894.34] | 11323 [8898; 18905.5] | 0.189 |
Parameter | Po, p-Value | EGF | VEGF | FGF-2 | TGF-α | PDGF-AA | PDGF-AB/BB |
---|---|---|---|---|---|---|---|
Age | Po p-value | −0.131 * 0.045 | 0.133 * 0.044 | 0.246 * <0.001 | −0.079 0.23 | −0.029 0.669 | −0.133 * 0.042 |
Duration of illness | Po p-value | −0.049 0.456 | 0.051 0.442 | 0.157 * 0.016 | −0.075 0.254 | −0.004 0.957 | −0.121 0.064 |
PANSS (total score) | Po p-value | −0.066 0.315 | 0.037 0.584 | 0.172* 0.009 | −0.212 * 0.001 | −0.066 0.337 | −0.079 0.232 |
EGF | Po p-value | 1 | −0.012 0.859 | −0.196 * 0.003 | 0.291 * <0.001 | 0.229* 0.001 | 0.292 * <0.001 |
VEGF | Po p-value | 1 | 0.365 * <0.001 | 0.105 0.114 | −0.015 0.823 | 0.074 0.265 | |
FGF-2 | Po p-value | 1 | −0.046 0.483 | −0.115 0.09 | −0.127 0.051 | ||
TGF-α | Po p-value | 1 | 0.13 0.056 | 0.278 * <0.001 | |||
PDGF-AA | Po p-value | 1 | 0.253 * <0.001 | ||||
PDGF-AB/BB | Po p-value | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Bokhan, N.A.; Ivanova, S.A. Serum Growth Factors in Schizophrenia Patients. Curr. Issues Mol. Biol. 2023, 45, 3291-3301. https://doi.org/10.3390/cimb45040215
Boiko AS, Mednova IA, Kornetova EG, Bokhan NA, Ivanova SA. Serum Growth Factors in Schizophrenia Patients. Current Issues in Molecular Biology. 2023; 45(4):3291-3301. https://doi.org/10.3390/cimb45040215
Chicago/Turabian StyleBoiko, Anastasiia S., Irina A. Mednova, Elena G. Kornetova, Nikolay A. Bokhan, and Svetlana A. Ivanova. 2023. "Serum Growth Factors in Schizophrenia Patients" Current Issues in Molecular Biology 45, no. 4: 3291-3301. https://doi.org/10.3390/cimb45040215
APA StyleBoiko, A. S., Mednova, I. A., Kornetova, E. G., Bokhan, N. A., & Ivanova, S. A. (2023). Serum Growth Factors in Schizophrenia Patients. Current Issues in Molecular Biology, 45(4), 3291-3301. https://doi.org/10.3390/cimb45040215