The Role of Genetic Risk Factors in Pathogenesis of Childhood-Onset Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Polygenic SLE
2.1. Genes Related to Apoptosis, Autophagy, DNA Repair, Lysosome Function, and Clearance of Immune Complexes
2.2. Genes of Innate Immunity
2.3. Genes of Adaptive Immunity
2.4. Genes with Unknown Immune Function
3. Monogenic SLE
4. Disparities in Gene Functions in Different Races in the Etiology of SLE
5. Association between Genetic Risk and Age of Onset in SLE
6. Epigenetics in SLE
7. Environmental Triggers in SLE
8. Hypothetical Model of SLE Development
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein-Gitelman, M.S.; Beresford, M.W. Systemic Lupus Erythematosus, Mixed Connective Tissue Disease, and Undifferentiated Connective Tissue Disease. In Textbook of Pediatric Rheumatology, 8th ed.; Mellins, E.D., Petty, R.E., Laxer, R.M., Lindsley, C.B., Wedderburn, L., Fuhlbrigge, R.C., Eds.; Elsevier: Philadelphia, PA, USA, 2021; pp. 295–329. [Google Scholar]
- Edworthy, S.M. Clinical manifestations of systemic lupus erythematosus. In Kelley’s Textbook of Rheumatology, 7th ed.; Harris, E.D., Budd, R.C., Firestein, G.S., Eds.; WB Saunders: Philadelphia, PA, USA, 2005; pp. 1201–1224. [Google Scholar]
- Hoffman, I.E.; Lauwerys, B.R.; De Keyser, F.; Huizinga, T.W.; Isenberg, D.; Cebecauer, L.; Dehoorne, J.; Joos, R.; Hendrickx, G.; Houssiau, F.; et al. Juvenile-onset systemic lupus erythematosus: Different clinical and serological pattern than adult-onset systemic lupus erythematosus. Ann. Rheum. Dis. 2009, 68, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.A.; Avcin, T.; Brunner, H.I. Taxonomy for systemic lupus erythematosus with onset before adulthood. Arthritis Care Res. 2012, 64, 1787–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, T.A.; Watson, L.; McCann, L.J.; Beresford, M.W. Children and adolescents with SLE: Not just little adults. Lupus 2013, 22, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Papadimitraki, E.D.; Isenberg, D.A. Childhood and adult onset lupus: An update of similarities and differences. Expert Rev. Clin. Immunol. 2009, 5, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Lukic, A.; Lukic, I.K.; Malcic, I.; Batinic, D.; Milosevic, D.; Rozmanic, V.; Saraga, M.; Subat-Dezulovic, M.; Metlicic, V.; Malenica, B.; et al. Childhood-onset systemic lupus erythematosus in Croatia: Demographic, clinical and laboratory features, and factors influencing time to diagnosis. Clin. Exp. Rheumatol. 2013, 31, 803–812. [Google Scholar]
- Webb, R.; Kelly, J.A.; Somers, E.C.; Hughes, T.; Kaufman, K.M.; Sanchez, E.; Nath, S.K.; Bruner, G.; Alarcón-Riquelme, M.E.; Gilkeson, G.S.; et al. Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann. Rheum. Dis. 2011, 70, 151–156. [Google Scholar] [CrossRef]
- Hiraki, L.T.; Benseler, S.M.; Tyrrell, P.N.; Hebert, D.; Harvey, E.; Silverman, E.D. Clinical and laboratory characteristics and long-term outcome of pediatric systemic lupus erythematosus: A longitudinal study. J. Pediatr. 2008, 15, 550–556. [Google Scholar] [CrossRef]
- Hersh, A.O.; von Scheven, E.; Yazdany, J.; Panopalis, P.; Trupin, L.; Julian, L.; Katz, P.; Criswell, L.A.; Yelin, E. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2009, 15, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Brunner, H.I.; Gladman, D.D.; Ibanez, D.; Urowitz, M.D.; Silverman, E.D. Difference in disease features between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2008, 15, 556–562. [Google Scholar] [CrossRef]
- Lo, M.S. Monogenic lupus. Curr. Rheumatol. Rep. 2016, 18, 71. [Google Scholar] [CrossRef]
- Charras, A.; Smith, E.; Hedrich, C.M. Systemic Lupus Erythematosus in Children and Young People. Curr. Rheumatol. Rep. 2021, 23, 20. [Google Scholar] [CrossRef]
- Harry, O.; Yasin, S.; Brunner, H. Childhood-Onset Systemic Lupus Erythematosus: A Review and Update. J. Pediatr. 2018, 196, 22–30.e2. [Google Scholar] [CrossRef]
- Estes, D.; Christian, C.L. The natural history of systemic lupus erythematosus by prospective analysis. Medicine 1971, 50, 85–95. [Google Scholar] [CrossRef]
- Michel, M.; Johanet, C.; Meyer, O.; Francès, C.; Wittke, F.; Michel, C.; Arfi, S.; Tournier-Lasserve, E.; Piette, J.C.; Group for Research on Auto-Immune Disorders (GRAID). Familial lupus erythematosus. Clinical and immunologic features of 125 multiplex families. Medicine 2001, 80, 153–158. [Google Scholar] [CrossRef]
- Giles, I.; Isenberg, D. Lupus in the family—Analysis of a cohort followed from 1978 to 1999. Lupus 2001, 10, 38–44. [Google Scholar] [CrossRef]
- Foster, H.E.; Brogan, P.A. (Eds.) Paediatric Rheumatology, 2nd ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Wallace, D.J.; Hahn, B.; Dubois, E.L. Dubois’ Lupus Erythematosus and Related Syndromes, 8th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2013; p. 15. [Google Scholar]
- Lloyd, P.; Doaty, S.; Hahn, B. Aetiopathogenesis of systemic lupus erythematosus. In Systemic Lupus Erythematosus; Gordon, C., Isenberg, D., Eds.; Oxford Rheumatology Library; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Lewandowski, L.; Scott, C.; Gomez-Martin, D.; Silverman, E.D.; Aksentijevich, I.; Deng, Z.; Siegel, R.M.; Rider, L.G.; Hasni, S.; Kaplan, M.J. GG-10 Imagine SLE: International multi-site assessment of genetics and inflammation in early onset and familial systemic lupus erythematosus. Lupus Sci. Med. 2016, 3 (Suppl. S1), A32. [Google Scholar]
- Kuo, C.F.; Grainge, M.J.; Valdes, A.M.; See, L.C.; Luo, S.F.; Yu, K.H.; Zhang, W.; Doherty, M. Familial aggregation of systemic lupus erythematosus and coaggregation of autoimmune diseases in affected families. JAMA Intern. Med. 2015, 175, 1518–1526. [Google Scholar] [CrossRef]
- Frangou, E.A.; Bertsias, G.K.; Boumpas, D.T. Gene expression and regulation in systemic lupus erythematosus. Eur. J. Clin. Invest. 2013, 43, 1084–1096. [Google Scholar] [CrossRef]
- Criswell, L.A. The genetic contribution to systemic lupus erythematosus. Bull. NYU Hosp Jt. Dis. 2008, 66, 176–183. [Google Scholar]
- Crow, Y.J. Lupus: How much “complexity” is really (just) genetic heterogeneity? Arthritis Rheum. 2011, 63, 3661–3664. [Google Scholar] [CrossRef]
- Deng, Y.; Tsao, B.P. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat. Rev. Rheumatol. 2010, 6, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Tsao, B.P. Updates in Lupus Genetics. Curr. Rheumatol. Rep. 2017, 19, 68. [Google Scholar] [CrossRef] [PubMed]
- Goulielmos, G.N.; Zervou, M.I.; Vazgiourakis, V.M.; Ghodke-Puranik, Y.; Garyfallos, A.; Niewold, T.B. The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene 2018, 668, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Priori, R.; Medda, E.; Conti, F.; Cassara, E.A.; Danieli, M.G.; Gerli, R.; Giacomelli, R.; Franceschini, F.; Manfredi, A.; Pietrogrande, M. Familial autoimmunity as a risk factor for systemic lupus erythematosus and vice versa: A case-control study. Lupus 2003, 12, 735–740. [Google Scholar] [CrossRef]
- Waters, H.; Konrad, P.; Walford, R.L. The distribution of HL-A histocompatibility factors and genes in patients with systemic lupus erythematosus. Tissue Antigens 1971, 1, 68–73. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Zhou, X.J.; Zhang, H. Autophagy and immunological aberrations in systemic lupus erythematosus. Eur. J. Immunol. 2019, 49, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Zhou, X.J.; Zhang, H. Exploring the Role of Autophagy-Related Gene 5 (ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front. Immunol. 2018, 9, 2334. [Google Scholar] [CrossRef]
- Yang, W.; Lau, Y.L. Solving the genetic puzzle of systemic lupus erythematosus. Pediatr. Nephrol. 2015, 30, 1735–1748. [Google Scholar] [CrossRef]
- Valbuena, A.; Castro-Obregon, S.; Lazo, P.A. Downregulation of VRK1 by p53 in response to DNA damage is mediated by the autophagic pathway. PLoS ONE 2011, 6, e17320. [Google Scholar] [CrossRef] [Green Version]
- Tam, R.C.; Lee, A.L.; Yang, W.; Lau, C.S.; Chan, V.S. Systemic Lupus Erythematosus Patients Exhibit Reduced Expression of CLEC16A Isoforms in Peripheral Leukocytes. Int. J. Mol. Sci. 2015, 16, 14428–14440. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Liu, J.; Dong, H.; Xu, E.; Qiao, Y.; Wang, L.; Zhang, L.; Jia, J.; Li, L.; Geng, X. Autophagy-related gene16L2, a potential serum biomarker of multiple sclerosis evaluated by bead-based proteomic technology. Neurosci. Lett. 2014, 562, 34–38. [Google Scholar] [CrossRef]
- Kim, K.; Brown, E.E.; Choi, C.B.; Alarcón-Riquelme, M.E.; BIOLUPUS; Kelly, J.A.; Glenn, S.B.; Ojwang, J.O.; Adler, A.; Lee, H.S.; et al. Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries. Ann. Rheum. Dis. 2012, 71, 1809–1814. [Google Scholar] [CrossRef]
- Fossati-Jimack, L.; Ling, G.S.; Cortini, A.; Szajna, M.; Malik, T.H.; McDonald, J.U.; Pickering, M.C.; Cook, H.T.; Taylor, P.R.; Botto, M. Phagocytosis is themain CR3-mediated function affected by the lupus-associated variant of CD11b in human myeloid cells. PLoS ONE 2013, 8, e57082. [Google Scholar] [CrossRef] [Green Version]
- Baechler, E.C.; Batliwalla, F.M.; Karypis, G.; Gaffney, P.M.; Ortmann, W.A.; Espe, K.J.; Shark, K.B.; Grande, W.J.; Hughes, K.M.; Kapur, V. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 2003, 100, 2610–2615. [Google Scholar] [CrossRef]
- Jensen, M.A.; Niewold, T.B. Interferon regulatory factors: Critical mediators of human lupus. Transl Res. 2015, 165, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.J.; Theros, J.; Reed, T.J.; Liu, J.; Grigorova, I.L.; Martínez-Colón, G.; Jacob, C.O.; Hodgin, J.B.; Kahlenberg, J.M. TLR7-Mediated Lupus Nephritis Is Independent of Type I IFN Signaling. J. Immunol. 2018, 201, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Romo, G.S.; Caielli, S.; Vega, B.; Connolly, J.; Allantaz, F.; Xu, Z.; Punaro, M.; Baisch, J.; Guiducci, C.; Coffman, R.L.; et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 2011, 3, 73ra20. [Google Scholar] [CrossRef] [Green Version]
- Domsgen, E.; Lind, K.; Kong, L.; Hühn, M.H.; Rasool, O.; van Kuppeveld, F.; Korsgren, O.; Lahesmaa, R.; Flodström-Tullberg, M. An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral defence pathways in Coxsackievirus infected human pancreatic islets. Sci. Rep. 2016, 6, 39378. [Google Scholar] [CrossRef] [Green Version]
- Funabiki, M.; Kato, H.; Miyachi, Y.; Toki, H.; Motegi, H.; Inoue, M.; Minowa, O.; Yoshida, A.; Deguchi, K.; Sato, H.; et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 2014, 40, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Salloum, R.; Niewold, T.B. Interferon regulatory factors in human lupus pathogenesis. Transl Res. 2011, 157, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Jacob, C.O.; Zhu, J.; Armstrong, D.L.; Yan, M.; Han, J.; Zhou, X.J.; Thomas, J.A.; Reiff, A.; Myones, B.L.; Ojwang, J.O.; et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 2009, 106, 6256–6261. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, S.; Nordmark, G.; Göring, H.H.; Lindroos, K.; Wiman, A.C.; Sturfelt, G.; Jönsen, A.; Rantapää-Dahlqvist, S.; Möller, B.; Kere, J.; et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet. 2005, 76, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Rotival, M.; Patin, E.; Michel, F.; Pellegrini, S. Two common disease-associated TYK2 variants impact exon splicing and TYK2 dosage. PLoS ONE 2020, 15, e0225289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Cubas, C.; García-Ortiz, H.; Velázquez-Cruz, R.; Barajas-Olmos, F.; Baca, P.; Martínez-Hernández, A.; Barbosa-Cobos, R.E.; Ramírez-Bello, J.; López-Hernández, M.A.; Svyryd, Y.; et al. Catalytically Impaired TYK2 Variants are Protective Against Childhood- and Adult-Onset Systemic Lupus Erythematosus in Mexicans. Sci. Rep. 2019, 9, 12165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, R.K. Involvement of NF-κB signaling pathway in the pathogenesis of systemic lupus erythematosus. Nephrol. Open J. 2016, 2, 9–13. [Google Scholar] [CrossRef]
- Catrysse, L.; Vereecke, L.; Beyaert, R.; van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 2014, 35, 22–31. [Google Scholar] [CrossRef]
- Brady, M.P.; Korte, E.A.; Caster, D.J.; Powell, D.W. TNIP1/ABIN1 and lupus nephritis: Review. Lupus Sci. Med. 2020, 7, e000437. [Google Scholar] [CrossRef]
- Lewis, M.J.; Vyse, S.; Shields, A.M.; Boeltz, S.; Gordon, P.A.; Spector, T.D.; Lehner, P.J.; Walczak, H.; Vyse, T.J. UBE2L3 polymorphism amplifies NF-kappaB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am. J. Hum. Genet. 2015, 96, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.J.; Gao, J.P.; Li, J.; Han, J.W.; Xu, Q.; Hu, W.L.; Pan, T.M.; Cheng, Y.L.; Yu, Z.Y.; Ni, C.; et al. Follow-up study identifies two novel susceptibility loci PRKCB and 8p11.21 for systemic lupus erythematosus. Rheumatology 2011, 50, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Romzova, M.; Hohenadel, D.; Kolostova, K.; Pinterova, D.; Fojtikova, M.; Ruzickova, S.; Dostal, C.; Bosak, V.; Rychlik, I.; Cerna, M. NFκB and its inhibitor IκB in relation to type 2 diabetes and its microvascular and atherosclerotic complications. Hum. Immunol. 2006, 67, 706–713. [Google Scholar] [CrossRef]
- Forabosco, P.; Gorman, J.D.; Cleveland, C.; Kelly, J.A.; Fisher, S.A.; Ortmann, W.A.; Johansson, C.; Johanneson, B.; Moser, K.L.; Gaffney, P.M.; et al. Meta-analysis of genome-wide linkage studies of systemic lupus erythematosus. Genes Immun. 2006, 7, 609–614. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.R.; Hom, G.; Ortmann, W.; Behrens, T.W. Review of recent genome-wide association scans in lupus. J. Intern. Med. 2009, 265, 680–688. [Google Scholar] [CrossRef]
- International MHC and Autoimmunity Genetics Network; Rioux, J.D.; Goyette, P.; Vyse, T.J.; Hammarström, L.; Fernando, M.M.; Green, T.; De Jager, P.L.; Foisy, S.; Wang, J.; et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 18680–18685. [Google Scholar]
- Bentham, J.; Morris, D.L.; Cunninghame Graham, D.S.; Pinder, C.L.; Tombleson, P.; Behrens, T.W.; Martín, J.; Fairfax, B.P.; Knight, J.C.; Chen, L.; et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 2015, 47, 457–464. [Google Scholar] [CrossRef]
- Gough, S.C.; Simmonds, M.J. The HLA Region and Autoimmune Disease: Associations and Mechanisms of Action. Curr. Genomics. 2007, 8, 453–465. [Google Scholar]
- Zanelli, E.; Breedveld, F.C.; de Vries, R.R. HLA association with autoimmune disease: A failure to protect? Rheumatology 2000, 39, 1060–1066. [Google Scholar] [CrossRef] [Green Version]
- Gromme, M.; Neefjes, J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol. Immunol. 2002, 39, 181–202. [Google Scholar] [CrossRef]
- Saeed, M. Lupus pathobiology based on genomics. Immunogenetics 2017, 69, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Menard, L.; Saadoun, D.; Isnardi, I.; Ng, Y.S.; Meyers, G.; Massad, C.; Price, C.; Abraham, C.; Motaghedi, R.; Buckner, J.H.; et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest. 2011, 121, 3635–3644. [Google Scholar] [CrossRef] [Green Version]
- Kyogoku, C.; Langefeld, C.D.; Ortmann, W.A.M.; Lee, A.; Selby, S.; Carlton, V.E.; Chang, M.; Ramos, P.; Baechler, E.C.; Batliwalla, F.M.; et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet. 2004, 75, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Kozyrev, S.V.; Abelson, A.K.; Wojcik, J.; Zaghlool, A.; Linga Reddy, M.V.; Sanchez, E.; Gunnarsson, I.; Svenungsson, E.; Sturfelt, G.; Jönsen, A.; et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet. 2008, 40, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.H.; Athanasopoulos, V.; Ellyard, J.I.; Chuah, A.; Cappello, J.; Cook, A.; Prabhu, S.B.; Cardenas, J.; Gu, J.; Stanley, M.; et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat. Commun. 2019, 10, 2201. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, S.E.; Foley, C.; Lu, X.; Patel, Z.H.; Zoller, E.E.; Magnusen, A.F.; Williams, A.H.; Ziegler, J.T.; Comeau, M.E.; Marion, M.C.; et al. Lupus risk variants in the PXK locus alter B-cell receptor internalization. Front. Genet. 2015, 5, 450. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Wang, Y.H.; Duramad, O.; Hanabuchi, S.; Perng, O.A.; Gilliet, M.; Qin, F.X.; Liu, Y.J. OX40 ligand shuts down IL-10-producing regulatory T cells. Proc. Natl. Acad. Sci. USA 2006, 103, 13138–13143. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Shen, N.; Ye, D.Q.; Liu, Q.; Zhang, Y.; Qian, X.X.; Hirankarn, N.; Ying, D.; Pan, H.F.; Mok, C.C.; et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 2010, 6, e1000841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Niu, Q.; Huang, Z.; Yang, B.; Wu, Y.; Zhang, J. IKZF1 polymorphisms are associated with susceptibility, cytokine levels, and clinical features in systemic lupus erythematosus. Medicine 2020, 99, e22607. [Google Scholar] [CrossRef]
- Hagiwara, E.; Gourley, M.F.; Lee, S.; Klinman, D.K. Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10:Interferon-gamma-secreting cells in the peripheral blood. Arthritis Rheum. 1996, 39, 379–385. [Google Scholar] [CrossRef]
- Blenman, K.; Duan, B.; Xu, Z.; Wan, S.; Atkinson, M.A.; Flotte, T.R.; Croker, B.P.; Morel, L. IL-10 regulation of lupus in the NZM2410 murine model. Lab. Invest. 2006, 86, 1136–1148. [Google Scholar] [CrossRef] [Green Version]
- Marín-Rosales, M.; Cruz, A.; Salazar-Camarena, D.C.; Santillán-López, E.; Espinoza-García, N.; Muñoz-Valle, J.F.; Ramírez-Dueñas, M.G.; Oregón-Romero, E.; Orozco-Barocio, G.; Palafox-Sánchez, C.A. High BAFF expression associated with active disease in systemic lupus erythematosus and relationship with rs9514828C>T polymorphism in TNFSF13B gene. Clin. Exp. Med. 2019, 19, 183–190. [Google Scholar] [CrossRef]
- Chen, L.; Morris, D.L.; Vyse, T.J. Genetic advances in systemic lupus erythematosus: An update. Curr. Opin. Rheumatol. 2017, 29, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Sheng, Y.; Zhang, X. Genetic susceptibility to SLE: Recent progress from GWAS. J. Autoimmun. 2013, 41, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Ptacek, T.; Li, X.; Kelley, J.M.; Edberg, J.C. Copy number variants in genetic susceptibility and severity of systemic lupus erythematosus. Cytogenet. Genome Res. 2008, 123, 142–147. [Google Scholar] [CrossRef]
- Olsson, L.M.; Johansson, Å.C.; Gullstrand, B.; Jönsen, A.; Saevarsdottir, S.; Rönnblom, L.; Leonard, D.; Wetterö, J.; Sjöwall, C.; Svenungsson, E.; et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann. Rheum. Dis. 2017, 76, 1607–1613. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Deng, Y.; Kelly, J.A.; Kim, K.; Bang, S.Y.; Lee, H.S.; Li, Q.Z.; Wakeland, E.K.; Qiu, R.; et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat. Genet. 2017, 49, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Belot, A.; Cimaz, R. Monogenic forms of systemic lupus erythematosus: New insights into SLE pathogenesis. Pediatr. Rheumatol. 2012, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Lo, M.S.; Tsokos, G. Monogenic lupus. Int. J. Clin. Rheumatol. 2014, 9, 543–546. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Harley, I.T.; Kaufman, K.M.; Langefeld, C.D.; Harley, J.B.; Kelly, J.A. Genetic susceptibility to SLE: New insights from fine mapping and genome-wide association studies. Nat. Rev. Genet. 2009, 10, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Lintner, K.E.; Wu, Y.L.; Yang, Y.; Spencer, C.H.; Hauptmann, G.; Hebert, L.A.; Atkinson, J.P.; Yu, C.Y. Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front. Immunol. 2016, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Lipsker, D.; Hauptmann, G. Cutaneous manifestations of complement deficiencies. Lupus 2010, 19, 1096–1106. [Google Scholar] [CrossRef]
- Pickering, M.C.; Botto, M.; Taylor, P.R.; Lachmann, P.J.; Walport, M.J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv. Immunol. 2000, 76, 227–234. [Google Scholar] [PubMed]
- Alperin, J.M.; Ortiz-Fernández, L.; Sawalha, A.H. Monogenic Lupus: A Developing Paradigm of Disease. Front. Immunol. 2018, 9, 2496. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.S. Insights Gained from the Study of Pediatric Systemic Lupus Erythematosus. Front. Immunol. 2018, 9, 1278. [Google Scholar] [CrossRef] [Green Version]
- Lee-Kirsch, M.A.; Gong, M.; Schulz, H.; Rüschendorf, F.; Stein, A.; Pfeiffer, C.; Ballarini, A.; Gahr, M.; Hubner, N.; Linné, M. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am. J. Hum. Genet. 2006, 79, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Crow, Y.J.; Manel, N. Aicardi-Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 2015, 15, 429–440. [Google Scholar] [CrossRef]
- Bader-Meunier, B.; Cavé, H.; Jeremiah, N.; Magerus, A.; Lanzarotti, N.; Rieux-Laucat, F.; Cormier-Daire, V. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin. Arthritis Rheum. 2013, 43, 217–219. [Google Scholar] [CrossRef]
- Belot, A.; Kasher, P.R.; Trotter, E.W.; Foray, A.P.; Debaud, A.L.; Rice, G.I.; Szynkiewicz, M.; Zabot, M.T.; Rouvet, I.; Bhaskar, S.S.; et al. Protein kinase cdelta deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013, 65, 2161–2171. [Google Scholar] [CrossRef] [Green Version]
- Demirkaya, E.; Sahin, S.; Romano, M.; Zhou, Q.; Aksentijevich, I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J. Clin. Med. 2020, 9, 712. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wilson, J.; He, J.; Xiang, L.; Schur, P.H.; Mountz, J.D. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest. 1996, 98, 1107–1113. [Google Scholar] [CrossRef] [Green Version]
- Liphaus, B.L.; Caramalho, I.; Rangel-Santos, A.; Silva, C.A.; Demengeot, J.; Carneiro-Sampaio, M.M.S. LRBA deficiency: A new genetic cause of monogenic lupus. Ann. Rheum. Dis. 2020, 79, 427–428. [Google Scholar] [CrossRef]
- Charbonnier, L.M.; Janssen, E.; Chou, J.; Ohsumi, T.K.; Keles, S.; Hsu, J.T.; Massaad, M.J.; Garcia-Lloret, M.; Hanna-Wakim, R.; Dbaibo, G.; et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J. Allergy Clin. Immunol. 2015, 135, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Alarcon, G.S.; Calvo-Alen, J.; Andrade, R.; McGwin, G., Jr.; Vilá, L.M.; Reveille, J.D.; LUMINA Study Group. A multiethnic, multicenter cohort of patients with systemic lupus erythematosus (SLE) as a model for the study of ethnic disparities in SLE. Arthritis Rheum. 2007, 57, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Niewold, T.B. Advances in lupus genetics. Curr. Opin. Rheumatol. 2015, 27, 440–447. [Google Scholar] [CrossRef] [Green Version]
- González, L.A.; Toloza, S.M.; McGwin, G., Jr.; Alarcón, G.S. Ethnicity in systemic lupus erythematosus (SLE): Its influence on susceptibility and outcomes. Lupus 2013, 22, 1214–1224. [Google Scholar] [CrossRef]
- Scofield, R.H.; Sharma, R.; Aberle, T.; Cooney Carisa, M.; Kelly Jennifer, A.; Harley John, B.; Rasmussen, A. Impact of race and ethnicity on family participation in systemic lupus erythematosus genetic studies. Front. Lupus 2023, 1, 1100534. [Google Scholar] [CrossRef]
- Peschken, C.A. Health disparities in systemic lupus erythematosus. Rheum. Dis. Clin. N. Am. 2020, 46, 673–683. [Google Scholar] [CrossRef]
- Gonzalez, L.A.; Ugarte-Gil, M.F.; Pons-Estel, G.J.; Duran-Barragan, S.; Toloza, S.; Burgos, P.I.; Bertoli, A.; Borgia, R.E.; Alarcón, G.S. Addressing health disparities as a function of ethnicity in systemic lupus erythematosus patients. Lupus 2022, 31, 1691–1705. [Google Scholar] [CrossRef]
- Kyogoku, C.; Morinobu, A.; Nishimura, K.; Sugiyama, D.; Hashimoto, H.; Tokano, Y.; Mimori, T.; Terao, C.; Matsuda, F.; Kuno, T.; et al. Lack of association between tyrosine kinase 2 (TYK2) gene polymorphisms and susceptibility to SLE in a Japanese population. Mod. Rheumatol. 2009, 19, 401–406. [Google Scholar] [CrossRef]
- Tang, L.; Wan, P.; Wang, Y.; Pan, J.; Wang, Y.; Chen, B. Genetic association and interaction between the IRF5 and TYK2 genes and systemic lupus erythematosus in the Han Chinese population. Inflamm. Res. 2015, 64, 817–824. [Google Scholar] [CrossRef]
- Mori, M.; Yamada, R.; Kobayashi, K.; Kawaida, R.; Yamamoto, K. Ethnic differences in allele frequency of autoimmune-disease associated SNPs. J. Hum. Genet. 2005, 50, 264–266. [Google Scholar] [CrossRef] [Green Version]
- Reveille, J.D.; Moulds, J.M.; Ahn, C.; Friedman, A.W.; Baethge, B.; Roseman, J.; Straaton, K.V.; Alarcón, G.S. Systemic lupus erythematosus in three ethnic groups: I. The effects of HLA class II, C4, and CR1 alleles, socioeconomic factors, and ethnicity at disease onset. LUMINA Study Group. Lupus in minority populations, nature versus nurture. Arthritis Rheum. 1998, 41, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.; Comeau, M.E.; Freedman, B.I.; Kelly, J.A.; Kaufman, K.M.; Langefeld, C.D.; Brown, E.E.; Alarcón, G.S.; Kimberly, R.P.; Edberg, J.C.; et al. Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis Rheum. 2011, 63, 3493–3501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, Y.B.; Lim, J.; Tsao, B.P.; Nath, S.K.; Kim, K.; Bae, S.C. Genetic variants in systemic lupus erythematosus susceptibility loci, XKR6 and GLT1D1 are associated with childhood-onset SLE in a Korean cohort. Sci. Rep. 2018, 8, 9962. [Google Scholar] [CrossRef] [Green Version]
- Kadota, K.; Mori, M.; Yanagimachi, M.; Miyamae, T.; Hara, T.; Kanetaka, T.; Nozawa, T.; Kikuchi, M.; Hara, R.; Imagawa, T.; et al. Analysis of gender differences in genetic risk: Association of TNFAIP3 polymorphism with male childhood-onset systemic lupus erythematosus in the Japanese population. PLoS ONE 2013, 8, e72551. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, D.; Kamphuis, S.; Beyene, J.; Wither, J.; Harley, J.B.; Blanco, I.; Vila-Inda, C.; Brunner, H.; Klein-Gitleman, M.; McCurdy, D.; et al. Relationship Between Genetic Risk and Age of Diagnosis in Systemic Lupus Erythematosus. J. Rheumatol. 2021, 48, 852–858. [Google Scholar] [CrossRef]
- Webber, D.; Cao, J.; Dominguez, D.; Gladman, D.D.; Levy, D.M.; Ng, L.; Paterson, A.D.; Touma, Z.; Urowitz, M.B.; Wither, J.E.; et al. Association of systemic lupus erythematosus (SLE) genetic susceptibility loci with lupus nephritis in childhood-onset and adult-onset SLE. Rheumatology 2020, 59, 90–98. [Google Scholar] [CrossRef]
- Zan, H. Epigenetics in lupus. Autoimmunity 2014, 47, 213–214. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.; Zuo, X. Epigenetics in systemic lupus erythematosus. Biomed. Rep. 2016, 4, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Richardson, B.; Scheinbart, L.; Strahler, J.; Gross, L.; Hanash, S.; Johnson, M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 1990, 33, 1665–1673. [Google Scholar] [CrossRef]
- Jeffries, M.A.; Dozmorov, M.; Tang, Y.; Merrill, J.T.; Wren, J.D.; Sawalha, A.H. Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics 2011, 6, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Pieterse, E.; Hofstra, J.; Berden, J.; Herrmann, M.; Dieker, J.; van der Vlag, J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 2015, 179, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Yang, W.; Ye, D.Q.; Cui, H.; Zhang, Y.; Hirankarn, N.; Qian, X.; Tang, Y.; Lau, Y.L.; de Vries, N.; et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 2011, 7, e1002128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, C.G.; D’Aloisio, A.A.; Sandler, D.P. Early Life Factors Associated with Adult-Onset Systemic Lupus Erythematosus in Women. Front. Immunol. 2016, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Kyttaris, V.C. Systemic lupus erythematosus: From genes to organ damage. Methods Mol. Biol. 2010, 662, 265–283. [Google Scholar]
- Tsokos, G.C.; Lo, M.S.; Costa Reis, P.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef]
- Zharkova, O.; Celhar, T.; Cravens, P.D.; Satterthwaite, A.B.; Fairhurst, A.M.; Davis, L.S. Pathways leading to an immunological disease: Systemic lupus erythematosus. Rheumatology 2017, 56 (Suppl. S1), i55–i66. [Google Scholar] [CrossRef] [Green Version]
- Costa-Reis, P.; Sullivan, K.E. Monogenic lupus: It’s all new! Curr. Opin. Immunol. 2017, 49, 87–95. [Google Scholar] [CrossRef]
- Batu, E.D. Monogenic systemic lupus erythematosus: Insights in pathophysiology. Rheumatol. Int. 2018, 38, 1763–1775. [Google Scholar] [CrossRef]
cSLE | SLE | |
---|---|---|
Gender difference | 4–5 girls to 1 boy | 9 females to 1 male |
Severity of clinical picture | More severe, often affects multiple organs and systems | Compared to children, the disease in adults is usually less active at the time of diagnosis |
Renal involvement | 60–80% | 35–50% |
Central nervous system involvement | 20–50% | 10–25% |
Pulmonary involvement | 15–40% | 20–90% |
Joint involvement | 60–70% | 80–95% |
Treatment | More intensive, glucocorticoids and immunosuppressants more frequently used | Compared to children, glucocorticoids and immunosuppressants less frequently used |
Specific complications | Poor growth, delayed puberty, higher risk of corticosteroid-related complications | Malignancy |
Examples of variants distinct between cSLE and SLE | ESR1 ORα polymorphisms MBL2 rs7460469 in XKR6 rs7300146 in GLT1D1 STAT4 SPP1 TNFAIP3 | ESR2 ORα polymorphisms MECP2 PDCD1 |
Type of Gene Function Disorder | Gene | Inheritance | Clinical Picture |
---|---|---|---|
Clearance defects | Hereditary deficiencies in specific complement components (C1QA, C1QB, C1QC, C1R, C1S, C2, C4A, C4B) | AR | Early disease onset, recurrent pyogenic infections or infections caused by Neisseria meningitidis, frequent photosensitive skin rash, nephritis, oral ulceration, arthritis, and often the absence of antinuclear antibodies |
IFN signaling pathways | TREX1 | AR/AD | Familial chilblain lupus, Aicardi-Goutières syndrome, retinal vasculopathy with cerebral leukodystrophy, and cerebral SLE |
IFIH1 | AD | Early-onset SLE and Aicardi-Goutières syndrome-like disease, including musculoskeletal involvement | |
SAMHD1 | AR | Aicardi-Goutières syndrome, chilblain lupus, SLE | |
RNASEH2A, RNASEH2B, RNASEH2C | AR | Cutaneous changes, photosensitivity, arthritis, lymphopenia, and autoantibody formation | |
DNASE1 | AD | SLE, high titers of autoantibodies | |
DNASE1L3 | AR | SLE, very early onset, frequent glomerulonephritis | |
Lymphocyte signaling | PRKCD | AR | Hepatosplenomegaly, lymphadenopathy, and susceptibility to infections, particularly chronic EBV and CMV, autoantibody production and an increased incidence of glomerulonephritis |
PTPN11, KRAS, NRAS, SOS1, SHOC2, SHP2 | AD | Noonan syndrome, hepatosplenomegaly, lymphadenopathy, an increased frequency of pericarditis, and autoimmune cytopenias | |
FASL | AD | SLE with lymphadenopathy, autoimmune lymphoproliferative syndrome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sestan, M.; Kifer, N.; Arsov, T.; Cook, M.; Ellyard, J.; Vinuesa, C.G.; Jelusic, M. The Role of Genetic Risk Factors in Pathogenesis of Childhood-Onset Systemic Lupus Erythematosus. Curr. Issues Mol. Biol. 2023, 45, 5981-6002. https://doi.org/10.3390/cimb45070378
Sestan M, Kifer N, Arsov T, Cook M, Ellyard J, Vinuesa CG, Jelusic M. The Role of Genetic Risk Factors in Pathogenesis of Childhood-Onset Systemic Lupus Erythematosus. Current Issues in Molecular Biology. 2023; 45(7):5981-6002. https://doi.org/10.3390/cimb45070378
Chicago/Turabian StyleSestan, Mario, Nastasia Kifer, Todor Arsov, Matthew Cook, Julia Ellyard, Carola G. Vinuesa, and Marija Jelusic. 2023. "The Role of Genetic Risk Factors in Pathogenesis of Childhood-Onset Systemic Lupus Erythematosus" Current Issues in Molecular Biology 45, no. 7: 5981-6002. https://doi.org/10.3390/cimb45070378
APA StyleSestan, M., Kifer, N., Arsov, T., Cook, M., Ellyard, J., Vinuesa, C. G., & Jelusic, M. (2023). The Role of Genetic Risk Factors in Pathogenesis of Childhood-Onset Systemic Lupus Erythematosus. Current Issues in Molecular Biology, 45(7), 5981-6002. https://doi.org/10.3390/cimb45070378