Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review
Abstract
:1. Introduction
2. Tumor-Infiltrating Lymphocytes (TILs)
2.1. Overall TIL-Density
2.2. Overall T-Cell Density
2.3. T-Cell Subtype Density
2.3.1. Effects of RT
2.3.2. Prognostic Relevance
2.4. Mismatch Repair Deficiency, Microsatellite Instability and TILs
3. Immune Checkpoint and Immune-Related Molecule Expression
3.1. PD-1/PD-L1 Pathway
3.1.1. Effects of RT
3.1.2. Prognostic Relevance
3.2. The CTLA-4/CD80-86/CD28 Pathway
3.3. The CD47-SIRPα ‘Don’t Eat Me’ Pathway
3.4. HLA-Class-I Molecules
Author (Year), Reference | No. of Cases | Biomarker | Main Findings |
---|---|---|---|
Lymphocytes | |||
Ropponen et al. (1997) [10] | 98 | TIL-density | High TIL-density was linked with earlier T,N stage and better survival |
McMullen et al. (2010) [17] | 40 | CD3+ T-cell density | High CD3+ T-cell density was linked with improved survival, regardless of disease stage |
Richards et al. (2014) [18] | 129 | CD3+ T-cell density | High CD3+ T-cell density was associated with better prognosis |
Dahlin et al. (2011) [19] | 110 | CD3+ T-cell density | High CD3+ T-cell density defined longer survival |
Wang et al. (2015) [20] | 185 | CD45RO+ T-cell density | High post-CRT CD45RO+ T-cell density was linked with improved downstaging and better prognosis |
Shinto et al. (2014) [23] | 93 | CD8+ T-cell density | Increased CD8+ T-cell counts after CRT related with better prognosis |
Anitei et al. (2014) [33] | 111 | CD3+ and CD8+ T-cell density | High pre-RT CD3+ and CD8+ T-cell density was correlated with improved downstaging after RT and better DFS |
Berntsson et al. (2017) [34] | 209 | CD3+, CD8+ and FOXP3+ T-cell density | High CD3+ T-cell density was correlated with better prognosis |
Schollbach et al. (2019) [35] | 106 | CD8+ T-cell density | High post-CRT CD8+ T-cell density was associated with better downstaging and prognosis |
Imaizumi et al. (2020) [36] | 188 | CD4+ and CD8+ T-cell density | High post-CRT CD4+ and CD8+ T-cell density was linked with better prognosis |
Yasuda et al. (2011) [37] | 48 | CD4+ and CD8+ T-cell density | High pre-CRT CD4+ and CD8+ T-cell density was linked with improved downstaging and prognosis |
Lai et al. (2020) [38] | 134 | CD4+ and CD8+ T-cell density | High pre-CRT CD4+ and CD8+ T-cell density was linked with improved downstaging |
Posselt et al. (2016) [28] | 202 | CD8+ and FOXP3+ T-cell density | High post-CRT FOXP3+ T-cell density was linked with better prognosis |
Mirjolet et al. (2017) [31] | 237 | CD8+ to FOXP3+ T-cell ratio | Low post-RT CD8+ to FOXP3+ T-cell density was linked with better prognosis |
Reimers et al. (2014) [39] | 495 | FOXP3+ T-cell density | High FOXP3+ T-cell density was associated with better prognosis |
Mcoy et al. (2017) [40] | 106 | CD3+, CD8+ and FOXP3+ T-cell density | No association of any T-cell density assessed before CRT with clinical outcome |
Zhang et al. (2019) [41] | 109 | CD4+, CD8+ and FOXP3+ T-cell density | High CD4+ and CD8+ and low FOXP3+ T-cell density correlated with better treatment response and prognosis |
Zaghloul et al. (2021) [42] | 50 | CD8+ and FOXP3+ T-cell density | High pre-CRT CD8+ and low FOXP3+ T-cell density were associated with improved downstaging |
Macrophages | |||
Kitagawa et al. (2022) [87] | 275 | CD68+ macrophage density | High pre-CRT CD68+ macrophage density was linked with better response to CRT |
Liu et al. (2021) [88] | 191 | CD68+ macrophage density | Low pre-CRT CD68+ macrophage density was correlated with poor response. Low pre- to post-CRT CD68+ macrophage ratio was linked with improved prognosis |
Author (Year), Reference | No. of Cases | Biomarker | Main Findings |
---|---|---|---|
Lymphocytes | |||
Lim et al. (2014) [22] | 52 | T-cell counts, CD4, CD8 | Increased T-cell infiltration after RT/CRT. No change in CD4+/CD8+ relative lymphocyte counts |
Shinto et al. (2014) [23] | 93 | CD8+ and FOXP3+ T-cell density | Increased CD8+ T-cell density after CRT. FOXP3+ T-cell density remained unaltered |
Teng et al. (2015) [24] | 136 | CD8+ T-cell density | Increased CD8+ T-cell density after CRT |
Teng et al. (2015) [25] | 62 | CD8+, CD4+ and FOXP3+ T-cell density | Increased CD8+ and CD4+ T-cell density after CRT. FOXP3+ T-cell density remained unaltered |
Matsutani et al. (2018) [26] | 64 | CD8+ T-cell density | Increased CD8+ T-cell density after CRT |
Chen et al. (2019) [27] | 112 | CD8+ T-cell density | Increased CD8+ T-cell density after CRT |
Posselt et al. (2016) [28] | 202 | CD8+ and FOXP3+ T-cell density | Reduction in FOXP3+ T-cell density after CRT. CD8+ T-cell density remained unaltered |
Rudolf et al. (2016) [29] | 191 | CD8+ and FOXP3+ T-cell density | Reduction in CD8+ and FOXP3+ T-cell density after CRT. |
Jarosch et al. (2017) [30] | 130 | CD8+/GrzB+ to CD8+ T-cell ratio | Increased ratio after CRT. |
Mirjolet et al. (2017) [31] | 237 | CD8+ to FOXP3+ T-cell ratio | Decreased ratio after RT. |
Lim et al. (2017) [57] | 123 | CD8+ T-cell density | Increased CD8+ T-cell density after CRT |
PD-1/PD-L1 pathway | |||
Chen et al. (2019) [27] | 112 | PD-L1 cancer cell expression | Increased PD-L1 cancer cell expression after CRT |
Hech et al. (2016) [55] | 103 | PD-L1 cancer cell expression | Increased PD-L1 cancer cell expression after CRT |
Chiang et al. (2019) [56] | 104 | PD-L1 cancer cell expression | Increased PD-L1 cancer cell expression after CRT |
Lim et al. (2017) [57] | 123 | PD-L1 cancer cell expression | Increased PD-L1 cancer cell expression after CRT |
Ogura et al. (2018) [58] | 287 | PD-L1+ T-cell density | Increased PD-L1+ T-cell density after CRT. Direct correlation with CD8+ T-cell density |
Huemer et al. (2020) [59] | 72 | PD-L1 cancer cell (TPS) and inflammatory cell expression (CPS) | Decreased TPS and CPS after CRT |
Tominaga et al. (2019) [61] | 117 | Serum soluble PD-1 and PD-L1 levels | Increased PD-L1 and stable PD-1 levels after CRT |
Tayshetye (2022) [105] | 41 | PD-L1+ TIL-density | Stable PD-L1+ TIL density after CRT |
CTLA-4/CD80-86/CD28 pathway | |||
No studies available | |||
CD47/SIRPα pathway | |||
No studies available | |||
HLA-class-I expression | |||
Sato et al. (2014) [102] | 78 | HLA-class-I cancer cell expression | Increased HLA-class-I cancer cell expression after hyperthermic CRT. |
Other immune-related pathways | |||
Peng et al. (2021) [106] | 76 | LAG-3+ and TIM-3+ TIL-density | Increased LAG-3+ and decreased TIM-3+ TIL density after CRT |
Tayshetye (2022) [105] | 41 | OX40+, TIM-3+ and LAG-3+ TIL-density | Increased OX40+ and LAG-3+ TIL density after CRT. TIM-3+ TIL density was unaltered |
Author (Year), Reference | No. of Cases | Biomarker | Main Findings |
---|---|---|---|
PD-1/PD-L1 pathway | |||
Chen et al. (2019) [27] | 112 | PD-L1 cancer cell expression | High pre- and post-CRT PD-L1 cancer cell expression was linked with better prognosis |
Boustani et al. (2020) [50] | 74 | PD-L1 cancer cell expression | High pre-CRT PD-L1 cancer cell expression was linked with better prognosis. No association of PD-L1 expression with CD8+ T-cell density |
Chiang et al. (2019) [56] | 104 | PD-L1 cancer cell expression | High post-CRT PD-L1 cancer cell expression was associated with better prognosis |
Huemer et al. (2020) [59] | 72 | PD-L1 cancer cell (TPS) and inflammatory cell expression (CPS) | High CPS was linked with improved downstaging, while high pre- and post-CRT TPS was linked with better prognosis |
Shao et al. (2017) [62] | 68 | PD-L1 cancer cell expression | High post-RT PD-L1 cancer cell expression was linked with poor prognosis |
Saigusa et al. (2016) [63] | 90 | PD-L1 cancer cell expression | High post-CRT PD-L1 cancer cell expression was linked with poor prognosis. High PD-L1 expression was linked with low CD8+ T-cell density |
Lim et al. (2017) [57] | 123 | PD-L1 cancer cell expression | Sustained high PD-L1 cancer cell expression after CRT was linked with worse prognosis |
Park et al. (2017) [67] | 75 | PD-L1+ TIL-density | High pre-CRT PD-L1+ TIL density was linked with complete tumor regression |
Gruber et al. (2020) [68] | 75 | PD-1+ and PD-L1+ TIL density | PD-1+ TIL density was linked with better prognosis |
Tominaga et al. (2019) [61] | 117 | Serum soluble PD-1 and PD-L1 levels | High serum-soluble PD-L1 levels after CRT were with worse prognosis |
Peng et al. (2021) [106] | 76 | PD-1+ TIL-density | High post-CRT PD-1+ TIL density was linked with better prognosis |
CTLA-4/CD28/CD80-86 pathway | |||
Yin et al., (2022), [82] | 255 | CTLA-4 and CD86+ TIL-density | High post-CRT CTLA-4+ and low CD86+ TIL density were linked with better prognosis. High CTLA-4+ and CD8+ density were directly related to each other |
CD47/SIRPα pathway | |||
No studies available | |||
HLA-class-I expression | |||
Sato et al. (2014) [102] | 78 | HLA-class-I cancer cell expression | No significant association with prognosis in multivariate analysis |
Speetjens et al. (2008) [103] | 1135 | HLA-class-I cancer cell expression | Low HLA-class-I expression was linked with worse prognosis |
Reimers et al. (2014) [39] | 495 | HLA-class-I cancer cell expression | Low HLA-class-I expression was linked with worse prognosis |
Michelakos et al. (2022) [104] | 1243 | HLA-class-I cancer cell expression | Low HLA-B/C expression was linked with worse prognosis |
Other immune-related pathways | |||
Peng et al. (2021) [106] | 76 | LAG-3+ and TIM-3+ TIL-density | High post-CRT LAG-3+ and TIM-3+ TIL density was linked with better prognosis |
Aminoacids and metabolites | |||
Schollbach et al. (2019) [35] | 106 | IDO1 cancer cell and stroma expression | High IDO1 cancer cell and stroma expression was linked with better prognosis |
Zhang et al. (2015) [107] | 20 | CD73+ cancer cell expression | High CD73 cancer cell expression was associated with poor prognosis |
Zhang et al. (2015) [108] | 17 | CD39+ cancer cell expression | High CD39+ cancer cell expression was linked with better prognosis |
3.5. Other Immune-Related Pathways
4. Aminoacids and Metabolites
5. Systemic Immune Response
6. Patient Derived Tumor Organoids
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Lymphocyte/Monocyte Markers | Lymphocyte Subtype | Function | Reference |
---|---|---|---|
CD3 | T-cell co-receptor expressed in all T-cells. Additionally xpressed in pre-T-cell stem cells | Involved in both CD4+ and CD8+ T-cell activation | [160] |
CD45RO | Expressed in activated and memory T-cells | Involved in T-cell activation | [161] |
CD4 | Expressed in naïve T-cells, but also in dendritic cells and monocytes | CD4-expressing T-cells can be differentiated to helper memory and regulatory T-cells, while CD4 expression is sustained | [162] |
CD8 | Expressed in T-cells | CD8+ are critical T-cells of the adaptive immunity. These are mainly cytotoxic T-cells that target virally infected and cancer cells | [163] |
FOXP3 | CD4+/CD25+ T-cells that have been differentiated to express FOXP3 | FOXP3+ T-cells are regulatory T-cels (Tregs) that sustain immune tollerance | [164] |
Granzyme B | CD8+ cytotoxic T-cells may express Granzyme B | Cytotoxic T-cells and NK cells use granzyme B to kill virally infected and cancer cells | [165] |
PD-L1 | Expressed by macrophages and a subset of regulatory lymphocytes | PD-L1 suppresses the adaptive responses of the immune system | [166] |
PD-1 | Expressed by cytotoxic T-cells and activated NK and B-cells, monocytes and dendritic cells | Involved in the inhibition of both adaptive and innate immunity | [166] |
CTLA-4 | Expressed by cytotoxic T-cells and Tregs | Binding to CD80/86 suppresses immune response | [167] |
CD28 | Expressed by cytotoxic T-cells | Activates T-cell activity when bound to CD80/86. CTLA4 is a competitive inhibitor of CD28 | [167] |
SIRPα | Expressed by macrophages | Blocks phagocytic activity when bound to CD47 on target cells | [168] |
CD68 | Expressed by macrophages and mononuclear cells | Involved in innate immunity | [169] |
LAG3/CD223 | Ligand of MHC-class-II. Expressed by activated T-cells, NK and B-cells and Dendritic cells | Negative regulator of proliferation and activation of T-cells. Sustains tollerogenic state of CD8+ T-cells | [170] |
TIM3 | Expressed on activated CD4+ and CD8+ T-cells but also in dendritic cells and other immune cells | Mediate CD8 T-cell exhaustion | [171] |
TIGIT | Expressed by CD8+ T-cells and NK-cells | Blockage of TIGIT promotes T-cell proliferation and cytotoxic T-cell activity. Binding to CD155 on dendritic cells promotes their tolerogenic status | [117] |
OX40/CD134 | Expressed by activated T-cells, NK-cells and neutrophils | Binds to OX40L ligand. Involved in the survival of T-cells, the development of memory T-cells and the activation of dendritic cells. Inhibits FOXP3 expression | [172] |
References
- Pelner, L. Host-tumor antagonism. XXXVI. Auto-immune disease and cancer: A correlation of data on the lymphocyte, thymus, homograft rejection and somatic mutation. J. Am. Geriatr. Soc. 1966, 7, 716–730. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, I.M.; Tiniakos, D.; Kouloulias, V.; Zygogianni, A. The molecular basis of immuno-radiotherapy. Int. J. Radiat. Biol. 2022, 99, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, M.I.; Giatromanolaki, A. Lymphopenia and intratumoral lymphocytic balance in the era of cancer immuno-radiotherapy. Crit. Rev. Oncol. Hematol. 2021, 159, 103226. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, M.I.; Giatromanolaki, A. Tumor microenvironment, immune response and post-radiotherapy tumor clearance. Clin. Transl. Oncol. 2020, 22, 2196–2205. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef]
- Li, M.; Li, J.Y.; Zhao, A.L.; Gu, J. Colorectal cancer or colon and rectal cancer? Clinicopathological comparison between colonic and rectal carcinomas. Oncology 2007, 73, 52–57. [Google Scholar] [CrossRef]
- Paschke, S.; Jafarov, S.; Staib, L.; Kreuser, E.D.; Maulbecker-Armstrong, C.; Roitman, M.; Holm, T.; Harris, C.C.; Link, K.H.; Kornmann, M. Are Colon and Rectal Cancer Two Different Tumor Entities? A Proposal to Abandon the Term Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2577. [Google Scholar] [CrossRef]
- Atreya, I.; Neurath, M.F. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022, 10, 2940. [Google Scholar] [CrossRef]
- Ropponen, K.M.; Eskelinen, M.J.; Lipponen, P.K.; Alhava, E.; Kosma, V.M. Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J. Pathol. 1997, 182, 318–324. [Google Scholar] [CrossRef]
- Buckowitz, A.; Knaebel, H.P.; Benner, A.; Bläker, H.; Gebert, J.; Kienle, P.; von Knebel Doeberitz, M.; Kloor, M. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br. J. Cancer 2005, 92, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.F.; Arbman, G.; Wadhra, T.I.; Zhang, H.; Sun, X.F. Relationships of tumor inflammatory infiltration and necrosis with microsatellite instability in colorectal cancers. World J. Gastroenterol. 2005, 11, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
- Klintrup, K.; Mäkinen, J.M.; Kauppila, S.; Väre, P.O.; Melkko, J.; Tuominen, H.; Tuppurainen, K.; Mäkelä, J.; Karttunen, T.J.; Mäkinen, M.J. Inflammation and prognosis in colorectal cancer. Eur. J. Cancer 2005, 41, 2645–2654. [Google Scholar] [CrossRef]
- Ogino, S.; Nosho, K.; Irahara, N.; Meyerhardt, J.A.; Baba, Y.; Shima, K.; Glickman, J.N.; Ferrone, C.R.; Mino-Kenudson, M.; Tanaka, N.; et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin. Cancer Res. 2009, 15, 6412–6420. [Google Scholar] [CrossRef]
- Huh, J.W.; Lee, J.H.; Kim, H.R. Prognostic significance of tumor-infiltrating lymphocytes for patients with colorectal cancer. Arch. Surg. 2012, 147, 366–372. [Google Scholar] [CrossRef]
- Rozek, L.S.; Schmit, S.L.; Greenson, J.K.; Tomsho, L.P.; Rennert, H.S.; Rennert, G.; Gruber, S.B. Tumor-Infiltrating Lymphocytes, Crohn’s-Like Lymphoid Reaction, and Survival from Colorectal Cancer. J. Natl. Cancer Inst. 2016, 108, djw027. [Google Scholar] [CrossRef] [PubMed]
- McMullen, T.P.; Lai, R.; Dabbagh, L.; Wallace, T.M.; de Gara, C.J. Survival in rectal cancer is predicted by T cell infiltration of tumour-associated lymphoid nodules. Clin. Exp. Immunol. 2010, 161, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.H.; Roxburgh, C.S.; Powell, A.G.; Foulis, A.K.; Horgan, P.G.; McMillan, D.C. The clinical utility of the local inflammatory response in colorectal cancer. Eur. J. Cancer 2014, 50, 309–319. [Google Scholar] [CrossRef]
- Dahlin, A.M.; Henriksson, M.L.; Van Guelpen, B.; Stenling, R.; Oberg, A.; Rutegård, J.; Palmqvist, R. Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor. Mod. Pathol. 2011, 24, 671–682. [Google Scholar] [CrossRef]
- Wang, L.; Zhai, Z.W.; Ji, D.B.; Li, Z.W.; Gu, J. Prognostic value of CD45RO(+) tumor-infiltrating lymphocytes for locally advanced rectal cancer following 30 Gy/10f neoadjuvant radiotherapy. Int. J. Colorectal. Dis. 2015, 30, 753–760. [Google Scholar] [CrossRef]
- Matsuda, S.; Yamane, T.; Hamaji, M. CD4- and TCRalphabeta-positive T lymphocytes predominantly infiltrated into well-moderately differentiated colon adenocarcinoma tissues. Jpn. J. Clin. Oncol. 1998, 28, 97–103. [Google Scholar] [CrossRef]
- Lim, S.H.; Chua, W.; Cheng, C.; Descallar, J.; Ng, W.; Solomon, M.; Bokey, L.; Wong, K.; Lee, M.T.; de Souza, P.; et al. Effect of neoadjuvant chemoradiation on tumor-infiltrating/associated lymphocytes in locally advanced rectal cancers. Anticancer Res. 2014, 34, 6505–6513. [Google Scholar] [PubMed]
- Shinto, E.; Hase, K.; Hashiguchi, Y.; Sekizawa, A.; Ueno, H.; Shikina, A.; Kajiwara, Y.; Kobayashi, H.; Ishiguro, M.; Yamamoto, J. CD8+ and FOXP3+ tumor-infiltrating T cells before and after chemoradiotherapy for rectal cancer. Ann. Surg. Oncol. 2014, 21 (Suppl. 3), 414–421. [Google Scholar] [CrossRef]
- Teng, F.; Mu, D.; Meng, X.; Kong, L.; Zhu, H.; Liu, S.; Zhang, J.; Yu, J. Tumor infiltrating lymphocytes (TILs) before and after neoadjuvant chemoradiotherapy and its clinical utility for rectal cancer. Am. J. Cancer Res. 2015, 5, 2064–2074. [Google Scholar] [PubMed]
- Teng, F.; Meng, X.; Kong, L.; Mu, D.; Zhu, H.; Liu, S.; Zhang, J.; Yu, J. Tumor-infiltrating lymphocytes, forkhead box P3, programmed death ligand-1, and cytotoxic T lymphocyte-associated antigen-4 expressions before and after neoadjuvant chemoradiation in rectal cancer. Transl. Res. 2015, 166, 721–732.e1. [Google Scholar] [CrossRef] [PubMed]
- Matsutani, S.; Shibutani, M.; Maeda, K.; Nagahara, H.; Fukuoka, T.; Nakao, S.; Hirakawa, K.; Ohira, M. Significance of tumor-infiltrating lymphocytes before and after neoadjuvant therapy for rectal cancer. Cancer Sci. 2018, 109, 966–979. [Google Scholar] [CrossRef]
- Chen, T.W.; Huang, K.C.; Chiang, S.F.; Chen, W.T.; Ke, T.W.; Chao, K.S.C. Prognostic relevance of programmed cell death-ligand 1 expression and CD8+ TILs in rectal cancer patients before and after neoadjuvant chemoradiotherapy. J. Cancer Res. Clin. Oncol. 2019, 145, 1043–1053. [Google Scholar] [CrossRef]
- Posselt, R.; Erlenbach-Wünsch, K.; Haas, M.; Jeßberger, J.; Büttner-Herold, M.; Haderlein, M.; Hecht, M.; Hartmann, A.; Fietkau, R.; Distel, L.V. Spatial distribution of FoxP3+ and CD8+ tumour infiltrating T cells reflects their functional activity. Oncotarget 2016, 7, 60383–60394. [Google Scholar] [CrossRef]
- Rudolf, J.; Büttner-Herold, M.; Erlenbach-Wünsch, K.; Posselt, R.; Jessberger, J.; Haderlein, M.; Hecht, M.; Hartmann, A.; Fietkau, R.; Distel, L. Regulatory T cells and cytotoxic T cells close to the epithelial-stromal interface are associated with a favorable prognosis. Oncoimmunology 2020, 9, 1746149. [Google Scholar] [CrossRef]
- Jarosch, A.; Sommer, U.; Bogner, A.; Reißfelder, C.; Weitz, J.; Krause, M.; Folprecht, G.; Baretton, G.B.; Aust, D.E. Neoadjuvant radiochemotherapy decreases the total amount of tumor infiltrating lymphocytes, but increases the number of CD8+/Granzyme B+ (GrzB) cytotoxic T-cells in rectal cancer. Oncoimmunology 2017, 7, e1393133. [Google Scholar] [CrossRef]
- Mirjolet, C.; Charon-Barra, C.; Ladoire, S.; Arbez-Gindre, F.; Bertaut, A.; Ghiringhelli, F.; Leroux, A.; Peiffert, D.; Borg, C.; Bosset, J.F.; et al. Tumor lymphocyte immune response to preoperative radiotherapy in locally advanced rectal cancer: The LYMPHOREC study. Oncoimmunology 2017, 7, e1396402. [Google Scholar] [CrossRef] [PubMed]
- Däster, S.; Eppenberger-Castori, S.; Hirt, C.; Zlobec, I.; Delko, T.; Nebiker, C.A.; Soysal, S.D.; Amicarella, F.; Iezzi, G.; Sconocchia, G.; et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis. Markers 2014, 2014, 792183. [Google Scholar] [CrossRef] [PubMed]
- Anitei, M.G.; Zeitoun, G.; Mlecnik, B.; Marliot, F.; Haicheur, N.; Todosi, A.M.; Kirilovsky, A.; Lagorce, C.; Bindea, G.; Ferariu, D.; et al. Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin. Cancer Res. 2014, 20, 1891–1899. [Google Scholar] [CrossRef]
- Berntsson, J.; Svensson, M.C.; Leandersson, K.; Nodin, B.; Micke, P.; Larsson, A.H.; Eberhard, J.; Jirström, K. The clinical impact of tumour-infiltrating lymphocytes in colorectal cancer differs by anatomical subsite: A cohort study. Int. J. Cancer. 2017, 141, 1654–1666. [Google Scholar] [CrossRef] [PubMed]
- Schollbach, J.; Kircher, S.; Wiegering, A.; Seyfried, F.; Klein, I.; Rosenwald, A.; Germer, C.T.; Löb, S. Prognostic value of tumour-infiltrating CD8+ lymphocytes in rectal cancer after neoadjuvant chemoradiation: Is indoleamine-2, 3-dioxygenase (IDO1) a friend or foe? Cancer Immunol. Immunother. 2019, 68, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, K.; Suzuki, T.; Kojima, M.; Shimomura, M.; Sakuyama, N.; Tsukada, Y.; Sasaki, T.; Nishizawa, Y.; Taketomi, A.; Ito, M.; et al. Ki67 expression and localization of T cells after neoadjuvant therapies as reliable predictive markers in rectal cancer. Cancer Sci. 2020, 111, 23–35. [Google Scholar] [CrossRef]
- Yasuda, K.; Nirei, T.; Sunami, E.; Nagawa, H.; Kitayama, J. Density of CD4(+) and CD8(+) T lymphocytes in biopsy samples can be a predictor of pathological response to chemoradiotherapy (CRT) for rectal cancer. Radiat. Oncol. 2011, 6, 49. [Google Scholar] [CrossRef]
- Lai, S.; Lou, X.; Fan, X.; Sun, W.; Deng, Y.; Wang, J.; Huang, Y.; Dou, R. Density and distribution of lymphocytes in pretherapeutic rectal cancer and response to neoadjuvant therapy. Gastroenterol. Rep. 2020, 8, 445–452. [Google Scholar] [CrossRef]
- Reimers, M.S.; Engels, C.C.; Putter, H.; Morreau, H.; Liefers, G.J.; van de Velde, C.J.; Kuppen, P.J. Prognostic value of HLA class I, HLA-E, HLA-G and Tregs in rectal cancer: A retrospective cohort study. BMC Cancer 2014, 14, 486. [Google Scholar] [CrossRef]
- McCoy, M.J.; Hemmings, C.; Anyaegbu, C.C.; Austin, S.J.; Lee-Pullen, T.F.; Miller, T.J.; Bulsara, M.K.; Zeps, N.; Nowak, A.K.; Lake, R.A.; et al. Tumour-infiltrating regulatory T cell density before neoadjuvant chemoradiotherapy for rectal cancer does not predict treatment response. Oncotarget 2017, 8, 19803–19813. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, W.; Tong, X.; Bu, P.; Xu, J.; Xi, Y. Correlation between tumor microenvironment-associated factors and the efficacy and prognosis of neoadjuvant therapy for rectal cancer. Oncol. Lett. 2019, 17, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, H.; Abbas, A.; Abdulah, D. Tumor Microenvironment Mediators CD8+- and FOXP3+-Labeled T Lymphocytes Are Prospective Prognosticators in Curatively Treated Rectal Cancer Patients. J. Gastrointest. Cancer 2021, 52, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, T.A.; Erie, D.A. DNA mismatch repair. Annu. Rev. Biochem. 2005, 74, 681–710. [Google Scholar] [CrossRef]
- de Rosa, N.; Rodriguez-Bigas, M.A.; Chang, G.J.; Veerapong, J.; Borras, E.; Krishnan, S.; Bednarski, B.; Messick, C.A.; Skibber, J.M.; Feig, B.W.; et al. DNA Mismatch Repair Deficiency in Rectal Cancer: Benchmarking Its Impact on Prognosis, Neoadjuvant Response Prediction, and Clinical Cancer Genetics. J. Clin. Oncol. 2016, 34, 3039–3046. [Google Scholar] [CrossRef]
- Cho, H.J.; Baek, J.H.; Baek, D.W.; Kang, B.W.; Lee, S.J.; Kim, H.J.; Park, S.Y.; Park, J.S.; Choi, G.S.; Kim, J.G. Prognostic Significance of Clinicopathological and Molecular Features After Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients. In Vivo 2019, 33, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Zhan, Y.; Liu, Z.; Zhao, X.Z.; Wang, W.; Wang, G.; Zhang, Z.; Li, G.; Zhang, X.; Zhang, C. Mismatch repair system deficiency is associated with chemoradiotherapy resistance in locally advanced rectal adenocarcinoma patients. J. Surg. Oncol. 2022, 125, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A. Satellite DNA: An Evolving Topic. Genes 2017, 8, 230. [Google Scholar] [CrossRef]
- Thibodeau, S.N.; French, A.J.; Cunningham, J.M.; Tester, D.; Burgart, L.J.; Roche, P.C.; McDonnell, S.K.; Schaid, D.J.; Vockley, C.W.; Michels, V.V.; et al. Microsatellite instability in colorectal cancer: Different mutator phenotypes and the principal involvement of hMLH1. Cancer Res. 1998, 58, 1713–1718. [Google Scholar]
- Hamada, T.; Soong, T.R.; Masugi, Y.; Kosumi, K.; Nowak, J.A.; da Silva, A.; Mu, X.J.; Twombly, T.S.; Koh, H.; Yang, J.; et al. TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology 2018, 7, e1442999. [Google Scholar] [CrossRef]
- Nosho, K.; Baba, Y.; Tanaka, N.; Shima, K.; Hayashi, M.; Meyerhardt, J.A.; Giovannucci, E.; Dranoff, G.; Fuchs, C.S.; Ogino, S. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: Cohort study and literature review. J. Pathol. 2010, 222, 350–366. [Google Scholar] [CrossRef] [PubMed]
- Deschoolmeester, V.; Baay, M.; Van Marck, E.; Weyler, J.; Vermeulen, P.; Lardon, F.; Vermorken, J.B. Tumor infiltrating lymphocytes: An intriguing player in the survival of colorectal cancer patients. BMC Immunol. 2010, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Choucair, K.; Radford, M.; Bansal, A.; Park, R.; Saeed, A. Advances in immune therapies for the treatment of microsatellite instability high/deficient mismatch repair metastatic colorectal cancer (Review). Int. J. Oncol. 2021, 59, 74. [Google Scholar] [CrossRef]
- Hecht, M.; Büttner-Herold, M.; Erlenbach-Wünsch, K.; Haderlein, M.; Croner, R.; Grützmann, R.; Hartmann, A.; Fietkau, R.; Distel, L.V. PD-L1 is upregulated by radiochemotherapy in rectal adenocarcinoma patients and associated with a favourable prognosis. Eur. J. Cancer 2016, 65, 52–60. [Google Scholar] [CrossRef]
- Chiang, S.F.; Huang, C.Y.; Ke, T.W.; Chen, T.W.; Lan, Y.C.; You, Y.S.; Chen, W.T.; Chao, K.S.C. Upregulation of tumor PD-L1 by neoadjuvant chemoradiotherapy (neoCRT) confers improved survival in patients with lymph node metastasis of locally advanced rectal cancers. Cancer Immunol. Immunother. 2019, 68, 283–296. [Google Scholar] [CrossRef]
- Lim, Y.J.; Koh, J.; Kim, S.; Jeon, S.R.; Chie, E.K.; Kim, K.; Kang, G.H.; Han, S.W.; Kim, T.Y.; Jeong, S.Y.; et al. Chemoradiation-Induced Alteration of Programmed Death-Ligand 1 and CD8+ Tumor-Infiltrating Lymphocytes Identified Patients With Poor Prognosis in Rectal Cancer: A Matched Comparison Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 1216–1224. [Google Scholar] [CrossRef]
- Ogura, A.; Akiyoshi, T.; Yamamoto, N.; Kawachi, H.; Ishikawa, Y.; Mori, S.; Oba, K.; Nagino, M.; Fukunaga, Y.; Ueno, M. Pattern of programmed cell death-ligand 1 expression and CD8-positive T-cell infiltration before and after chemoradiotherapy in rectal cancer. Eur. J. Cancer 2018, 91, 11–20. [Google Scholar] [CrossRef]
- Huemer, F.; Klieser, E.; Neureiter, D.; Schlintl, V.; Rinnerthaler, G.; Pagès, F.; Kirilovsky, A.; El Sissy, C.; Iglseder, W.; Singhartinger, F.; et al. Impact of PD-L1 Scores and Changes on Clinical Outcome in Rectal Cancer Patients Undergoing Neoadjuvant Chemoradiotherapy. J. Clin. Med. 2020, 9, 2775. [Google Scholar] [CrossRef]
- Boustani, J.; Derangère, V.; Bertaut, A.; Adotevi, O.; Morgand, V.; Charon-Barra, C.; Ghiringhelli, F.; Mirjolet, C. Radiotherapy Scheme Effect on PD-L1 Expression for Locally Advanced Rectal Cancer. Cells. 2020, 9, 2071. [Google Scholar] [CrossRef]
- Tominaga, T.; Akiyoshi, T.; Yamamoto, N.; Taguchi, S.; Mori, S.; Nagasaki, T.; Fukunaga, Y.; Ueno, M. Clinical significance of soluble programmed cell death-1 and soluble programmed cell death-ligand 1 in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. PLoS ONE 2019, 14, e0212978. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Peng, Q.; Du, K.; He, J.; Dong, Y.; Lin, X.; Li, J.; Wu, J. Tumor cell PD-L1 predicts poor local control for rectal cancer patients following neoadjuvant radiotherapy. Cancer Manag. Res. 2017, 9, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Saigusa, S.; Toiyama, Y.; Tanaka, K.; Inoue, Y.; Mori, K.; Ide, S.; Imaoka, H.; Kawamura, M.; Mohri, Y.; Kusunoki, M. Implication of programmed cell death ligand 1 expression in tumor recurrence and prognosis in rectal cancer with neoadjuvant chemoradiotherapy. Int. J. Clin. Oncol. 2016, 21, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.J.; Mccoy, M.J.; Hemmings, C.; Iacopetta, B.; Platell, C.F. Expression of PD-L1 and SOX2 during rectal tumourigenesis: Potential mechanisms for immune escape and tumour cell invasion. Oncol. Lett. 2018, 16, 5761–5768. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Kim, B.H.; Oh, H.K.; Kim, D.W.; Kang, S.B.; Kim, H.; Shin, E. Programmed cell death ligand-1 protein expression and CD274/PD-L1 gene amplification in colorectal cancer: Implications for prognosis. Cancer Sci. 2018, 109, 2957–2969. [Google Scholar] [CrossRef] [PubMed]
- Calik, I.; Calik, M.; Turken, G.; Ozercan, I.H.; Dagli, A.F.; Artas, G.; Sarikaya, B. Intratumoral Cytotoxic T-Lymphocyte Density and PD-L1 Expression Are Prognostic Biomarkers for Patients with Colorectal Cancer. Medicina 2019, 55, 723. [Google Scholar] [CrossRef] [PubMed]
- Park, I.J.; An, S.; Kim, S.Y.; Lim, H.M.; Hong, S.M.; Kim, M.J.; Kim, Y.J.; Yu, C.S. Prediction of radio-responsiveness with immune-profiling in patients with rectal cancer. Oncotarget 2017, 8, 79793–79802. [Google Scholar] [CrossRef]
- Gruber, E.S.; Oberhuber, G.; Pils, D.; Stork, T.; Sinn, K.; Gruber, S.; Nica, R.; Kolmer, D.; Turner, S.D.; Schlederer, M.; et al. The Determination of Immunomodulation and Its Impact on Survival of Rectal Cancer Patients Depends on the Area Comprising a Tissue Microarray. Cancers 2020, 12, 563. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Dai, W.; Cai, G.; Xu, Y.; Li, X.; Li, Q.; Cai, S. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor-infiltrating lymphocytes in colorectal cancer. Mol. Cancer 2016, 15, 55. [Google Scholar] [CrossRef]
- Lee, K.S.; Kwak, Y.; Ahn, S.; Shin, E.; Oh, H.K.; Kim, D.W.; Kang, S.B.; Choe, G.; Kim, W.H.; Lee, H.S. Prognostic implication of CD274 (PD-L1) protein expression in tumor-infiltrating immune cells for microsatellite unstable and stable colorectal cancer. Cancer Immunol. Immunother. 2017, 66, 927–939. [Google Scholar] [CrossRef]
- Wang, J.L.; Yu, T.; Sun, T.T.; Feng, Y.; Xiong, H.; Fang, J.Y. PD-L1 Overexpression on Tumor-Infiltrating Lymphocytes Related to Better Prognosis of Colorectal Cancer. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 2014, 211, 781–790. [Google Scholar] [CrossRef]
- Imai, Y.; Chiba, T.; Kondo, T.; Kanzaki, H.; Kanayama, K.; Ao, J.; Kojima, R.; Kusakabe, Y.; Nakamura, M.; Saito, T.; et al. Interferon-γ induced PD-L1 expression and soluble PD-L1 production in gastric cancer. Oncol. Lett. 2020, 20, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Kraus, S.G.; Quaney, M.J.; Daniels, M.A.; Mitchem, J.B.; Teixeiro, E. FOLFOX Chemotherapy Ameliorates CD8 T Lymphocyte Exhaustion and Enhances Checkpoint Blockade Efficacy in Colorectal Cancer. Front. Oncol. 2020, 10, 586. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ganesan, A.; Okoye, I.; Arutyunova, E.; Elahi, S.; Lemieux, M.J.; Barakat, K. Targeting B7-1 in immunotherapy. Med. Res. Rev. 2020, 40, 654–682. [Google Scholar] [CrossRef]
- O’Byrne, K.; Popoff, E.; Badin, F.; Lee, A.; Yuan, Y.; Lozano-Ortega, G.; Eccles, L.J.; Varol, N.; Waser, N.; Penrod, J.R.; et al. Long-term comparative efficacy and safety of nivolumab plus ipilimumab relative to other first-line therapies for advanced non-small-cell lung cancer: A systematic literature review and network meta-analysis. Lung Cancer 2023, 177, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Peyravian, N.; Gharib, E.; Moradi, A.; Mobahat, M.; Tarban, P.; Azimzadeh, P.; Nazemalhosseini-Mojarad, E.; Asadzadeh Aghdaei, H. Evaluating the expression level of co-stimulatory molecules CD 80 and CD 86 in different types of colon polyps. Curr. Res. Transl. Med. 2018, 66, 19–25. [Google Scholar] [CrossRef]
- Marchiori, C.; Scarpa, M.; Kotsafti, A.; Morgan, S.; Fassan, M.; Guzzardo, V.; Porzionato, A.; Angriman, I.; Ruffolo, C.; Sut, S.; et al. Epithelial CD80 promotes immune surveillance of colonic preneoplastic lesions and its expression is increased by oxidative stress through STAT3 in colon cancer cells. J. Exp. Clin. Cancer Res. 2019, 38, 190. [Google Scholar] [CrossRef]
- Scarpa, M.; Behboo, R.; Angriman, I.; Cecchetto, A.; D’Incà, R.; Termini, B.; Barollo, M.; Ruffolo, C.; Polese, L.; Sturniolo, G.C.; et al. Expression of costimulatory molecule CD80 in colonic dysplasia in ulcerative colitis: An immunosurveillance mechanism against colorectal cancer? Int. J. Colorectal. Dis. 2006, 21, 776–783. [Google Scholar] [CrossRef]
- Ben, S.; Zhu, Q.; Chen, S.; Li, S.; Du, M.; Xin, J.; Chu, H.; Zhang, Z.; Wang, M. Genetic variations in the CTLA-4 immune checkpoint pathway are associated with colon cancer risk, prognosis, and immune infiltration via regulation of IQCB1 expression. Arch. Toxicol. 2021, 95, 2053–2063. [Google Scholar] [CrossRef]
- Kitsou, M.; Ayiomamitis, G.D.; Zaravinos, A. High expression of immune checkpoints is associated with the TIL load, mutation rate and patient survival in colorectal cancer. Int. J. Oncol. 2020, 57, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.K.; Wang, C.; Feng, L.L.; Bai, S.M.; Feng, W.X.; Ouyang, N.T.; Chu, Z.H.; Fan, X.J.; Qin, Q.Y. Expression Pattern and Prognostic Value of CTLA-4, CD86, and Tumor-Infiltrating Lymphocytes in Rectal Cancer after Neoadjuvant Chemo(radio)therapy. Cancers 2022, 14, 5573. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Noshirwani, A.; West, N.; Perry, S.; Jayne, D. Can macrophages within the microenvironment of locally invasive rectal cancers predict response to radiotherapy? Lancet 2015, 385 (Suppl. 1), S87. [Google Scholar] [CrossRef] [PubMed]
- Vanmeerbeek, I.; Govaerts, J.; Laureano, R.S.; Sprooten, J.; Naulaerts, S.; Borras, D.M.; Laoui, D.; Mazzone, M.; Van Ginderachter, J.A.; Garg, A.D. The Interface of Tumour-Associated Macrophages with Dying Cancer Cells in Immuno-Oncology. Cells 2022, 11, 3890. [Google Scholar] [CrossRef] [PubMed]
- Ålgars, A.; Kemppinen, L.; Fair-Mäkelä, R.; Mustonen, H.; Haglund, C.; Jalkanen, S. Stage I-IV Colorectal Cancer Prognosis Can Be Predicted by Type and Number of Intratumoral Macrophages and CLEVER-1+ Vessel Density. Cancers 2021, 13, 5988. [Google Scholar] [CrossRef]
- Forssell, J.; Oberg, A.; Henriksson, M.L.; Stenling, R.; Jung, A.; Palmqvist, R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin. Cancer Res. 2007, 13, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Akiyoshi, T.; Yamamoto, N.; Mukai, T.; Hiyoshi, Y.; Yamaguchi, T.; Nagasaki, T.; Fukunaga, Y.; Hirota, T.; Noda, T.; et al. Tumor-Infiltrating PD-1+ Immune Cell Density is Associated with Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer. Clin. Colorectal. Cancer 2022, 21, e1–e11. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, S.; Peng, Y.; Zhuang, J.; Yang, Y.; Xu, Y.; Guan, G. Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. Onco Targets Ther. 2021, 14, 2599–2610. [Google Scholar] [CrossRef]
- Boutilier, A.J.; Elsawa, S.F. Macrophage Polarization States in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 6995. [Google Scholar] [CrossRef]
- Oronsky, B.; Carter, C.; Reid, T.; Brinkhaus, F.; Knox, S.J. Just eat it: A review of CD47 and SIRP-α antagonism. Semin Oncol. 2020, 47, 117–124. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, H.; Yu, J.; Tian, W.; Song, Y. Targeting CD47 for cancer immunotherapy. J. Hematol. Oncol. 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Andrejeva, G.; Capoccia, B.J.; Hiebsch, R.R.; Donio, M.J.; Darwech, I.M.; Puro, R.J.; Pereira, D.S. Novel SIRPα Antibodies That Induce Single-Agent Phagocytosis of Tumor Cells while Preserving T Cells. J. Immunol. 2021, 206, 712–721. [Google Scholar] [CrossRef]
- Hsieh, R.C.; Krishnan, S.; Wu, R.C.; Boda, A.R.; Liu, A.; Winkler, M.; Hsu, W.H.; Lin, S.H.; Hung, M.C.; Chan, L.C.; et al. ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Sci. Immunol. 2022, 7, eabl9330. [Google Scholar] [CrossRef] [PubMed]
- Sugimura-Nagata, A.; Koshino, A.; Inoue, S.; Matsuo-Nagano, A.; Komura, M.; Riku, M.; Ito, H.; Inoko, A.; Murakami, H.; Ebi, M.; et al. Expression and Prognostic Significance of CD47-SIRPA Macrophage Checkpoint Molecules in Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 2690. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jee, S.; Kim, Y.; Sim, J.; Bang, S.; Son, H.K.; Park, H.; Myung, J.; Ko, Y.H.; Paik, S.S. Correlation of CD47 Expression with Adverse Clinicopathologic Features and an Unfavorable Prognosis in Colorectal Adenocarcinoma. Diagnostics 2021, 11, 668. [Google Scholar] [CrossRef]
- Sharma, A.; Bode, B.; Wenger, R.H.; Lehmann, K.; Sartori, A.A.; Moch, H.; Knuth, A.; Boehmer Lv Broek, M.V. γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS ONE 2011, 6, e28217. [Google Scholar] [CrossRef]
- Gameiro, S.R.; Malamas, A.S.; Bernstein, M.B.; Tsang, K.Y.; Vassantachart, A.; Sahoo, N.; Tailor, R.; Pidikiti, R.; Guha, C.P.; Hahn, S.M.; et al. Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell-Mediated Killing. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 120–130. [Google Scholar] [CrossRef]
- Gallegos, C.E.; Michelin, S.; Dubner, D.; Carosella, E.D. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation. Cell. Immunol. 2016, 303, 16–23. [Google Scholar] [CrossRef]
- Wang, X.; Schoenhals, J.E.; Li, A.; Valdecanas, D.R.; Ye, H.; Zang, F.; Tang, C.; Tang, M.; Liu, C.G.; Liu, X.; et al. Suppression of Type I IFN Signaling in Tumors Mediates Resistance to Anti-PD-1 Treatment That Can Be Overcome by Radiotherapy. Cancer Res. 2017, 77, 839–850. [Google Scholar] [CrossRef]
- Momburg, F.; Degener, T.; Bacchus, E.; Moldenhauer, G.; Hämmerling, G.J.; Möller, P. Loss of HLA-A, B, C and de novo expression of HLA-D in colorectal cancer. Int. J. Cancer 1986, 37, 179–184. [Google Scholar] [CrossRef]
- Stein, B.; Momburg, F.; Schwarz, V.; Schlag, P.; Moldenhauer, G.; Möller, P. Reduction or loss of HLA-A, B, C antigens in colorectal carcinoma appears not to influence survival. Br. J. Cancer 1988, 57, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Suzuki, Y.; Ide, M.; Katoh, T.; Noda, S.E.; Ando, K.; Oike, T.; Yoshimoto, Y.; Okonogi, N.; Mimura, K.; et al. HLA class I expression and its alteration by preoperative hyperthermo-chemoradiotherapy in patients with rectal cancer. PLoS ONE 2014, 9, e108122. [Google Scholar] [CrossRef] [PubMed]
- Speetjens, F.M.; de Bruin, E.C.; Morreau, H.; Zeestraten, E.C.; Putter, H.; van Krieken, J.H.; van Buren, M.M.; van Velzen, M.; Dekker-Ensink, N.G.; van de Velde, C.J.; et al. Clinical impact of HLA class I expression in rectal cancer. Cancer Immunol. Immunother. 2008, 57, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Michelakos, T.; Kontos, F.; Kurokawa, T.; Cai, L.; Sadagopan, A.; Krijgsman, D.; Weichert, W.; Durrant, L.G.; Kuppen, P.J.K.; RFerrone, C.; et al. Differential role of HLA-A and HLA-B, C expression levels as prognostic markers in colon and rectal cancer. J. Immunother. Cancer 2022, 10, e004115. [Google Scholar] [CrossRef]
- Tayshetye, P.; Friday, A.J.; Omstead, A.N.; Verma, T.; Miller, S.; Zheng, P.; Jani, P.; Zaidi, A.; Finley, G. Tumor Microenvironment before and after Chemoradiation in Locally Advanced Rectal Cancer: Beyond PD-L1. Cancers 2022, 15, 276. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.Q.; Li, J.L.; Xin, P.L.; Du, K.X.; Lin, X.Y.; Wu, J.X.; Zhang, M.T.; Kong, X.Q. Assessment of the expression and response of PD-1, LAG-3, and TIM-3 after neoadjuvant radiotherapy in rectal cancer. Neoplasma 2021, 68, 742–750. [Google Scholar] [CrossRef]
- Zhang, B.; Song, B.; Wang, X.; Chang, X.S.; Pang, T.; Zhang, X.; Yin, K.; Fang, G.E. The expression and clinical significance of CD73 molecule in human rectal adenocarcinoma. Tumour Biol. 2015, 36, 5459–5466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cheng, B.; Li, F.S.; Ding, J.H.; Feng, Y.Y.; Zhuo, G.Z.; Wei, H.F.; Zhao, K. High expression of CD39/ENTPD1 in malignant epithelial cells of human rectal adenocarcinoma. Tumour Biol. 2015, 36, 9411–9419. [Google Scholar] [CrossRef]
- Lythgoe, M.P.; Liu, D.S.K.; Annels, N.E.; Krell, J.; Frampton, A.E. Gene of the month: Lymphocyte-activation gene 3 (LAG-3). J. Clin. Pathol. 2021, 74, 543–547. [Google Scholar] [CrossRef]
- Shi, N.; Zhou, Y.; Liu, Y.; Zhang, R.; Jiang, X.; Ren, C.; Gao, X.; Luo, L. PD-1/LAG-3 bispecific antibody potentiates T cell activation and increases antitumor efficacy. Front. Immunol. 2022, 13, 1047610. [Google Scholar] [CrossRef]
- Durham, N.M.; Nirschl, C.J.; Jackson, C.M.; Elias, J.; Kochel, C.M.; Anders, R.A.; Drake, C.G. Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PLoS ONE 2014, 9, e109080. [Google Scholar] [CrossRef] [PubMed]
- Acharya, N.; Sabatos-Peyton, C.; Anderson, A.C. Tim-3 finds its place in the cancer immunotherapy landscape. J. Immunother. Cancer 2020, 8, e000911. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Lu, B.; Liu, Y.; Me, Y.; Wang, L.; Zhang, P. Tim-3 is upregulated in human colorectal carcinoma and associated with tumor progression. Mol. Med. Rep. 2017, 15, 689–695. [Google Scholar] [CrossRef]
- Kamal, A.M.; Wasfey, E.F.; Elghamry, W.R.; Sabry, O.M.; Elghobary, H.A.; Radwan, S.M. Genetic signature of CTLA-4, BTLA, TIM-3 and LAG-3 molecular expression in colorectal cancer patients: Implications in diagnosis and survival outcomes. Clin. Biochem. 2021, 96, 13–18. [Google Scholar] [CrossRef]
- Kuai, W.; Xu, X.; Yan, J.; Zhao, W.; Li, Y.; Wang, B.; Yuan, N.; Li, Z.; Jia, Y. Prognostic Impact of PD-1 and Tim-3 Expression in Tumor Tissue in Stage I-III Colorectal Cancer. Biomed. Res. Int. 2020, 2020, 5294043. [Google Scholar] [CrossRef]
- Zhou, E.; Huang, Q.; Wang, J.; Fang, C.; Yang, L.; Zhu, M.; Chen, J.; Chen, L.; Dong, M. Up-regulation of Tim-3 is associated with poor prognosis of patients with colon cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 8018–8027. [Google Scholar] [PubMed]
- Chauvin, J.M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000957. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, A.; Shibuya, K. DNAM-1 versus TIGIT: Competitive roles in tumor immunity and inflammatory responses. Int. Immunol. 2021, 33, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Zhu, X.; Lan, T.; Ding, D.; Zheng, Z.; Chen, T.; Huang, Y.; Liu, J.; Yang, X.; Shao, J.; et al. TIGIT promotes CD8+T cells exhaustion and predicts poor prognosis of colorectal cancer. Cancer Immunol. Immunother. 2021, 70, 2781–2793. [Google Scholar] [CrossRef]
- Murakami, D.; Matsuda, K.; Iwamoto, H.; Mitani, Y.; Mizumoto, Y.; Nakamura, Y.; Matsuzaki, I.; Iwamoto, R.; Takahashi, Y.; Kojima, F.; et al. Prognostic value of CD155/TIGIT expression in patients with colorectal cancer. PLoS ONE 2022, 17, e0265908. [Google Scholar] [CrossRef]
- Lu, X. OX40 and OX40L Interaction in Cancer. Curr. Med. Chem. 2021, 28, 5659–5673. [Google Scholar] [CrossRef] [PubMed]
- Takeda, I.; Ine, S.; Killeen, N.; Ndhlovu, L.C.; Murata, K.; Satomi, S.; Sugamura, K.; Ishii, N. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J. Immunol. 2004, 172, 3580–3589. [Google Scholar] [CrossRef]
- Haak, F.; Obrecht, I.; Tosti, N.; Weixler, B.; Mechera, R.; Däster, S.; von Strauss, M.; Delko, T.; Spagnoli, G.C.; Terracciano, L.; et al. Tumor Infiltration by OX40+ Cells Enhances the Prognostic Significance of CD16+ Cell Infiltration in Colorectal Cancer. Cancer Control. 2020, 27, 903383. [Google Scholar] [CrossRef] [PubMed]
- Weixler, B.; Cremonesi, E.; Sorge, R.; Muraro, M.G.; Delko, T.; Nebiker, C.A.; Däster, S.; Governa, V.; Amicarella, F.; Soysal, S.D.; et al. OX40 expression enhances the prognostic significance of CD8 positive lymphocyte infiltration in colorectal cancer. Oncotarget 2015, 6, 37588–37599. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.H.; Hong, M.; Koo, S.L.; Chua, C.W.L.; Lim, K.L.; Wee, F.; Wan, W.K.; Leow, W.Q.; Yeo, J.G.; Tan, I.B.H.; et al. CD30+OX40+ Treg is associated with improved overall survival in colorectal cancer. Cancer Immunol. Immunother. 2021, 70, 2353–2365. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, Q.; Zhang, Z.; Zhang, L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm. Sin. B 2020, 10, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Kato, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Kurzrock, R. Indoleamine 2, 3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev. 2022, 110, 102461. [Google Scholar] [CrossRef]
- Crotti, S.; Fraccaro, A.; Bedin, C.; Bertazzo, A.; Di Marco, V.; Pucciarelli, S.; Agostini, M. Tryptophan Catabolism and Response to Therapy in Locally Advanced Rectal Cancer (LARC) Patients. Front. Oncol. 2020, 10, 583228. [Google Scholar] [CrossRef]
- Ma, W.J.; Wang, X.; Yan, W.T.; Zhou, Z.G.; Pan, Z.Z.; Chen, G.; Zhang, R.X. Indoleamine-2, 3-dioxygenase 1/cyclooxygenase 2 expression prediction for adverse prognosis in colorectal cancer. World J. Gastroenterol. 2018, 24, 2181–2190. [Google Scholar] [CrossRef]
- Lee, S.J.; Jun, S.Y.; Lee, I.H.; Kang, B.W.; Park, S.Y.; Kim, H.J.; Park, J.S.; Choi, G.S.; Yoon, G.; Kim, J.G. CD274, LAG3, and IDO1 expressions in tumor-infiltrating immune cells as prognostic biomarker for patients with MSI-high colon cancer. J. Cancer Res. Clin. Oncol. 2018, 144, 1005–1014. [Google Scholar] [CrossRef]
- Ferdinande, L.; Decaestecker, C.; Verset, L.; Mathieu, A.; Moles Lopez, X.; Negulescu, A.M.; Van Maerken, T.; Salmon, I.; Cuvelier, C.A.; Demetter, P. Clinicopathological significance of indoleamine 2,3-dioxygenase 1 expression in colorectal cancer. Br. J. Cancer. 2012, 106, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Mitra, D.; Horick, N.K.; Brackett, D.G.; Mouw, K.W.; Hornick, J.L.; Ferrone, S.; Hong, T.S.; Mamon, H.; Clark, J.W.; Parikh, A.R.; et al. High IDO1 Expression Is Associated with Poor Outcome in Patients with Anal Cancer Treated with Definitive Chemoradiotherapy. Oncologist 2019, 24, e275–e283. [Google Scholar] [CrossRef] [PubMed]
- Martí, I.; Líndez, A.A.; Reith, W. Arginine-dependent immune responses. Cell Mol. Life Sci. 2021, 78, 5303–5324. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lian, J.; Yang, M.; Wuyang, J.; Zhao, C.; Chen, W.; Liu, C.; Zhao, Q.; Lou, C.; Han, J.; et al. Overexpression of Arginase-1 is an indicator of poor prognosis in patients with colorectal cancer. Pathol. Res. Pract. 2019, 215, 152383. [Google Scholar] [CrossRef]
- Porembska, Z.; Skwarek, A.; Mielczarek, M.; Barańczyk-Kuźma, A. Serum arginase activity in postsurgical monitoring of patients with colorectal carcinoma. Cancer 2002, 94, 2930–2934. [Google Scholar] [CrossRef]
- Yegutkin, G.G.; Boison, D. ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain. Pharmacol. Rev. 2022, 74, 797–822. [Google Scholar] [CrossRef]
- Tsukui, H.; Horie, H.; Koinuma, K.; Ohzawa, H.; Sakuma, Y.; Hosoya, Y.; Yamaguchi, H.; Yoshimura, K.; Lefor, A.K.; Sata, N.; et al. CD73 blockade enhances the local and abscopal effects of radiotherapy in a murine rectal cancer model. BMC Cancer 2020, 20, 411. [Google Scholar] [CrossRef]
- Messaoudi, N.; Cousineau, I.; Arslanian, E.; Henault, D.; Stephen, D.; Vandenbroucke-Menu, F.; Dagenais, M.; Létourneau, R.; Plasse, M.; Roy, A.; et al. Prognostic value of CD73 expression in resected colorectal cancer liver metastasis. Oncoimmunology 2020, 9, 1746138. [Google Scholar] [CrossRef]
- Spitzer, M.H.; Carmi, Y.; Reticker-Flynn, N.E.; Kwek, S.S.; Madhireddy, D.; Martins, M.M.; Gherardini, P.F.; Prestwood, T.R.; Chabon, J.; Bendall, S.C.; et al. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell 2017, 168, 487–502.e15. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Wu, J.; Wang, Y.; Zhao, L.; Li, G.; Zhou, M. Lymphocyte nadir predicts tumor response and survival in locally advanced rectal cancer after neoadjuvant chemoradiotherapy: Immunologic relevance. Radiother. Oncol. 2019, 131, 52–59. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Cai, Y.; Deng, R.; Yang, L.; Li, J.; Deng, Y. Reduction of circulating lymphocyte count is a predictor of good tumor response after neoadjuvant treatment for rectal cancer. Medicine 2018, 97, e11435. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.M.; Hsu, H.H.; Liu, C.K.; Yang, C.K.; Tsai, P.L.; Tang, T.Y.; Hsu, S.M.; Chen, Y.J. Histopathological and Haemogram Features Correlate with Prognosis in Rectal Cancer Patients Receiving Neoadjuvant Chemoradiation without Pathological Complete Response. J. Clin. Med. 2022, 11, 4947. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, J.; Yasuda, K.; Kawai, K.; Sunami, E.; Nagawa, H. Circulating lymphocyte number has a positive association with tumor response in neoadjuvant chemoradiotherapy for advanced rectal cancer. Radiat. Oncol. 2010, 5, 47. [Google Scholar] [CrossRef]
- Li, C.; Tian, W.; Zhao, F.; Li, M.; Ye, Q.; Wei, Y.; Li, T.; Xie, K. Systemic immune-inflammation index, SII, for prognosis of elderly patients with newly diagnosed tumors. Oncotarget 2018, 9, 35293–35299. [Google Scholar] [CrossRef]
- Eraslan, E.; Adas, Y.G.; Yildiz, F.; Gulesen, A.I.; Karacin, C.; Arslan, U.Y. Systemic Immune-inflammation Index (SII) Predicts Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. J. Coll. Physicians Surg. Pak. 2021, 30, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.; Fonseca, T.; Machado-Neves, R.; Honavar, M.; Coelho, A.R.; Lopes, J.; Barbosa, E.; Guerreiro, E.; Carneiro, S. Can pretreatment blood biomarkers predict pathological response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer? Future Oncol. 2021, 17, 4947–4957. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huang, Z.; Chi, P. An inflammation index-based prediction of treatment response to neoadjuvant chemoradiotherapy for rectal mucinous adenocarcinoma. Int. J. Clin. Oncol. 2020, 25, 1299–1307. [Google Scholar] [CrossRef]
- Vallard, A.; Garcia, M.A.; Diao, P.; Espenel, S.; de Laroche, G.; Guy, J.B.; Mrad, M.B.; Rancoule, C.; Kaczmarek, D.; Muron, T.; et al. Outcomes prediction in pre-operative radiotherapy locally advanced rectal cancer: Leucocyte assessment as immune biomarker. Oncotarget 2018, 9, 22368–22382. [Google Scholar] [CrossRef]
- Sung, S.; Son, S.H.; Park, E.Y.; Kay, C.S. Prognosis of locally advanced rectal cancer can be predicted more accurately using pre- and post-chemoradiotherapy neutrophil-lymphocyte ratios in patients who received preoperative chemoradiotherapy. PLoS ONE 2017, 12, e0173955. [Google Scholar] [CrossRef]
- Tojo, M.; Horie, H.; Koinuma, K.; Miyato, H.; Tsukui, H.; Kaneko, Y.; Futoh, Y.; Kimura, Y.; Takahashi, K.; Saito, A.; et al. Programmed cell death ligand 1 expression on monocytes is inversely correlated with tumour response to preoperative chemoradiotherapy for locally advanced rectal cancer. Colorectal. Dis. 2022, 24, 1140–1149. [Google Scholar] [CrossRef]
- Cheng, Y.K.; Chen, D.W.; Chen, P.; He, X.; Li, P.S.; Lin, Z.S.; Chen, S.X.; Ye, S.B.; Lan, P. Association of Peripheral Blood Biomarkers With Response to Anti-PD-1 Immunotherapy for Patients With Deficient Mismatch Repair Metastatic Colorectal Cancer: A Multicenter Cohort Study. Front. Immunol. 2022, 13, 809971. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, H.; Su, W.; Zhang, Y.; Feng, Y.; Lu, Y. Relationship between CD4⁺CD25(High)CD127(low) regularly T cells in the peripheral blood and tumor regression after neoadjuvant therapy in patients with rectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi 2015, 18, 361–364. (In Chinese) [Google Scholar] [PubMed]
- Napolitano, M.; D’Alterio, C.; Cardone, E.; Trotta, A.M.; Pecori, B.; Rega, D.; Pace, U.; Scala, D.; Scognamiglio, G.; Tatangelo, F.; et al. Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients. Oncotarget 2015, 6, 8261–8270. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, X.; Cheng, X.; Yi, X.; Ye, F.; Li, X.; Hu, Z.; Zhang, L.; Nie, J.; Li, X. Association of the tissue infiltrated and peripheral blood immune cell subsets with response to radiotherapy for rectal cancer. BMC Med. Genomics. 2022, 15 (Suppl. S2), 107. [Google Scholar] [CrossRef]
- Yuan, J.; Li, X.; Yu, S. Cancer organoid co-culture model system: Novel approach to guide precision medicine. Front. Immunol. 2023, 13, 1061388. [Google Scholar] [CrossRef]
- Grönholm, M.; Feodoroff, M.; Antignani, G.; Martins, B.; Hamdan, F.; Cerullo, V. Patient-Derived Organoids for Precision Cancer Immunotherapy. Cancer Res. 2021, 81, 3149–3155. [Google Scholar] [CrossRef]
- Ooft, S.N.; Weeber, F.; Dijkstra, K.K.; McLean, C.M.; Kaing, S.; van Werkhoven, E.; Schipper, L.; Hoes, L.; Vis, D.J.; van de Haar, J.; et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 2019, 11, eaay2574. [Google Scholar] [CrossRef]
- Mo, S.; Tang, P.; Luo, W.; Zhang, L.; Li, Y.; Hu, X.; Ma, X.; Chen, Y.; Bao, Y.; He, X.; et al. Patient-Derived Organoids from Colorectal Cancer with Paired Liver Metastasis Reveal Tumor Heterogeneity and Predict Response to Chemotherapy. Adv. Sci. 2022, 9, e2204097. [Google Scholar] [CrossRef]
- Lv, T.; Shen, L.; Xu, X.; Yao, Y.; Mu, P.; Zhang, H.; Wan, J.; Wang, Y.; Guan, R.; Li, X.; et al. Patient-derived tumor organoids predict responses to irinotecan-based neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Int. J. Cancer 2023, 152, 524–535. [Google Scholar] [CrossRef]
- Dong, D.; Zheng, L.; Lin, J.; Zhang, B.; Zhu, Y.; Li, N.; Xie, S.; Wang, Y.; Gao, N.; Huang, Z. Structural basis of assembly of the human T cell receptor-CD3 complex. Nature 2019, 573, 546–552. [Google Scholar] [CrossRef]
- Arlettaz, L.; Barbey, C.; Dumont-Girard, F.; Helg, C.; Chapuis, B.; Roux, E.; Roosnek, E. CD45 isoform phenotypes of human T cells: CD4(+)CD45RA(−)RO(+) memory T cells re-acquire CD45RA without losing CD45RO. Eur. J. Immunol. 1999, 29, 3987–3994. [Google Scholar] [CrossRef]
- Luckheeram, R.V.; Zhou, R.; Verma, A.D.; Xia, B. CD4⁺T cells: Differentiation and functions. Clin. Dev. Immunol. 2012, 2012, 925135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Bevan, M.J. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011, 35, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, D.; Tsun, A.; Li, B. FOXP3+ regulatory T cells and their functional regulation. Cell Mol. Immunol. 2015, 12, 558–565. [Google Scholar] [CrossRef]
- Lieberman, J. The ABCs of granule-mediated cytotoxicity: New weapons in the arsenal. Nat. Rev. Immunol. 2003, 3, 361–370. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar]
- Sobhani, N.; Tardiel-Cyril, D.R.; Davtyan, A.; Generali, D.; Roudi, R.; Li, Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers 2021, 13, 1440. [Google Scholar] [CrossRef]
- Van Duijn, A.; Van der Burg, S.H.; Scheeren, F.A. CD47/SIRPα axis: Bridging innate and adaptive immunity. J. Immunother. Cancer 2022, 10, e004589. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/macrosialin: Not just a histochemical marker. Lab Investig. 2017, 97, 4–13. [Google Scholar] [CrossRef]
- Lecocq, Q.; Keyaerts, M.; Devoogdt, N.; Breckpot, K. The Next-Generation Immune Checkpoint LAG-3 and Its Therapeutic Potential in Oncology: Third Time’s a Charm. Int. J. Mol. Sci. 2020, 22, 75. [Google Scholar] [CrossRef]
- Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 2020, 20, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Alves Costa Silva, C.; Facchinetti, F.; Routy, B.; Derosa, L. New pathways in immune stimulation: Targeting OX40. ESMO Open 2020, 5, e000573. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koukourakis, I.M.; Platoni, K.; Tiniakos, D.; Kouloulias, V.; Zygogianni, A. Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Curr. Issues Mol. Biol. 2023, 45, 4495-4517. https://doi.org/10.3390/cimb45050285
Koukourakis IM, Platoni K, Tiniakos D, Kouloulias V, Zygogianni A. Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Current Issues in Molecular Biology. 2023; 45(5):4495-4517. https://doi.org/10.3390/cimb45050285
Chicago/Turabian StyleKoukourakis, Ioannis M., Kalliopi Platoni, Dina Tiniakos, Vassilis Kouloulias, and Anna Zygogianni. 2023. "Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review" Current Issues in Molecular Biology 45, no. 5: 4495-4517. https://doi.org/10.3390/cimb45050285
APA StyleKoukourakis, I. M., Platoni, K., Tiniakos, D., Kouloulias, V., & Zygogianni, A. (2023). Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Current Issues in Molecular Biology, 45(5), 4495-4517. https://doi.org/10.3390/cimb45050285